Displaying publications 101 - 120 of 1460 in total

Abstract:
Sort:
  1. He Q, Shahabi H, Shirzadi A, Li S, Chen W, Wang N, et al.
    Sci Total Environ, 2019 May 01;663:1-15.
    PMID: 30708212 DOI: 10.1016/j.scitotenv.2019.01.329
    Landslides are major hazards for human activities often causing great damage to human lives and infrastructure. Therefore, the main aim of the present study is to evaluate and compare three machine learning algorithms (MLAs) including Naïve Bayes (NB), radial basis function (RBF) Classifier, and RBF Network for landslide susceptibility mapping (LSM) at Longhai area in China. A total of 14 landslide conditioning factors were obtained from various data sources, then the frequency ratio (FR) and support vector machine (SVM) methods were used for the correlation and selection the most important factors for modelling process, respectively. Subsequently, the resulting three models were validated and compared using some statistical metrics including area under the receiver operating characteristics (AUROC) curve, and Friedman and Wilcoxon signed-rank tests The results indicated that the RBF Classifier model had the highest goodness-of-fit and performance based on the training and validation datasets. The results concluded that the RBF Classifier model outperformed and outclassed (AUROC = 0.881), the NB (AUROC = 0.872) and the RBF Network (AUROC = 0.854) models. The obtained results pointed out that the RBF Classifier model is a promising method for spatial prediction of landslide over the world.
    Matched MeSH terms: Algorithms
  2. Nhu VH, Shirzadi A, Shahabi H, Singh SK, Al-Ansari N, Clague JJ, et al.
    PMID: 32316191 DOI: 10.3390/ijerph17082749
    Shallow landslides damage buildings and other infrastructure, disrupt agriculture practices, and can cause social upheaval and loss of life. As a result, many scientists study the phenomenon, and some of them have focused on producing landslide susceptibility maps that can be used by land-use managers to reduce injury and damage. This paper contributes to this effort by comparing the power and effectiveness of five machine learning, benchmark algorithms-Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine-in creating a reliable shallow landslide susceptibility map for Bijar City in Kurdistan province, Iran. Twenty conditioning factors were applied to 111 shallow landslides and tested using the One-R attribute evaluation (ORAE) technique for modeling and validation processes. The performance of the models was assessed by statistical-based indexes including sensitivity, specificity, accuracy, mean absolute error (MAE), root mean square error (RMSE), and area under the receiver operatic characteristic curve (AUC). Results indicate that all the five machine learning models performed well for shallow landslide susceptibility assessment, but the Logistic Model Tree model (AUC = 0.932) had the highest goodness-of-fit and prediction accuracy, followed by the Logistic Regression (AUC = 0.932), Naïve Bayes Tree (AUC = 0.864), ANN (AUC = 0.860), and Support Vector Machine (AUC = 0.834) models. Therefore, we recommend the use of the Logistic Model Tree model in shallow landslide mapping programs in semi-arid regions to help decision makers, planners, land-use managers, and government agencies mitigate the hazard and risk.
    Matched MeSH terms: Algorithms*
  3. Nabilah Najmuddin, Nor Haniza Sarmin, Ahmad Erfanian
    MATEMATIKA, 2019;35(2):149-155.
    MyJurnal
    A domination polynomial is a type of graph polynomial in which its coefficients represent the number of dominating sets in the graph. There are many researches being done on the domination polynomial of some common types of graphs but not yet for graphs associated to finite groups. Two types of graphs associated to finite groups are the conjugate graph and the conjugacy class graph. A graph of a group G is called a conjugate graph if the vertices are non-central elements of G and two distinct vertices are adjacent if they are conjugate to each other. Meanwhile, a conjugacy class graph of a group G is a graph in which its vertices are the non-central conjugacy classes of G and two distinct vertices are connected if and only if their class cardinalities are not coprime. The conjugate and conjugacy class graph of dihedral groups can be expressed generally as a union of complete graphs on some vertices. In this paper, the domination polynomials are computed for the conjugate and conjugacy class graphs of the dihedral groups.
    Matched MeSH terms: Algorithms
  4. Wan Ahmad WS, Zaki WM, Ahmad Fauzi MF
    Biomed Eng Online, 2015;14:20.
    PMID: 25889188 DOI: 10.1186/s12938-015-0014-8
    Unsupervised lung segmentation method is one of the mandatory processes in order to develop a Content Based Medical Image Retrieval System (CBMIRS) of CXR. The purpose of the study is to present a robust solution for lung segmentation of standard and mobile chest radiographs using fully automated unsupervised method.
    Matched MeSH terms: Algorithms*
  5. Shahzad A, Lee M, Xiong NN, Jeong G, Lee YK, Choi JY, et al.
    Sensors (Basel), 2016;16(3).
    PMID: 26950129 DOI: 10.3390/s16030322
    In Industrial systems, Supervisory control and data acquisition (SCADA) system, the pseudo-transport layer of the distributed network protocol (DNP3) performs the functions of the transport layer and network layer of the open systems interconnection (OSI) model. This study used a simulation design of water pumping system, in-which the network nodes are directly and wirelessly connected with sensors, and are monitored by the main controller, as part of the wireless SCADA system. This study also intends to focus on the security issues inherent in the pseudo-transport layer of the DNP3 protocol. During disassembly and reassembling processes, the pseudo-transport layer keeps track of the bytes sequence. However, no mechanism is available that can verify the message or maintain the integrity of the bytes in the bytes received/transmitted from/to the data link layer or in the send/respond from the main controller/sensors. To properly and sequentially keep track of the bytes, a mechanism is required that can perform verification while bytes are received/transmitted from/to the lower layer of the DNP3 protocol or the send/respond to/from field sensors. For security and byte verification purposes, a mechanism needs to be proposed for the pseudo-transport layer, by employing cryptography algorithm. A dynamic choice security buffer (SB) is designed and employed during the security development. To achieve the desired goals of the proposed study, a pseudo-transport layer stack model is designed using the DNP3 protocol open library and the security is deployed and tested, without changing the original design.
    Matched MeSH terms: Algorithms
  6. Khairudin NM, Mustapha A, Ahmad MH
    ScientificWorldJournal, 2014;2014:813983.
    PMID: 24587757 DOI: 10.1155/2014/813983
    The advent of web-based applications and services has created such diverse and voluminous web log data stored in web servers, proxy servers, client machines, or organizational databases. This paper attempts to investigate the effect of temporal attribute in relational rule mining for web log data. We incorporated the characteristics of time in the rule mining process and analysed the effect of various temporal parameters. The rules generated from temporal relational rule mining are then compared against the rules generated from the classical rule mining approach such as the Apriori and FP-Growth algorithms. The results showed that by incorporating the temporal attribute via time, the number of rules generated is subsequently smaller but is comparable in terms of quality.
    Matched MeSH terms: Algorithms*
  7. Nikuie M, Ahmad MZ
    ScientificWorldJournal, 2014;2014:517218.
    PMID: 24737977 DOI: 10.1155/2014/517218
    In this paper, the singular LR fuzzy linear system is introduced. Such systems are divided into two parts: singular consistent LR fuzzy linear systems and singular inconsistent LR fuzzy linear systems. The capability of the generalized inverses such as Drazin inverse, pseudoinverse, and {1}-inverse in finding minimal solution of singular consistent LR fuzzy linear systems is investigated.
    Matched MeSH terms: Algorithms
  8. Sado F, Yap HJ, Ghazilla RAR, Ahmad N
    PLoS One, 2018;13(7):e0200193.
    PMID: 30001415 DOI: 10.1371/journal.pone.0200193
    Prolong walking is a notable risk factor for work-related lower-limb disorders (WRLLD) in industries such as agriculture, construction, service profession, healthcare and retail works. It is one of the common causes of lower limb fatigue or muscular exhaustion leading to poor balance and fall. Exoskeleton technology is seen as a modern strategy to assist worker's in these professions to minimize or eliminate the risk of WRLLDs. Exoskeleton has potentials to benefit workers in prolong walking (amongst others) by augmenting their strength, increasing their endurance, and minimizing high muscular activation, resulting in overall work efficiency and productivity. Controlling exoskeleton to achieve this purpose for able-bodied personnel without impeding their natural movement is, however, challenging. In this study, we propose a control strategy that integrates a Dual Unscented Kalman Filter (DUKF) for trajectory generation/prediction of the spatio-temporal features of human walking (i.e. joint position, and velocity, and acceleration) and an impedance cum supervisory controller to enable the exoskeleton to follow this trajectory to synchronize with the human walking. Experiment is conducted with four subjects carrying a load and walking at their normal speed- a typical scenario in industries. EMG signals taken at two muscles: Right Vastus Intermedius (on the thigh) and Right Gastrocnemius (on the calf) indicated reduction in muscular activation during the experiment. The results also show the ability of the control system to predict spatio-temporal features of the pilots' walking and to enable the exoskeleton to move in concert with the pilot.
    Matched MeSH terms: Algorithms
  9. Aminu M, Ahmad NA
    ACS Omega, 2020 Oct 20;5(41):26601-26610.
    PMID: 33110988 DOI: 10.1021/acsomega.0c03362
    Partial least squares discriminant analysis (PLS-DA) is a well-known technique for feature extraction and discriminant analysis in chemometrics. Despite its popularity, it has been observed that PLS-DA does not automatically lead to extraction of relevant features. Feature learning and extraction depends on how well the discriminant subspace is captured. In this paper, discriminant subspace learning of chemical data is discussed from the perspective of PLS-DA and a recent extension of PLS-DA, which is known as the locality preserving partial least squares discriminant analysis (LPPLS-DA). The objective is twofold: (a) to introduce the LPPLS-DA algorithm to the chemometrics community and (b) to demonstrate the superior discrimination capabilities of LPPLS-DA and how it can be a powerful alternative to PLS-DA. Four chemical data sets are used: three spectroscopic data sets and one that contains compositional data. Comparative performances are measured based on discrimination and classification of these data sets. To compare the classification performances, the data samples are projected onto the PLS-DA and LPPLS-DA subspaces, and classification of the projected samples into one of the different groups (classes) is done using the nearest-neighbor classifier. We also compare the two techniques in data visualization (discrimination) task. The ability of LPPLS-DA to group samples from the same class while at the same time maximizing the between-class separation is clearly shown in our results. In comparison with PLS-DA, separation of data in the projected LPPLS-DA subspace is more well defined.
    Matched MeSH terms: Algorithms
  10. Ahmad NS
    Sensors (Basel), 2020 Jun 30;20(13).
    PMID: 32630046 DOI: 10.3390/s20133673
    Motion control involving DC motors requires a closed-loop system with a suitable compensator if tracking performance with high precision is desired. In the case where structural model errors of the motors are more dominating than the effects from noise disturbances, accurate system modelling will be a considerable aid in synthesizing the compensator. The focus of this paper is on enhancing the tracking performance of a wheeled mobile robot (WMR), which is driven by two DC motors that are subject to model parametric uncertainties and uncertain deadzones. For the system at hand, the uncertain nonlinear perturbations are greatly induced by the time-varying power supply, followed by behaviour of motion and speed. In this work, the system is firstly modelled, where correlations between the model parameters and different input datasets as well as voltage supply are obtained via polynomial regressions. A robust H ∞ -fuzzy logic approach is then proposed to treat the issues due to the aforementioned perturbations. Via the proposed strategy, the H ∞ controller and the fuzzy logic (FL) compensator work in tandem to ensure the control law is robust against the model uncertainties. The proposed technique was validated via several real-time experiments, which showed that the speed and path tracking performance can be considerably enhanced when compared with the results via the H ∞ controller alone, and the H ∞ with the FL compensator, but without the presence of the robust control law.
    Matched MeSH terms: Algorithms
  11. Rizvi HA, Kılıçman A, Ahmad R
    ScientificWorldJournal, 2014;2014:807324.
    PMID: 25121137 DOI: 10.1155/2014/807324
    We extend the concept of relaxed α-monotonicity to mixed relaxed α-β-monotonicity. The concept of mixed relaxed α-β-monotonicity is more general than many existing concepts of monotonicities. Finally, we apply this concept and well known KKM-theory to obtain the solution of generalized equilibrium problem.
    Matched MeSH terms: Algorithms*
  12. Wan Ariffin WNSF, Zhang X, Nakhai MR, Rahim HA, Ahmad RB
    Sensors (Basel), 2021 Mar 25;21(7).
    PMID: 33806215 DOI: 10.3390/s21072308
    Constantly changing electricity demand has made variability and uncertainty inherent characteristics of both electric generation and cellular communication systems. This paper develops an online learning algorithm as a prescheduling mechanism to manage the variability and uncertainty to maintain cost-aware and reliable operation in cloud radio access networks (Cloud-RANs). The proposed algorithm employs a combinatorial multi-armed bandit model and minimizes the long-term energy cost at remote radio heads. The algorithm preschedules a set of cost-efficient energy packages to be purchased from an ancillary energy market for the future time slots by learning both from cooperative energy trading at previous time slots and by exploring new energy scheduling strategies at the current time slot. The simulation results confirm a significant performance gain of the proposed scheme in controlling the available power budgets and minimizing the overall energy cost compared with recently proposed approaches for real-time energy resources and energy trading in Cloud-RANs.
    Matched MeSH terms: Algorithms
  13. Ahmed M. M. ALmassri, Chikamune Wada, Wan Hasan, W.Z., Ahmad, S.A.
    MyJurnal
    This paper presents an auto grasping algorithm of a proposed robotic gripper. The purpose is to enhance the grasping mechanism of the gripper. Earlier studies have introduced various methods to enhance the grasping mechanism, but most of the works have not looked at the weight measurement method. Thus, with this algorithm, the weight of the object is calculated based on modified Wheatstone Bridge Circuit (WBC) which is controlled by programmable interface controller (PIC) method. Having this approach introduces and improves the grasping mechanism through an auto grasping algorithm. Experimental results show that an auto grasping algorithm based on pressure sensor measurements leads to a more precise grasping measurement and consequently enhance the sensitivity measurement as well as accurate movement calibration. Furthermore, several different grasping objects based on the proposed method are examined to demonstrate the performance and robustness of our approach.
    Matched MeSH terms: Algorithms
  14. Karimi H, Yusof R, Rahmani R, Hosseinpour H, Ahmadi MT
    Nanoscale Res Lett, 2014;9(1):71.
    PMID: 24517158 DOI: 10.1186/1556-276X-9-71
    : The distinctive properties of graphene, characterized by its high carrier mobility and biocompatibility, have stimulated extreme scientific interest as a promising nanomaterial for future nanoelectronic applications. In particular, graphene-based transistors have been developed rapidly and are considered as an option for DNA sensing applications. Recent findings in the field of DNA biosensors have led to a renewed interest in the identification of genetic risk factors associated with complex human diseases for diagnosis of cancers or hereditary diseases. In this paper, an analytical model of graphene-based solution gated field effect transistors (SGFET) is proposed to constitute an important step towards development of DNA biosensors with high sensitivity and selectivity. Inspired by this fact, a novel strategy for a DNA sensor model with capability of single-nucleotide polymorphism detection is proposed and extensively explained. First of all, graphene-based DNA sensor model is optimized using particle swarm optimization algorithm. Based on the sensing mechanism of DNA sensors, detective parameters (Ids and Vgmin) are suggested to facilitate the decision making process. Finally, the behaviour of graphene-based SGFET is predicted in the presence of single-nucleotide polymorphism with an accuracy of more than 98% which guarantees the reliability of the optimized model for any application of the graphene-based DNA sensor. It is expected to achieve the rapid, quick and economical detection of DNA hybridization which could speed up the realization of the next generation of the homecare sensor system.
    Matched MeSH terms: Algorithms
  15. Jeon J, Krishnan S, Manirathinam T, Narayanamoorthy S, Nazir Ahmad M, Ferrara M, et al.
    Sci Rep, 2023 Jun 23;13(1):10206.
    PMID: 37353615 DOI: 10.1038/s41598-023-37200-2
    The probabilistic hesitant elements (PHFEs) are a beneficial augmentation to the hesitant fuzzy element (HFE), which is intended to give decision-makers more flexibility in expressing their biases while using hesitant fuzzy information. To extrapolate a more accurate interpretation of the decision documentation, it is sufficient to standardize the organization of the elements in PHFEs without introducing fictional elements. Several processes for unifying and arranging components in PHFEs have been proposed so far, but most of them result in various disadvantages that are critically explored in this paper. The primary objective of this research is to recommend a PHFE unification procedure that avoids the deficiencies of operational practices while maintaining the inherent properties of PHFE probabilities. The prevailing study advances the hypothesis of permutation on PHFEs by suggesting a new sort of PHFS division and subtraction compared with the existing unification procedure. Eventually, the proposed PHFE-unification process will be used in this study, an innovative PHFEs based on the Weighted Aggregated Sum Product Assessment Method-Analytic Hierarchy Process (WASPAS-AHP) perspective for selecting flexible packaging bags after the prohibition on single-use plastics. As a result, we have included the PHFEs-WASPAS in our selection of the most effective fuzzy environment for bio-plastic bags. The ranking results for the suggested PHFEs-MCDM techniques surpassed the existing AHP methods in the research study by providing the best solution. Our solutions offer the best bio-plastic bag alternative strategy for mitigating environmental impacts.
    Matched MeSH terms: Algorithms
  16. Himmat M, Salim N, Al-Dabbagh MM, Saeed F, Ahmed A
    Molecules, 2016 Apr 13;21(4):476.
    PMID: 27089312 DOI: 10.3390/molecules21040476
    Quantifying the similarity of molecules is considered one of the major tasks in virtual screening. There are many similarity measures that have been proposed for this purpose, some of which have been derived from document and text retrieving areas as most often these similarity methods give good results in document retrieval and can achieve good results in virtual screening. In this work, we propose a similarity measure for ligand-based virtual screening, which has been derived from a text processing similarity measure. It has been adopted to be suitable for virtual screening; we called this proposed measure the Adapted Similarity Measure of Text Processing (ASMTP). For evaluating and testing the proposed ASMTP we conducted several experiments on two different benchmark datasets: the Maximum Unbiased Validation (MUV) and the MDL Drug Data Report (MDDR). The experiments have been conducted by choosing 10 reference structures from each class randomly as queries and evaluate them in the recall of cut-offs at 1% and 5%. The overall obtained results are compared with some similarity methods including the Tanimoto coefficient, which are considered to be the conventional and standard similarity coefficients for fingerprint-based similarity calculations. The achieved results show that the performance of ligand-based virtual screening is better and outperforms the Tanimoto coefficients and other methods.
    Matched MeSH terms: Algorithms
  17. Jumin E, Basaruddin FB, Yusoff YBM, Latif SD, Ahmed AN
    Environ Sci Pollut Res Int, 2021 Jun;28(21):26571-26583.
    PMID: 33484461 DOI: 10.1007/s11356-021-12435-6
    Reliable and accurate prediction model capturing the changes in solar radiation is essential in the power generation and renewable carbon-free energy industry. Malaysia has immense potential to develop such an industry due to its location in the equatorial zone and its climatic characteristics with high solar energy resources. However, solar energy accounts for only 2-4.6% of total energy utilization. Recently, in developed countries, various prediction models based on artificial intelligence (AI) techniques have been applied to predict solar radiation. In this study, one of the most recent AI algorithms, namely, boosted decision tree regression (BDTR) model, was applied to predict the changes in solar radiation based on collected data in Malaysia. The proposed model then compared with other conventional regression algorithms, such as linear regression and neural network. Two different normalization techniques (Gaussian normalizer binning normalizer), splitting size, and different input parameters were investigated to enhance the accuracy of the models. Sensitivity analysis and uncertainty analysis were introduced to validate the accuracy of the proposed model. The results revealed that BDTR outperformed other algorithms with a high level of accuracy. The funding of this study could be used as a reliable tool by engineers to improve the renewable energy sector in Malaysia and provide alternative sustainable energy resources.
    Matched MeSH terms: Algorithms
  18. Nasser AB, Zamli KZ, Alsewari AA, Ahmed BS
    PLoS One, 2018;13(5):e0195187.
    PMID: 29718918 DOI: 10.1371/journal.pone.0195187
    The application of meta-heuristic algorithms for t-way testing has recently become prevalent. Consequently, many useful meta-heuristic algorithms have been developed on the basis of the implementation of t-way strategies (where t indicates the interaction strength). Mixed results have been reported in the literature to highlight the fact that no single strategy appears to be superior compared with other configurations. The hybridization of two or more algorithms can enhance the overall search capabilities, that is, by compensating the limitation of one algorithm with the strength of others. Thus, hybrid variants of the flower pollination algorithm (FPA) are proposed in the current work. Four hybrid variants of FPA are considered by combining FPA with other algorithmic components. The experimental results demonstrate that FPA hybrids overcome the problems of slow convergence in the original FPA and offers statistically superior performance compared with existing t-way strategies in terms of test suite size.
    Matched MeSH terms: Algorithms*
  19. Ahmed Qasim Turki, Nashiren Farzilah Mailah, Ahmed H. Sabry
    MyJurnal
    This paper presents a transmission line (TL) modelling which is based upon vector fitting algorithm
    and RLC passive filter design. Frequency Response Analysis (FRA) is utilised for behaviour prediction and fault diagnosis. The utilities of the measured FRA data points need to be enhanced with suitable modelling category to facilitate the modelling and analysis process. This research proposes a new method for modelling the transmission line based on a rational approximation function which can be extracted through the Vector Fitting (VF) method, based on the frequency response measured data points. A set of steps needs to be implemented to achieve this by setting up an extracted partial fraction approximation, which results from a least square RMS error via VF. Active and passive filter design circuits are used to construct the model of the Transmission line. The RLC design representation was implemented for modelling the system physically while MATLAB Simulink was used to verify the results.
    Matched MeSH terms: Algorithms
  20. Sidney Ong CL, Ch'ng LS, Aida Bt AA
    Med J Malaysia, 2018 10;73(5):330-331.
    PMID: 30350816 MyJurnal
    Coarctation of the aorta (CoA) is present in 0.4% of live births and in 7% of patients with congenital heart disease. While there may be florid presentations of congestive heart failure in the neonatal period, the diagnosis during adulthood is often delayed. We encountered a 20-year-old woman who was discovered to be hypertensive on routine check-up. Following bilateral abnormal renal doppler sonography, MR angiogram revealed a short-segment stenosis of the descending thoracic aorta. Review of her chest radiograph showed a small aortic knuckle. This case highlights an unconventional algorithm in diagnosing aortic coarctation in adulthood.
    Matched MeSH terms: Algorithms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links