Displaying publications 101 - 120 of 543 in total

Abstract:
Sort:
  1. Fakai MI, Abd Malek SN, Karsani SA
    Life Sci, 2019 Mar 01;220:186-193.
    PMID: 30682342 DOI: 10.1016/j.lfs.2019.01.029
    AIMS: Chalepin, a naturally occurring compound isolated from Ruta angustifolia have been shown to exert a promising anticancer activity through various mechanisms. Hence, the need to investigate the apoptotic inducing ability of chalepin in MCF7 cells by various detection assays.

    MATERIALS AND METHODS: Cytotoxicity screening of chalepin against MCF7 cells was conducted using SRB assay. Apoptosis induction was examined by established morphological and biochemical assays including phase contrast and Hoechst/PI staining fluorescence microscope. Similarly, Annexin-V/FITC and TUNEL assays were conducted using flow cytometry whereas caspase-3 activity was evaluated using microplate reader.

    KEY FINDINGS: The result indicates remarkable cytotoxic activity against MCF7 cells, whereas it shows moderate cytotoxic activity against MDA-MB231 cells. Interestingly, chalepin did not present any toxicity against MRC5 normal cell line. Morphological examination using both phase contrast and fluorescence microscope displays typical apoptotic features such as membrane blebbing, DNA fragmentation, chromatin condensation and apoptotic bodies' formation following chalepin treatment against MCF7 cells at different concentration for 48 h. Apoptosis induction is significantly associated with externalisation of phosphatidylserine, and DNA fragmentation in MCF7 cells chalepin treated cells when compared with control. The protein expressions of caspase-8, 9 and cleaved PARP1 were upregulated which correlated well with increased caspase-3 activity.

    SIGNIFICANCE: From our recent findings, chalepin was able to induced apoptosis in MCF7 cells and therefore, could be evaluated further as a potential source of anticancer agent for cancer treatment such as breast cancer.

    Matched MeSH terms: Cell Proliferation/drug effects
  2. Sul ‘ain MD, Zakaria F, Johan MF
    Asian Pac J Cancer Prev, 2019 Jan 25;20(1):185-192.
    PMID: 30678430
    Background: Cervical cancer is one of the most commonly diagnosed neoplasms and a leading cause of cancer
    death among females worldwide. Limitations with conventional medical treatments have driven researchers to
    search for alternative approaches using natural products. This study aimed to detemine potential anti-proliferative
    effects of methanol and water extracts of Pyrrosia piloselloides (P. piloselloides) on the HeLa cell line. Methods:
    3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays were performed to determine IC50
    concentrations and apoptosis analysis was by flow cytometry. To identify chemical compounds in the extracts, gas
    chromatography-mass spectrometry (GC-MS) was employed. Results: P. piloselloides methanol extracts (PPME) showed
    antiproliferative effects on HeL awith an IC50 of 16.25μg/mL while the P. piloselloides water extract (PPWE) was without
    influence. Neither extract showed any significant effects on apoptosis. GC-MS analysis, revealed 5-hydroxymethylfurfural
    (23.1%), allopurinol (8.66%) and 3, 5-dihydroxy-6-methyl-2,3-dihydropyran-4-one (7.41%) as major components in
    the PPME, while sulfolan-3-ol (10.1%), linoleic acid (9.06%) and β-sitosterol acetate (7.98%) predominated in the
    PPWE case. Conclusion: This first study of P. piloselloides showed PPME to exert potent anti-proliferative effect on
    HeLa cell lines. Further research now needs to be performed to establish the mechanisms of inhibition.
    Matched MeSH terms: Cell Proliferation/drug effects*
  3. Wong SHM, Lim SS, Tiong TJ, Show PL, Zaid HFM, Loh HS
    Int J Mol Sci, 2020 Jul 22;21(15).
    PMID: 32708043 DOI: 10.3390/ijms21155202
    An ideal scaffold should be biocompatible, having appropriate microstructure, excellent mechanical strength yet degrades. Chitosan exhibits most of these exceptional properties, but it is always associated with sub-optimal cytocompatibility. This study aimed to incorporate graphene oxide at wt % of 0, 2, 4, and 6 into chitosan matrix via direct blending of chitosan solution and graphene oxide, freezing, and freeze drying. Cell fixation, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide, alkaline phosphatase colorimetric assays were conducted to assess cell adhesion, proliferation, and early differentiation of MG63 on chitosan-graphene oxide scaffolds respectively. The presence of alkaline phosphatase, an early osteoblast differentiation marker, was further detected in chitosan-graphene oxide scaffolds using western blot. These results strongly supported that chitosan scaffolds loaded with graphene oxide at 2 wt % mediated cell adhesion, proliferation, and early differentiation due to the presence of oxygen-containing functional groups of graphene oxide. Therefore, chitosan scaffolds loaded with graphene oxide at 2 wt % showed the potential to be developed into functional bone scaffolds.
    Matched MeSH terms: Cell Proliferation/drug effects*
  4. Maki MAA, Cheah SC, Bayazeid O, Kumar PV
    Sci Rep, 2020 10 15;10(1):17468.
    PMID: 33060727 DOI: 10.1038/s41598-020-74467-1
    Galectin-3 (Gal-3) is a carbohydrate-binding protein, that promotes angiogenesis through mediating angiogenic growth factors such as vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF). There is strong evidence confirming FGF involvement in tumor growth and progression by disrupting cell proliferation and angiogenesis. In this study, we investigated the effect of β-cyclodextrin:everolimus:FGF-7 inclusion complex (Complex) on Caco-2 cell migration, cell motility and colony formation. In addition, we examined the inhibitory effect of the Complex on the circulating proteins; Gal-3 and FGF-7. Swiss Target Prediction concluded that Gal-3 and FGF are possible targets for β-CD. Results of the chemotaxis cell migration assay on Caco-2 cell line revealed that the Complex has higher reduction in cell migration (78.3%) compared to everolimus (EV) alone (58.4%) which is possibly due to the synergistic effect of these molecules when used as a combined treatment. Moreover, the Complex significantly decreased the cell motility in cell scratch assay, less than 10% recovery compared to the control which has ~ 45% recovery. The Complex inhibited colony formation by ~ 75% compared to the control. Moreover, the Complex has the ability to inhibit Gal-3 with minimum inhibitory concentration of 33.46 and 41 for β-CD and EV, respectively. Additionally, β-CD and β-CD:EV were able to bind to FGF-7 and decreased the level of FGF-7 more than 80% in cell supernatant. This confirms Swiss Target Prediction result that predicted β-CD could target FGF. These findings advance the understanding of the biological effects of the Complex which reduced cell migration, cell motility and colony formation and it is possibly due to inhibiting circulating proteins such as; Gal-3 and FGF-7.
    Matched MeSH terms: Cell Proliferation/drug effects
  5. Musa M, Ouaret D, Bodmer WF
    Anticancer Res, 2020 Nov;40(11):6063-6073.
    PMID: 33109544 DOI: 10.21873/anticanres.14627
    BACKGROUND/AIM: Interactions between colorectal cancer (CRC) cells and myofibroblasts govern many processes such as cell growth, migration, invasion and differentiation, and contribute to CRC progression. Robust experimental tests are needed to investigate the nature of these interactions for future anticancer studies. The purpose of the study was to design and validate in vitro assays for studying the communication between myofibroblasts and CRC epithelial cell lines.

    MATERIALS AND METHODS: The influence of co-culture of myofibroblasts and CRC cell lines is discussed using various in vitro assays including direct co-culture, transwell assays, Matrigel-based differentiation and cell invasion experiments.

    RESULTS: The results from these in vitro assays clearly demonstrated various aspects of the crosstalk between myofibroblasts and CRC cell lines, which include cell growth, differentiation, migration and invasion.

    CONCLUSION: The reported in vitro assays provide a basis for investigating the factors that control the myofibroblast-epithelial cell interactions in CRC in vivo.

    Matched MeSH terms: Cell Proliferation/drug effects
  6. Yeo Y, Tan JBL, Lim LW, Tan KO, Heng BC, Lim WL
    Biomed Res Int, 2019;2019:3126376.
    PMID: 33204680 DOI: 10.1155/2019/3126376
    In the biomedical field, there is growing interest in using human stem cell-derived neurons as in vitro models for pharmacological and toxicological screening of bioactive compounds extracted from natural products. Lignosus rhinocerus (Tiger Milk Mushroom) is used by indigenous communities in Malaysia as a traditional medicine to treat various diseases. The sclerotium of L. rhinocerus has been reported to have medicinal properties, including various bioactivities such as neuritogenic, anti-inflammatory, and anticancer effects. This study aims to investigate the neuroprotective activities of L. rhinocerus sclerotial extracts. Human embryonic stem cell (hESC)-derived neural lineages exposed to the synthetic glucocorticoid, dexamethasone (DEX), were used as the in vitro models. Excess glucocorticoids have been shown to adversely affect fetal brain development and impair differentiation of neural progenitor cells. Screening of different L. rhinocerus sclerotial extracts and DEX on the hESC-derived neural lineages was conducted using cell viability and neurite outgrowth assays. The neuroprotective effects of L. rhinocerus sclerotial extracts against DEX were further evaluated using apoptosis assays and Western blot analysis. Hot aqueous and methanol extracts of L. rhinocerus sclerotium promoted neurite outgrowth of hESC-derived neural stem cells (NSCs) with negligible cytotoxicity. Treatment with DEX decreased viability of NSCs by inducing apoptosis. Coincubation of L. rhinocerus methanol extract with DEX attenuated the DEX-induced apoptosis and reduction in phospho-Akt (pAkt) level in NSCs. These results suggest the involvement of Akt signaling in the neuroprotection of L. rhinocerus methanol extract against DEX-induced apoptosis in NSCs. Methanol extract of L. rhinocerus sclerotium exhibited potential neuroprotective activities against DEX-induced toxicity in hESC-derived NSCs. This study thus validates the use of human stem cell-derived neural lineages as potential in vitro models for screening of natural products with neuroprotective properties.
    Matched MeSH terms: Cell Proliferation/drug effects
  7. Maarof M, Chowdhury SR, Saim A, Bt Hj Idrus R, Lokanathan Y
    Int J Mol Sci, 2020 Apr 22;21(8).
    PMID: 32331278 DOI: 10.3390/ijms21082929
    Fibroblasts secrete many essential factors that can be collected from fibroblast culture medium, which is termed dermal fibroblast conditioned medium (DFCM). Fibroblasts isolated from human skin samples were cultured in vitro using the serum-free keratinocyte-specific medium (Epilife (KM1), or define keratinocytes serum-free medium, DKSFM (KM2) and serum-free fibroblast-specific medium (FM) to collect DFCM-KM1, DFCM-KM2, and DFCM-FM, respectively). We characterised and evaluated the effects of 100-1600 µg/mL DFCM on keratinocytes based on attachment, proliferation, migration and gene expression. Supplementation with 200-400 µg/mL keratinocyte-specific DFCM-KM1 and DFCM-KM2 enhanced the attachment, proliferation and migration of sub-confluent keratinocytes, whereas 200-1600 µg/mL DFCM-FM significantly increased the healing rate in the wound healing assay, and 400-800 µg/mL DFCM-FM was suitable to enhance keratinocyte attachment and proliferation. A real-time (RT2) profiler polymerase chain reaction (PCR) array showed that 42 genes in the DFCM groups had similar fold regulation compared to the control group and most of the genes were directly involved in wound healing. In conclusion, in vitro keratinocyte re-epithelialisation is supported by the fibroblast-secreted proteins in 200-400 µg/mL DFCM-KM1 and DFCM-KM2, and 400-800 µg/mL DFCM-FM, which could be useful for treating skin injuries.
    Matched MeSH terms: Cell Proliferation/drug effects
  8. Low SY, Tan BS, Choo HL, Tiong KH, Khoo AS, Leong CO
    Cancer Lett, 2012 Jan 28;314(2):166-75.
    PMID: 22033244 DOI: 10.1016/j.canlet.2011.09.025
    The efficacy of cisplatin for treating nasopharyngeal carcinoma (NPC) is limited by the dose-related toxicities and the development of resistance to cisplatin. Recent studies have shown that B cell lymphoma-2 (BCL-2) is overexpressed and confers chemoresistance in NPC. Thus, targeted therapy against BCL-2 may enhance the antitumour effects of chemotherapy by sensitizing the tumor cells to undergo apoptosis. This study evaluated the combined effects of BCL-2 inhibition and cisplatin in NPC cells. Our results demonstrate that inhibition of BCL-2 by small-hairpin RNA (shRNA) or the BCL-2 inhibitor YC137, synergizes cisplatin sensitivity in NPC cells that overexpress BCL-2. We also show that YC137 enhance cisplatin-induced apoptosis in HK1 and CNE1 cells through suppression of BCL-2 protein expression, induction of mitochondrial depolarization and activation of caspase 9 and caspase 3/7. These findings suggest that the combination of BCL-2 inhibition and cisplatin represents a promising strategy for treating NPC.
    Matched MeSH terms: Cell Proliferation/drug effects
  9. Nesaretnam K
    Cancer Lett, 2008 Oct 8;269(2):388-95.
    PMID: 18504069 DOI: 10.1016/j.canlet.2008.03.063
    Natural compounds with possible health benefits have become attractive targets for research in areas pertaining to human health. For both prevention and therapy of various human ailments, such compounds are preferred over synthetic ones due to their lesser toxicity. They are also easily absorbed and processed by our body. Vitamins are prominent among natural or endogenous compounds that are considered to be beneficial. The vitamin E group of compounds is among the better known of the vitamins due to their suggested health benefits including antioxidant and related protective properties. Among these, tocotrienols have gained prominence in recent years due to their potential applications and better protective effects in certain systems. These tocotrienols are vitamin E derivatives that are analogs of the more established forms of vitamin E namely tocopherols. In addition to their potent antioxidant activity, tocotrienols have other important functions, especially in maintaining a healthy cardiovascular system and a possible role in protection against cancer and other ailments.
    Matched MeSH terms: Cell Proliferation/drug effects
  10. Zulkarnain NN, Anuar N, Johari NA, Sheikh Abdullah SR, Othman AR
    Environ Toxicol Pharmacol, 2020 Nov;80:103498.
    PMID: 32950717 DOI: 10.1016/j.etap.2020.103498
    Inefficient ketoprofen removal from pharmaceutical wastewater may negatively impact the ecosystem and cause detrimental risks to human health. This study was conducted to determine the cytotoxicity effects of ketoprofen on HEK 293 cell growth and metabolism, including cyclooxygenase-1 (COX-1) expression, at environmentally relevant concentrations. The cytotoxic effects were evaluated through the trypan blue test, DNS assay, MTT assay, and the expression ratio of the COX-1 gene. The results of this study show insignificant (p > 0.05) cytotoxic effects of ketoprofen on cell viability and cell metabolism. However, high glucose consumption rates among the treated cells cause an imitation of the Warburg effect, which is likely linked to the development of cancer cells. Apart from that, the upregulation of COX-1 expression among the treated cells indicates remote possibility of inflammation. Although no significant cytotoxic effects of ketoprofen were detected throughout this study, the effects of prolonged exposure of residual ketoprofen need to be evaluated in the future.
    Matched MeSH terms: Cell Proliferation/drug effects
  11. Hitora Y, Takada K, Ise Y, Woo SP, Inoue S, Mori N, et al.
    Bioorg Med Chem, 2020 01 15;28(2):115233.
    PMID: 31848114 DOI: 10.1016/j.bmc.2019.115233
    New sesquiterpene quinones, metachromins X (1) and Y (2), together with the known metachromins C (3), J (4), and T (5), were isolated as inhibitors of cell cycle progression in the HeLa/Fucci2 cells. The structure of 1 was assigned by spectroscopic data and confirmed by a total synthesis. The planar structure of 2 was determined by interpretation of spectroscopic data, whereas its absolute configuration was analyzed by a combination of chiral HPLC and CD spectroscopy. Metachromins X (1) and C (3) arrested the cell cycle progression of HeLa/Fucci2 cells at S/G2/M phase.
    Matched MeSH terms: Cell Proliferation/drug effects
  12. Zohdi RM, Zakaria ZA, Yusof N, Mustapha NM, Abdullah MN
    PMID: 21504052 DOI: 10.1002/jbm.b.31828
    Malaysian sea cucumber was incorporated into hydrogel formulation by using electron beam irradiation technique and was introduced as novel cross-linked Gamat Hydrogel dressing. This study investigated whether Gamat Hydrogel enhanced repair of deep partial skin thickness burn wound in rats and its possible mechanism. Wounds were treated with either Gamat Hydrogel, control hydrogel, OpSite® film dressing or left untreated. Skin samples were taken at 7, 14, 21, and 28 days post burn for histological and molecular evaluations. Gamat Hydrogel markedly enhanced wound contraction and improved histological reorganization of the regenerating tissue. Furthermore, the dressing modulated the inflammatory responses, stimulated the activation and proliferation of fibroblasts, and enhanced rapid production of collagen fiber network with a consequently shorter healing time. The level of proinflammatory cytokines; IL-1α, IL-1β, and IL-6, were significantly reduced in Gamat Hydrogel treated wounds compared with other groups as assessed by reverse transcription-polymerase chain reaction (RT-PCR). In summary, our results showed that Gamat Hydrogel promoted burn wound repair via a complex mechanism involving stimulation of tissue regeneration and regulation of pro-inflammatory cytokines. The resultant wound healing effects were attributed to the synergistic effect of the hydrogel matrix and incorporated sea cucumber.
    Matched MeSH terms: Cell Proliferation/drug effects
  13. Salehinejad P, Alitheen NB, Mandegary A, Nematollahi-Mahani SN, Janzamin E
    In Vitro Cell Dev Biol Anim, 2013 Aug;49(7):515-23.
    PMID: 23708920 DOI: 10.1007/s11626-013-9631-3
    Mesenchymal stem cells have been increasingly introduced to have great potential in regenerative medicine, immunotherapy, and gene therapy due to their unique properties of self-renewal and differentiation into multiple cell lineages. Studies have shown that these properties may be limited and changed by senescence-associated growth arrest under different culture conditions. This study aimed to present the ability of some growth factors on human umbilical cord mesenchymal (hUCM) cells expansion and telomerase activity. To optimize hUCM cell growth, epidermal growth factor (EGF) and fibroblast growth factor (FGF) were utilized in culture media, and the ability of these growth factors on the expression of the telomerase reverse transcriptase (TERT) gene and cell cycle phases was investigated. TERT mRNA expression increased in the hUCM cells treated by EGF and FGF. So, the untreated hUCM cells expressed 30.49 ± 7.15% of TERT, while EGF-treated cells expressed 51.82 ± 12.96% and FGF-treated cells expressed 33.77 ± 11.55% of TERT. Exposure of hUCM cells to EGF or FGF also promoted the progression of cells from G1 to S phase of the cell cycle and induced them to decrease the number of cells entering the G2/M phase. Our study showed that EGF and, to a lesser extent, FGF amplify the proliferation and expansion of hUCM cells.
    Matched MeSH terms: Cell Proliferation/drug effects
  14. Arulnathan SB, Leong KH, Ariffin A, Kareem HS, Cheah KKH
    Anticancer Agents Med Chem, 2020;20(9):1072-1086.
    PMID: 32188392 DOI: 10.2174/1871520620666200318100051
    BACKGROUND: Oxadiazoles, triazoles, and their respective precursors have been shown to exhibit various pharmacological properties, namely antitumour activities. Cytotoxic activity was reported for these compounds in various cancer cell lines.

    AIM AND OBJECTIVES: In this study, we aim at investigating the mechanism of apoptosis by N-(4-chlorophenyl)-2-(4- (3,4,5-trimethoxybenzyloxy)benzoyl)-hydrazinecarbothioamide, a triazole precursor, henceforth termed compound P7a, in breast cancer cell line, MCF-7. We first screen a series of analogues containing (3,4,5-trimethoxybenzyloxy) phenyl moiety in breast cancer cell lines (MCF-7 and MDA-MB-231) to select the most cytotoxic compound and demonstrate a dose- and time-dependent cytotoxicity. Then, we unravel the mechanism of apoptosis of P7a in MCF-7 as well as its ability to cause cell cycle arrest.

    METHODS: Synthesis was performed as previously described by Kareem and co-workers. Cytotoxicity of analogues containing (3,4,5-trimethoxybenzyloxy)phenyl moiety against MCF-7 and MDA-MB-231 cell lines was evaluated using the MTS assay. Flow cytometric analyses was done using Annexin V/PI staining, JC-1 staining and ROS assay. The activity of caspases using a chemoluminescence assay and western blot analysis was conducted to study the apoptotic pathway induced by the compound in MCF-7 cells. Lastly, cell cycle analysis was conducted using flow cytometry.

    RESULTS: Upon 48 hours of treatment, compound P7a inhibited the proliferation of human breast cancer cells with IC50 values of 178.92 ± 12.51μM and 33.75 ± 1.20μM for MDA-MB-231 and MCF-7, respectively. Additionally, compound P7a showed selectivity towards the cancer cell line, MCF-7 compared to the normal breast cell line, hTERT-HME1, an advantage against current anticancer drugs (tamoxifen and vinblastine). Flow cytometric analyses using different assays indicated that compound P7a significantly increased the proportion of apoptotic cells, increased mitochondria membrane permeabilisation and caused generation of ROS in MCF-7. In addition, cell cycle analysis showed that cell proliferation was arrested at the G1 phase in the MCF-7 cell line. Furthermore, upon treatment, the MCF-7 cell line showed increased activity of caspase-3/7, and caspase-9. Lastly, the western blot analysis showed the up-regulation of pro-apoptotic proteins along with up-regulation of caspase-7 and caspase-9, indicating that an intrinsic pathway of apoptosis was induced.

    CONCLUSION: The results suggest that compound P7a could be a potential chemotherapeutic agent for breast cancer.

    Matched MeSH terms: Cell Proliferation/drug effects
  15. Su Wei Poh M, Voon Chen Yong P, Viseswaran N, Chia YY
    PLoS One, 2015;10(3):e0121382.
    PMID: 25816349 DOI: 10.1371/journal.pone.0121382
    Glabridin is an isoflavan from licorice root, which is a common component of herbal remedies used for treatment of menopausal symptoms. Past studies have shown that glabridin resulted in favorable outcome similar to 17β-estradiol (17β-E2), suggesting a possible role as an estrogen replacement therapy (ERT). This study aims to evaluate the estrogenic effect of glabridin in an in-vitro endometrial cell line -Ishikawa cells via alkaline phosphatase (ALP) assay and ER-α-SRC-1-co-activator assay. Its effect on cell proliferation was also evaluated using Thiazoyl blue tetrazolium bromide (MTT) assay. The results showed that glabridin activated the ER-α-SRC-1-co-activator complex and displayed a dose-dependent increase in estrogenic activity supporting its use as an ERT. However, glabridin also induced an increase in cell proliferation. When glabridin was treated together with 17β-E2, synergistic estrogenic effect was observed with a slight decrease in cell proliferation as compared to treatment by 17β-E2 alone. This suggest that the combination might be better suited for providing high estrogenic effects with lower incidences of endometrial cancer that is associated with 17β-E2.
    Matched MeSH terms: Cell Proliferation/drug effects*
  16. Magalingam KB, Radhakrishnan AK, Somanath SD, Md S, Haleagrahara N
    Mol Biol Rep, 2020 Nov;47(11):8775-8788.
    PMID: 33098048 DOI: 10.1007/s11033-020-05925-2
    Numerous protocols to establish dopaminergic phenotype in SH-SY5Y cells have been reported. In most of these protocols there are variations in concentration of serum used. In this paper, we compared the effects of high (10%), low (3%) and descending (2.5%/1%) serum concentration in differentiation medium containing different proportion of retinoic acid (RA) and 12-O-Tetradecanoylphorbol-13-acetate (TPA) or RA-only on the undifferentiated SH-SY5Y cells with regards to cell morphology, biochemical and gene expression alterations. Cells differentiated in culture medium containing low and descending serum concentrations showed increased number of neurite projections and reduced proliferation rates when compared to undifferentiated cells. The SH-SY5Y cells differentiated in culture medium containing 3% RA and low serum or descending (2.5%/1% RA/TPA) were found to be more susceptible to 6-hydroxydopamine (6-OHDA) induced cytotoxicity. Cells differentiated with RA/TPA or RA differentiated showed increased production of the α-synuclein (SNCA) neuroprotein and dopamine neurotransmitter compared to undifferentiated cells, regardless serum concentrations used. There was no significant difference in the expression of tyrosine hydroxylase (TH) gene between undifferentiated and differentiated SH-SY5Y cells. However, the expression of dopamine receptor D2 (DRD2) gene was markedly increased (p<0.05) in differentiated cells with 3% serum and RA only when compared to undifferentiated cells. In conclusion, to terminally differentiate SH-SY5Y cells to be used as a cell-based model to study Parkinson's disease (PD) to investigate molecular mechanisms and drug discovery, the optimal differentiation medium should contain 3% serum in RA-only.
    Matched MeSH terms: Cell Proliferation/drug effects*
  17. Wsoo MA, Razak SIA, Bohari SPM, Shahir S, Salihu R, Kadir MRA, et al.
    Int J Biol Macromol, 2021 Jun 30;181:82-98.
    PMID: 33771547 DOI: 10.1016/j.ijbiomac.2021.03.108
    Vitamin D deficiency is now a global health problem; despite several drug delivery systems for carrying vitamin D due to low bioavailability and loss bioactivity. Developing a new drug delivery system to deliver vitamin D3 is a strong incentive in the current study. Hence, an implantable drug delivery system (IDDS) was developed from the electrospun cellulose acetate (CA) and ε-polycaprolactone (PCL) nanofibrous membrane, in which the core of implants consists of vitamin D3-loaded CA nanofiber (CAVD) and enclosed in a thin layer of the PCL membrane (CAVD/PCL). CA nanofibrous mat loaded with vitamin D3 at the concentrations of 6, 12, and 20% (w/w) of vitamin D3 were produced using electrospinning. The smooth and bead-free fibers with diameters ranged from 324 to 428 nm were obtained. The fiber diameters increased with an increase in vitamin D3 content. The controlled drug release profile was observed over 30-days, which fit with the zero-order model (R2 > 0.96) in the first stage. The mechanical properties of IDDS were improved. Young's modulus and tensile strength of CAVD/PCL (dry) were161 ± 14 and 13.07 ± 2.5 MPa, respectively. CA and PCL nanofibers are non-cytotoxic based on the results of the in-vitro cytotoxicity studies. This study can further broaden in-vivo study and provide a reference for developing a new IDDS to carry vitamin D3 in the future.
    Matched MeSH terms: Cell Proliferation/drug effects
  18. Nik Mohamed Kamal NNS, Abdul Aziz FA, Tan WN, Fauzi AN, Lim V
    Molecules, 2021 Jun 09;26(12).
    PMID: 34207699 DOI: 10.3390/molecules26123518
    Pancreatic cancer is an aggressive disease that progresses in a relatively symptom-free manner; thus, is difficult to detect and treat. Essential oil is reported to exhibit pharmacological properties, besides its common and well-known function as aromatherapy. Therefore, this study herein aimed to investigate the anti-proliferative effect of essential oil extracted from leaves of Garcinia atroviridis (EO-L) against PANC-1 human pancreatic cancer cell line. The cell growth inhibitory concentration at 50% (IC50) and selective index (SI) values of EO-L analyses were determined as 78 µg/mL and 1.23, respectively. Combination index (CI) analysis revealed moderate synergism (CI values of 0.36 to 0.75) between EO-L and 2 deoxy-d-glucose (2-DG) treatments. The treatments of PANC-1 cells with EO-L, 2-DG and EOL+2DG showed evidence of depolarization of mitochondrial membrane potential, cell growth arrest and apoptosis. The molecular mechanism causing the anti-proliferative effect between EO-L and 2-DG is potentially through pronounced up-regulation of P53 (4.40-fold), HIF1α (1.92-fold), HK2 (2.88-fold) and down-regulation of CYP3A5 (0.11-fold), as supported by quantitative mRNA expression analysis. Collectively, the current data suggest that the combination of two anti-proliferative agents, EO-L and 2-DG, can potentially be explored as therapeutic treatments and as potentiating agents to conventional therapy against human pancreatic cancer.
    Matched MeSH terms: Cell Proliferation/drug effects
  19. Daddiouaissa D, Amid A, Abdullah Sani MS, Elnour AAM
    J Ethnopharmacol, 2021 Apr 24;270:113813.
    PMID: 33444719 DOI: 10.1016/j.jep.2021.113813
    ETHNOPHARMACOLOGICAL RELEVANCE: Medicinal plants have been used by indigenous people across the world for centuries to help individuals preserve their wellbeing and cure diseases. Annona muricata L. (Graviola) which is belonging to the Annonaceae family has been traditionally used due to its medicinal abilities including antimicrobial, anti-inflammatory, antioxidant and cancer cell growth inhibition. Graviola is claimed to be a potential antitumor due to its selective cytotoxicity against several cancer cell lines. However, the metabolic mechanism information underlying the anticancer activity remains limited.

    AIM OF THE STUDY: This study aimed to investigate the effect of ionic liquid-Graviola fruit pulp extract (IL-GPE) on the metabolomics behavior of colon cancer (HT29) by using an untargeted GC-TOFMS-based metabolic profiling.

    MATERIALS AND METHODS: Multivariate data analysis was used to determine the metabolic profiling, and the ingenuity pathway analysis (IPA) was used to predict the altered canonical pathways after treating the HT29 cells with crude IL-GPE and Taxol (positive control).

    RESULTS: The principal components analysis (PCA) identified 44 metabolites with the most reliable factor loading, and the cluster analysis (CA) separated three groups of metabolites: metabolites specific to the non-treated HT29 cells, metabolites specific to the treated HT29 cells with the crude IL-GPE and metabolites specific to Taxol treatment. Pathway analysis of metabolomic profiles revealed an alteration of many metabolic pathways, including amino acid metabolism, aerobic glycolysis, urea cycle and ketone bodies metabolism that contribute to energy metabolism and cancer cell proliferation.

    CONCLUSION: The crude IL-GPE can be one of the promising anticancer agents due to its selective inhibition of energy metabolism and cancer cell proliferation.

    Matched MeSH terms: Cell Proliferation/drug effects
  20. Mahmood I, Azfaralariff A, Mohamad A, Airianah OB, Law D, Dyari HRE, et al.
    PMID: 33737223 DOI: 10.1016/j.cbpc.2021.109033
    The ability of natural extracts to inhibit melanocyte activity is of great interest to researchers. This study evaluates and explores the ability of mutated Shiitake (A37) and wildtype Shiitake (WE) extract to inhibit this activity. Several properties such as total phenolic (TPC) and total flavonoid content (TFC), antioxidant activity, effect on cell and component profiling were conducted. While having no significant differences in total phenolic content, mutation resulted in A37 having a TFC content (1.04 ± 0.7 mg/100 ml) compared to WE (0.86 ± 0.9 mg/100 ml). Despite that, A37 extract has lower antioxidant activity (EC50, A37 = 549.6 ± 2.70 μg/ml) than WE (EC50 = 52.8 ± 1.19 μg/ml). Toxicity tests on zebrafish embryos show that both extracts, stop the embryogenesis process when the concentration used exceeds 900 μg/ml. Although both extracts showed pigmentation reduction in zebrafish embryos, A37 extract showed no effect on embryo heartbeat. Cell cycle studies revealed that WE significantly affect the cell cycle while A37 not. Further tests found that these extracts inhibit the phosphorylation of Glycogen synthase kinase 3 β (pGSK3β) in HS27 cell line, which may explain the activation of apoptosis in melanin-producing cells. It was found that from 19 known compounds, 14 compounds were present in both WE and A37 extracts. Interestingly, the presence of decitabine in A37 extract makes it very potential for use in the medical application such as treatment of melanoma, skin therapy and even cancer.
    Matched MeSH terms: Cell Proliferation/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links