Displaying publications 101 - 120 of 16743 in total

Abstract:
Sort:
  1. Zolkeflee NKZ, Wong PL, Maulidiani M, Ramli NS, Azlan A, Abas F
    Planta Med, 2023 Aug;89(9):916-934.
    PMID: 36914160 DOI: 10.1055/a-2053-0950
    Diabetes mellitus (DM) is a metabolic endocrine disorder caused by decreased insulin concentration or poor insulin response. Muntingia calabura (MC) has been used traditionally to reduce blood glucose levels. This study aims to support the traditional claim of MC as a functional food and blood-glucose-lowering regimen. The antidiabetic potential of MC is tested on a streptozotocin-nicotinamide (STZ-NA)-induced diabetic rat model by using the 1H-NMR-based metabolomic approach. Serum biochemical analyses reveal that treatment with 250 mg/kg body weight (bw) standardized freeze-dried (FD) 50% ethanolic MC extract (MCE 250) shows favorable serum creatinine (37.77 ± 3.53 µM), urea (5.98 ± 0.84 mM) and glucose (7.36 ± 0.57 mM) lowering capacity, which was comparable to the standard drug, metformin. The clear separation between diabetic control (DC) and normal group in principal component analysis indicates the successful induction of diabetes in the STZ-NA-induced type 2 diabetic rat model. A total of nine biomarkers, including allantoin, glucose, methylnicotinamide, lactate, hippurate, creatine, dimethylamine, citrate and pyruvate are identified in rats' urinary profile, discriminating DC and normal groups through orthogonal partial least squares-discriminant analysis. Induction of diabetes by STZ-NA is due to alteration in the tricarboxylic acid (TCA) cycle, gluconeogenesis pathway, pyruvate metabolism and nicotinate and nicotinamide metabolism. Oral treatment with MCE 250 in STZ-NA-induced diabetic rats shows improvement in the altered carbohydrate metabolism, cofactor and vitamin metabolic pathway, as well as purine and homocysteine metabolism.
    Matched MeSH terms: Animals
  2. Zolkeflee NKZ, Wong PL, Maulidiani M, Ramli NS, Azlan A, Mediani A, et al.
    Biochem Biophys Res Commun, 2024 May 14;708:149778.
    PMID: 38507867 DOI: 10.1016/j.bbrc.2024.149778
    The increasing prevalence of lean diabetes has prompted the generation of animal models that mimic metabolic disease in humans. This study aimed to determine the optimum streptozotocin-nicotinamide (STZ-NA) dosage ratio to elicit lean diabetic features in a rat model. It also used a proton nuclear magnetic resonance (1H NMR) urinary metabolomics approach to identify the metabolic effect of metformin treatment on this novel rat model. Three different STZ-NA dosage regimens (by body weight: Group A: 110 mg/kg NA and 45 mg/kg STZ; Group B: 180 mg/kg NA and 65 mg/kg STZ and Group C: 120 mg/kg NA and 60 mg/kg STZ) were administered to Sprague-Dawley rats along with oral metformin. Group A diabetic rats (A-DC) showed favorable serum biochemical analyses and a more positive response toward oral metformin administration relative to the other STZ-NA dosage ratio groups. Orthogonal partial least squares-discriminant analysis (OPLS-DA) revealed that glucose, citrate, pyruvate, hippurate, and methylnicotinamide differentiating the OPLS-DA of A-MTF rats (Group A diabetic rats treated with metformin) and A-DC model rats. Subsequent metabolic pathway analyses revealed that metformin treatment was associated with improvement in dysfunctions caused by STZ-NA induction, including carbohydrate metabolism, cofactor metabolism, and vitamin and amino acid metabolism. In conclusion, our results identify the best STZ-NA dosage ratio for a rat model to exhibit lean type 2 diabetic features with optimum sensitivity to metformin treatment. The data presented here could be informative to improve our understanding of non-obese diabetes in humans through the identification of possible activated metabolic pathways in the STZ-NA-induced diabetic rats model.
    Matched MeSH terms: Animals
  3. Zokaeifar H, Babaei N, Saad CR, Kamarudin MS, Sijam K, Balcazar JL
    Fish Shellfish Immunol, 2014 Jan;36(1):68-74.
    PMID: 24161773 DOI: 10.1016/j.fsi.2013.10.007
    In this study, vegetative cell suspensions of two Bacillus subtilis strains, L10 and G1 in equal proportions, was administered at two different doses 10(5) (BM5) and 10(8) (BM8) CFU ml(-1) in the rearing water of shrimp (Litopenaeus vannamei) for eight weeks. Both probiotic groups showed a significant reduction of ammonia, nitrite and nitrate ions under in vitro and in vivo conditions. In comparison to untreated control group, final weight, weight gain, specific growth rate (SGR), food conversion ratio (FCR) and digestive enzymatic activity were significantly greater in the BM5 and BM8 groups. Significant differences for survival were recorded in the BM8 group as compared to the control. Eight weeks after the start of experiment, shrimp were challenged with Vibrio harveyi. Statistical analysis revealed significant differences in shrimp survival between probiotic and control groups. Cumulative mortality of the control group was 80%, whereas cumulative mortality of the shrimp that had been given probiotics was 36.7% with MB8 and 50% with MB5. Subsequently, real-time RT-PCR was employed to determine the mRNA levels of prophenoloxidase (proPO), peroxinectin (PE), lipopolysaccharide- and β-1,3-glucan- binding protein (LGBP) and serine protein (SP). The expression of all immune-related genes studied was only significantly up-regulated in the BM5 group compared to the BM8 and control groups. These results suggest that administration of B. subtilis strains in the rearing water confers beneficial effects for shrimp aquaculture, considering water quality, growth performance, digestive enzymatic activity, immune response and disease resistance.
    Matched MeSH terms: Animals
  4. Zokaeifar H, Balcázar JL, Saad CR, Kamarudin MS, Sijam K, Arshad A, et al.
    Fish Shellfish Immunol, 2012 Oct;33(4):683-9.
    PMID: 22659618 DOI: 10.1016/j.fsi.2012.05.027
    We studied the effect of two probiotic Bacillus subtilis strains on the growth performance, digestive enzyme activity, immune gene expression and disease resistance of juvenile white shrimp (Litopenaeus vannamei). A mixture of two probiotic strains, L10 and G1 in equal proportions, was administered at two different doses 10(5) (BM5) and 10(8) (BM8) CFU g(-1) feed to shrimp for eight weeks. In comparison to untreated control group, final weight, weight gain and digestive enzyme activity were significantly greater in shrimp fed BM5 and BM8 diets. Significant differences for specific growth rate (SGR) and survival were recorded in shrimp fed BM8 diet as compared with the control; however, no significant differences were recorded for food conversion ratio (FCR) among all the experimental groups. Eight weeks after the start of the feeding period, shrimp were challenged with Vibrio harveyi. Statistical analysis revealed significant differences in shrimp survival between probiotic and control groups. Cumulative mortality of the control group was 63.3%, whereas cumulative mortality of the shrimp that had been given probiotics was 20.0% with BM8 and 33.3% with BM5. Subsequently, real-time PCR was employed to determine the mRNA levels of prophenoloxidase (proPO), peroxinectin (PE), lipopolysaccharide- and β-1,3-glucan-binding protein (LGBP) and serine protein (SP). The expression of all immune-related genes studied was significantly up-regulated (P 
    Matched MeSH terms: Animals
  5. Zokaeifar H, Balcázar JL, Kamarudin MS, Sijam K, Arshad A, Saad CR
    J Antibiot (Tokyo), 2012 Jun;65(6):289-94.
    PMID: 22491136 DOI: 10.1038/ja.2012.17
    In this study, potential probiotic strains were isolated from fermented pickles based on antagonistic activity against two shrimp pathogens (Vibrio harveyi and Vibrio parahaemolyticus). Two strains L10 and G1 were identified by biochemical tests, followed by16S ribosomal RNA gene sequence analysis as Bacillus subtilis, and characterized by PCR amplification of repetitive bacterial DNA elements (Rep-PCR). Subsequently, B. subtilis L10 and G1 strains were tested for antibacterial activity under different physical conditions, including culture medium, salinity, pH and temperature using the agar well diffusion assay. Among the different culture media, LB broth was the most suitable medium for antibacterial production. Both strains showed the highest level of antibacterial activity against two pathogens at 30 °C and 1.0% NaCl. Under the pH conditions, strain G1 showed the greatest activity against V. harveyi at pH 7.3-8.0 and against V. parahaemolyticus at pH 6.0-8.0, whereas strain L10 showed the greatest activity against two pathogens at pH 7.3. The cell-free supernatants of both strains were treated with four different enzymes in order to characterize the antibacterial substances against V. harveyi. The result showed considerable reduction of antibacterial activity for both strains, indicating the proteinaceous nature of the antibacterial substances. A wide range of tolerance to NaCl, pH and temperature was also recorded for both strains. In addition, both strains showed no virulence effect in juvenile shrimp Litopenaeus vannamei. On the basis of these results and safety of strains to L. vannamei, they may be considered for future challenge experiments in shrimp as a very promising alternative to the use of antibiotics.
    Matched MeSH terms: Animals
  6. Zohdi RM, Zakaria ZA, Yusof N, Mustapha NM, Abdullah MN
    PMID: 21504052 DOI: 10.1002/jbm.b.31828
    Malaysian sea cucumber was incorporated into hydrogel formulation by using electron beam irradiation technique and was introduced as novel cross-linked Gamat Hydrogel dressing. This study investigated whether Gamat Hydrogel enhanced repair of deep partial skin thickness burn wound in rats and its possible mechanism. Wounds were treated with either Gamat Hydrogel, control hydrogel, OpSite® film dressing or left untreated. Skin samples were taken at 7, 14, 21, and 28 days post burn for histological and molecular evaluations. Gamat Hydrogel markedly enhanced wound contraction and improved histological reorganization of the regenerating tissue. Furthermore, the dressing modulated the inflammatory responses, stimulated the activation and proliferation of fibroblasts, and enhanced rapid production of collagen fiber network with a consequently shorter healing time. The level of proinflammatory cytokines; IL-1α, IL-1β, and IL-6, were significantly reduced in Gamat Hydrogel treated wounds compared with other groups as assessed by reverse transcription-polymerase chain reaction (RT-PCR). In summary, our results showed that Gamat Hydrogel promoted burn wound repair via a complex mechanism involving stimulation of tissue regeneration and regulation of pro-inflammatory cytokines. The resultant wound healing effects were attributed to the synergistic effect of the hydrogel matrix and incorporated sea cucumber.
    Matched MeSH terms: Animals
  7. Zohari Z, Barkham T, Mohamad Maswan N, Chen SL, Muthanna A, Lee KW, et al.
    J Med Microbiol, 2023 Jun;72(6).
    PMID: 37389575 DOI: 10.1099/jmm.0.001729
    In South East Asia, Streptococcus agalactiae ST283 causes sepsis in healthy adults. Raw freshwater fish consumption is the only known risk factor. These two case reports are the first from Malaysia. Although they cluster with Singapore ST283, the epidemiology is complicated by the flow of people and fish across borders.
    Matched MeSH terms: Animals
  8. Zin SRM, Kassim NM, Alshawsh MA, Hashim NE, Mohamed Z
    Biomed Pharmacother, 2017 Jul;91:611-620.
    PMID: 28486192 DOI: 10.1016/j.biopha.2017.05.011
    Anastatica hierochuntica L. (A. hierochuntica) is a desert plant consumed by people across the globe to treat various medical conditions. This review is aimed at providing a summary of the scientific findings on biological activities of A. hierochuntica and suggests areas in which further research is needed. This systematic review was synthesized from the literature obtained from the following databases; PubMed, Science Direct, Web of Science, Ovid Medline, Scopus, Google Scholar and WorldCat. Previous studies have indicated that the methanolic and aqueous extracts of this plant have antioxidant, antifungal and antimicrobial activities. It was shown to have the ability to activate phagocytes and to possess microbicidal activity, thereby causing increased resistance to infection. Both methanolic and aqueous extracts of this plant were also demonstrated to have a hypoglycaemic property, whilst the methanolic extract significantly exhibited hypolipidaemic effects in diabetic rats. Moreover, the methanolic extract of A. hierochuntica has been suggested to have hepatoprotective properties. This is supported by its ability to significantly decrease transaminase and alkaline phosphatase activities in alloxan-induced diabetic rats. Besides, this desert plant exhibited anti-inflammatory, anti-melanogenic and gastroprotective activities. Even though A. hierochuntica is widely used, studies on this plant are still scarce, thus its reputed biological activities and medical benefits require critical evaluation. Before A. hierochuntica can be used clinically, further studies need to be conducted to increase our understanding of the effects of this plant, its constituents, and possible mechanisms of action.
    Matched MeSH terms: Animals
  9. Zin SR, Omar SZ, Khan NL, Musameh NI, Das S, Kassim NM
    Clinics (Sao Paulo), 2013;68(2):253-62.
    PMID: 23525324
    OBJECTIVES: Genistein is known to influence reproductive system development through its binding affinity for estrogen receptors. The present study aimed to further explore the effect of Genistein on the development of the reproductive system of experimental rats.

    METHODS: Eighteen post-weaning female Sprague Dawley rats were divided into the following groups: (i) a control group that received vehicle (distilled water and Tween 80); (ii) a group treated with 10 mg/kg body weight (BW) of Genistein (Gen 10); and (iii) a group treated with a higher dose of Genistein (Gen 100). The rats were treated daily for three weeks from postnatal day 22 (P22) to P42. After the animals were sacrificed, blood samples were collected, and the uteri and ovaries were harvested and subjected to light microscopy and immunohistochemical study.

    RESULTS: A reduction of the mean weekly BW gain and organ weights (uteri and ovaries) were observed in the Gen 10 group compared to the control group; these findings were reversed in the Gen 100 group. Follicle stimulating hormone and estrogen levels were increased in the Gen 10 group and reduced in the Gen 100 group. Luteinizing hormone was reduced in both groups of Genistein-treated animals, and there was a significant difference between the Gen 10 and control groups (p<0.05). These findings were consistent with increased atretic follicular count, a decreased number of corpus luteum and down-regulation of estrogen receptors-a in the uterine tissues of the Genistein-treated animals compared to the control animals.

    CONCLUSION: Post-weaning exposure to Genistein could affect the development of the reproductive system of ovarian-intact experimental rats because of its action on the hypothalamic-pituitary-gonadal axis by regulating hormones and estrogen receptors.

    Matched MeSH terms: Animals
  10. Zin NNINM, Rahimi WNAWM, Bakar NA
    Malays J Med Sci, 2019 Nov;26(6):19-34.
    PMID: 31908584 MyJurnal DOI: 10.21315/mjms2019.26.6.3
    Parasitic diseases represent one of the causes for significant global economic, environmental and public health impacts. The efficacy of currently available anti-parasitic drugs has been threatened by the emergence of single drug- or multidrug-resistant parasite populations, vector threats and high cost of drug development. Therefore, the discovery of more potent anti-parasitic drugs coming from medicinal plants such as Quercus infectoria is seen as a major approach to tackle the problem. A systematic review was conducted to assess the efficacy of Q. infectoria in treating parasitic diseases both in vitro and in vivo due to the lack of such reviews on the anti-parasitic activities of this plant. This review consisted of intensive searches from three databases including PubMed, Science Direct and Scopus. Articles were selected throughout the years, limited to English language and fully documented. A total of 454 potential articles were identified, but only four articles were accepted to be evaluated based on inclusion and exclusion criteria. Although there were insufficient pieces of evidence to account for the efficacy of Q. infectoria against the parasites, this plant appears to have anti-leishmanial, anti-blastocystis and anti-amoebic activities. More studies in vitro and in vivo are warranted to further validate the anti-parasitic efficacy of Q. infectoria.
    Matched MeSH terms: Animals
  11. Zin NM, Baba MS, Zainal-Abidin AH, Latip J, Mazlan NW, Edrada-Ebel R
    Drug Des Devel Ther, 2017;11:351-363.
    PMID: 28223778 DOI: 10.2147/DDDT.S121283
    Endophytic Streptomyces strains are potential sources for novel bioactive molecules. In this study, the diketopiperazine gancidin W (GW) was isolated from the endophytic actinobacterial genus Streptomyces, SUK10, obtained from the bark of Shorea ovalis tree, and it was tested in vivo against Plasmodium berghei PZZ1/100. GW exhibited an inhibition rate of nearly 80% at 6.25 and 3.125 μg kg-1 body weight on day four using the 4-day suppression test method on male ICR strain mice. Comparing GW at both concentrations with quinine hydrochloride and normal saline as positive and negative controls, respectively, 50% of the mice treated with 3.125 μg kg-1 body weight managed to survive for more than 11 months after infection, which almost reached the life span of normal mice. Biochemical tests of selected enzymes and proteins in blood samples of mice treated with GW were also within normal levels; in addition, no abnormalities or injuries were found on internal vital organs. These findings indicated that this isolated bioactive compound from Streptomyces SUK10 exhibits very low toxicity and is a good candidate for potential use as an antimalarial agent in an animal model.
    Matched MeSH terms: Animals
  12. Zimowska GJ, Xavier N, Qadri M, Handler AM
    Sci Rep, 2024 Jan 22;14(1):1924.
    PMID: 38253542 DOI: 10.1038/s41598-023-51068-2
    Here we describe a molecular approach to assess conspecific identity that relies on the comparison of an evolved mutated transposable element sequence and its genomic insertion site in individuals from closely related species. This was explored with the IFP2 piggyBac transposon, originally discovered in Trichoplusia ni as a 2472 bp functional element, that was subsequently found as mutated elements in seven species within the Bactrocera dorsalis species complex. In a B. dorsalis [Hendel] strain collected in Kahuku, Hawaii, a degenerate 2420 bp piggyBac sequence (pBacBd-Kah) having ~ 94.5% sequence identity to IFP2 was isolated, and it was reasoned that common species, or strains within species, should share the same evolved element and its precise genomic insertion site. To test this assumption, PCR using primers to pBacBd-Kah and adjacent genomic sequences was used to isolate and compare homologous sequences in strains of four sibling species within the complex. Three of these taxa, B. papayae, B. philippinensis, and B. invadens, were previously synonymized with B. dorsalis, and found to share nearly identical pBacBd-Kah homologous elements (> 99% nucleotide identity) within the identical insertion site consistent with conspecific species. The fourth species tested, B. carambolae, considered to be a closely related yet independent species sympatric with B. dorsalis, also shared the pBacBd-Kah sequence and insertion site in one strain from Suriname, while another divergent pBacBd-Kah derivative, closer in identity to IFP2, was found in individuals from French Guiana, Bangladesh and Malaysia. This data, along with the absence of pBacBd-Kah in distantly related Bactrocera, indicates that mutated descendants of piggyBac, as well as other invasive mobile elements, could be reliable genomic markers for common species identity.
    Matched MeSH terms: Animals
  13. Zilhadia, Yahdiana,H., Effionora, A., Irwandi, J.
    MyJurnal
    Gelatin from goatskin pretreated with hydrochloric acid and extracted with distilled water at 60oC for 9 hours was characterized and compared to that of bovine skin gelatin (BSG). A yield of 10.26% (wet weight basis) was obtained. Goatskin gelatin (GSG) had high protein (86.58%), suitable moisture (9.58%), low fat (1.46%) and low ash (0.11%) content. The functional properties of GSG including gel strength (301 g bloom) and emulsion activity index (94.27%) were higher than the functional properties of BSG including gel strength (192 g bloom) and emulsion activity index (49.74%). The foaming property of GSG (102%) was lower than that of BSG (164.67%). This study shows that GSG has a high potential for application as a source of commercial gelatin.
    Matched MeSH terms: Animals
  14. Zilany MS, Bruce IC, Carney LH
    J Acoust Soc Am, 2014 Jan;135(1):283-6.
    PMID: 24437768 DOI: 10.1121/1.4837815
    A phenomenological model of the auditory periphery in cats was previously developed by Zilany and colleagues [J. Acoust. Soc. Am. 126, 2390-2412 (2009)] to examine the detailed transformation of acoustic signals into the auditory-nerve representation. In this paper, a few issues arising from the responses of the previous version have been addressed. The parameters of the synapse model have been readjusted to better simulate reported physiological discharge rates at saturation for higher characteristic frequencies [Liberman, J. Acoust. Soc. Am. 63, 442-455 (1978)]. This modification also corrects the responses of higher-characteristic frequency (CF) model fibers to low-frequency tones that were erroneously much higher than the responses of low-CF model fibers in the previous version. In addition, an analytical method has been implemented to compute the mean discharge rate and variance from the model's synapse output that takes into account the effects of absolute refractoriness.
    Matched MeSH terms: Animals
  15. Zihad SMNK, Bhowmick N, Uddin SJ, Sifat N, Rahman MS, Rouf R, et al.
    Front Pharmacol, 2018;9:1164.
    PMID: 30374304 DOI: 10.3389/fphar.2018.01164
    Present study was undertaken to evaluate the analgesic activity of the ethanol extract of Chrysopogon aciculatus. In addition to bioassays in mice, chemical profiling was done by LC-MS and GC-MS to identify phytochemicals, which were further docked on the catalytic site of COX-2 enzymes with a view to suggest the possible role of such phytoconstituents in the observed analgesic activity. Analgesic activity of C. aciculatus was evaluated by acetic acid induced writhing reflex method and hot plate technique. Phytochemical profiling was conducted using liquid chromatography mass spectrometry (LC-MS) and gas chromatography mass spectrometry (GC-MS). In docking studies, homology model of human COX-2 enzyme was prepared using Easy Modeler 4.0 and the identified phytoconstituents were docked using Autodock Vina. Preliminary acute toxicity test of the ethanol extract of C. aciculatus showed no sign of mortality at the highest dose of 4,000 mg/kg. The whole plant extract significantly (p < 0.05) inhibited acetic acid induced writhing in mice at the doses of 500 and 750 mg/kg. The extract delayed the response time in hot plate test in a dose dependent manner. LC-MS analysis of the plant extract revealed the presence of aciculatin, nudaphantin and 5α,8α-epidioxyergosta-6,22-diene-3β-ol. Three compounds namely citronellylisobutyrate; 2,4-dihydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one and nudaphantin were identified in the n-hexane fraction by GC-MS. Among these compounds, six were found to be interacting with the binding site for arachidonic acid in COX-2 enzyme. Present study strongly supports the traditional use of C. aciculatus in the management of pain. In conclusion, compounds (tricin, campesterol, gamma oryzanol, and citronellyl isobutyrate) showing promising binding affinity in docking studies, along with previously known anti-inflammatory compound aciculatin can be held responsible for the observed activity.
    Matched MeSH terms: Animals
  16. Zifruddin AN, Mohamad-Khalid KA, Suhaimi SA, Mohamed-Hussein ZA, Hassan M
    Biosci Biotechnol Biochem, 2021 Jun 24;85(7):1628-1638.
    PMID: 33890631 DOI: 10.1093/bbb/zbab072
    Juvenile hormone III (JH III) plays an important role in insect reproduction, development, and behavior. The second branch of JH III production includes oxidation of farnesol to farnesal by farnesol dehydrogenase. This study reported the identification and characterization of Plutella xylostella farnesol dehydrogenase (PxFoLDH). Our results showed that PxFoLDH belongs to the short-chain dehydrogenase/reductase superfamily, consisting of a single domain with a structurally conserved Rossman fold, an NAD(P) (H)-binding region and a structurally diverse C-terminal region. The purified enzyme displayed maximum activity at 55$\ $°C with pH 9.5 and was stable in the temperature below 70$\ ^\circ $C. PxFoLDH was determined to be a monomer with a relative molecular weight of 27 kDa and highly specific for trans, trans-farnesol, and NADP+. Among analog inhibitors tested, farnesyl acetate was the most effective inhibitor with the lowest Ki value of 0.02 µm. Our findings showed this purified enzyme may represent as NADP+-farnesol dehydrogenase.
    Matched MeSH terms: Animals
  17. Zifruddin AN, Mohamad Yusoff MA, Abd Ghani NS, Nor Muhammad NA, Lam KW, Hassan M
    Comput Biol Chem, 2023 Apr;103:107811.
    PMID: 36645937 DOI: 10.1016/j.compbiolchem.2023.107811
    Metisa plana (Lepidoptera: Psychidae) bagworm is a leaf-eater caterpillar ubiquitously found as a damaging pest in oil palm plantations, specifically in Malaysia. Various strategies have been implemented, including the usage of chemical insecticides. However, the main challenges include the development of insecticide resistance and its detrimental effects on the environment and non-target organisms. Therefore, a biorational insecticide is introduced by targeting the juvenile hormone (JH) biosynthetic pathway, which is mainly present in the insect and vital for the insect's growth, diapause, metamorphosis, and adult reproduction. This study aimed to investigate the potential inhibitor for the rate-limiting enzyme involved in the JH pathway known as farnesol dehydrogenase. A 255 amino acids sequence encoded for the putative M. plana farnesol dehydrogenase (MpFolDH) open reading frame had been identified and isolated. The three-dimensional structure of MpFolDH was predicted to have seven β- sheets with α-helices at both sides, showing typical characteristics for classical short-chain dehydrogenase and associated with oxidoreductase activity. Then, the ensemble-based virtual screening was conducted based on the ZINC20 database, in which 43 768 compounds that fulfilled pesticide-likeness criteria were screened by site-specific molecular docking. After a short molecular dynamics simulation (5 ns) was conducted towards 102 compounds, only the top 10 compounds based on their most favourable binding energy were selected for a more extended simulation (100 ns). Based on the protein-ligand stability, protein compactness, residues rigidity, binding interaction, binding energy throughout the 100 ns simulation, and physicochemical analysis, ZINC000408743205 was selected as a potential inhibitor for this enzyme. Amino acids decomposition analysis indicates Ile18, Ala95, Val198 and Val202 were the critical contributor residues for MpFolDH-inhibitors(s) complex.
    Matched MeSH terms: Animals
  18. Zieritz A, Lopes-Lima M, Bogan AE, Sousa R, Walton S, Rahim KA, et al.
    Sci Total Environ, 2016 Nov 15;571:1069-78.
    PMID: 27473771 DOI: 10.1016/j.scitotenv.2016.07.098
    Freshwater mussels (Bivalvia, Unionida) fulfil important ecosystem functions and are one of the most threatened freshwater taxa globally. Knowledge of freshwater mussel diversity, distribution and ecology in Peninsular Malaysia is extremely poor, and the conservation status of half of the species presumed to occur in the region has yet to be assessed. We conducted the first comprehensive assessment of Peninsular Malaysia's freshwater mussels based on species presence/absence and environmental data collected from 155 sites spanning all major river catchments and diverse habitat types. Through an integrative morphological-molecular approach we recognised nine native and one widespread non-native species, i.e. Sinanodonta woodiana. Two species, i.e. Pilsbryoconcha compressa and Pseudodon cambodjensis, had not been previously recorded from Malaysia, which is likely a result of morphological misidentifications of historical records. Due to their restriction to single river catchments and declining distributions, Hyriopsis bialata, possibly endemic to Peninsular Malaysia, Ensidens ingallsianus, possibly already extinct in the peninsula, and Rectidens sumatrensis, particularly require conservation attention. Equally, the Pahang, the Perak and the north-western river catchments are of particular conservation value due to the presence of a globally unique freshwater mussel fauna. Statistical relationships of 15 water quality parameters and mussel presence/absence identified acidification and nutrient pollution (eutrophication) as the most important anthropogenic factors threatening freshwater mussel diversity in Peninsular Malaysia. These factors can be linked to atmospheric pollution, deforestation, oil-palm plantations and a lack of functioning waste water treatment, and could be mitigated by establishing riparian buffers and improving waste water treatment for rivers running through agricultural and residential land.
    Matched MeSH terms: Animals
  19. Zielinski MS, Vardar E, Vythilingam G, Engelhardt EM, Hubbell JA, Frey P, et al.
    Commun Biol, 2019;2:69.
    PMID: 30793047 DOI: 10.1038/s42003-019-0313-x
    By analyzing isolated collagen gel samples, we demonstrated in situ detection of spectrally deconvoluted auto-cathodoluminescence signatures of specific molecular content with precise spatial localization over a maximum field of view of 300 µm. Correlation of the secondary electron and the hyperspectral images proved ~40 nm resolution in the optical channel, obtained due to a short carrier diffusion length, suppressed by fibril dimensions and poor electrical conductivity specific to their organic composition. By correlating spectrally analyzed auto-cathodoluminescence with mass spectroscopy data, we differentiated spectral signatures of two extracellular matrices, namely human fibrin complex and rat tail collagen isolate, and uncovered differences in protein distributions of isolated extracellular matrix networks of heterogeneous populations. Furthermore, we demonstrated that cathodoluminescence can monitor the progress of a human cell-mediated remodeling process, where human collagenous matrix was deposited within a rat collagenous matrix. The revealed change of the heterogeneous biological composition was confirmed by mass spectroscopy.
    Matched MeSH terms: Animals
  20. Zia S, Saleem M, Asif M, Hussain K, Butt BZ
    Inflammopharmacology, 2022 Dec;30(6):2211-2227.
    PMID: 36223063 DOI: 10.1007/s10787-022-01048-1
    Rheumatoid arthritis is a chronic inflammatory disorder of polyarticular tissues, characterised by progressive synovitis. Its prolonged treatment imparts a huge burden on the healthcare system and results in toxicity, which necessitates the search for safe, efficacious and cost-effective therapies. Diospyros malabarica (Desr.) Kostel is traditionally used for anti-inflammatory purposes; however, to the best of our knowledge, there is no detailed study reporting the in vivo anti-inflammatory potential of this plant. Therefore, in the current study, the methanol extract of D. malabarica (Desr.) Kostel fruit (mDMF) was evaluated for its antioxidant, anti-inflammatory and anti-arthritic potentials, along with its underlying mechanisms. The antioxidant activity was evaluated by DPPH assay. Total phenolic and flavonoid contents were estimated via colorimetric and high-performance liquid chromatography (HPLC) methods. Different doses (250, 500 and 750 mg/kg) of mDMF were used to evaluate the anti-inflammatory and anti-arthritis actions in acute inflammatory (carrageenan and histamine-induced paw oedema) and Freund's complete adjuvant (FCA)-induced arthritis rat models. Levels of various pro- and anti-inflammatory biomarkers were estimated using ELISA and RT-PCR techniques. Paw samples were used for different histopathological and radiographic studies. Qualitative phytochemical and HPLC analyses indicated the presence of various polyphenolic compounds in mDMF, which exhibited marked antioxidant activity in the DPPH assay. mDMF showed time-dependent anti-inflammatory and anti-arthritic effects in in vivo models. ELISA assay data showed significant (p 
    Matched MeSH terms: Animals
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links