PATIENTS AND METHODS: We collected 1-year follow-up data from records of 98 diabetic KTRs on SGLT2I, 41 on GLP- 1RA and 70 on standard-of-care medicines. Patients were more than 3 months post-transplant with a minimum estimated glomerular filtration rate (eGFR) of 25 ml/min/1.73 m2 . Demographic data were similar except for a slightly lower HbA1c in the control group and higher albuminuria in SGLT2i group.
RESULTS: HbA1c dropped significantly by .4% in both SGLT2i and GLP-1RA compared to .05% in the control group. A significant decrease in BMI by .32 in SGLT2i and .34 in GLP-1RA was observed compared to an increase by .015 in control group. A tendency for better eGFR in study groups was observed but was non-significant except for the SGLT2i group with an eGFR above 90 (p = .0135). The usual dip in eGFR was observed in the SGLT2i group at 1-3 months. Albuminuria was significantly reduced in both study groups. Adverse events were minimal with comparable safety in all groups.
CONCLUSION: The use of SGLT2i and GLP-1RA appears to be effective and safe in diabetic KTRs with good outcomes. Randomized control trials are required to confirm these findings and establish guidelines.
METHODS: This study investigated the microbial composition and readily found bioactive compounds in water kefir fermented in Malaysia using 16S rRNA microbiome and UHPLC sequencing approaches. The toxicity effects of the kefir water administration in BALB/c mice were analysed based on the mice survival, body weight index, biochemistry profile, and histopathological changes. The antioxidant activities were evaluated using SOD, FRAP, and NO assays.
RESULTS: The 16S rRNA amplicon sequencing revealed the most abundant species found in the water kefir was Lactobacillus hilgardii followed by Lactobacillus harbinensis, Acetobacter lovaniensis, Lactobacillus satsumensis, Acetobacter tropicalis, Lactobacillus zeae, and Oenococcus oeni. The UHPLC screening showed flavonoid and phenolic acid derivatives as the most important bioactive compounds present in kefir water which has been responsible for its antioxidant activities. Subchronic toxicity study showed no toxicological signs, behavioural changes, or adverse effects by administrating 10 mL/kg/day and 2.5 mL/kg/day kefir water to the mice. Antioxidants assays demonstrated enhanced SOD and FRAP activities and reduced NO level, especially in the brain and kidney samples.
CONCLUSIONS: This study will help to intensify the knowledge on the water kefir microbial composition, available phytochemicals and its toxicological and antioxidant effects on BALB/c mice since there are very limited studies on the water kefir grain fermented in Malaysia.