METHODS: Polymeric carriers with different hydrophobic to hydrophilic ratios were used to prepare several electrospun solid dispersion formulations. Physicochemical properties and surface morphology of the samples were assessed using Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR), polarized light microscopy, Differential Scanning Calorimetry (DSC), X-ray Powder Diffraction (XRPD) and Scanning Electron Microscopy (SEM). Dissolution study was conducted in a non-sink condition to assess the drug release.
RESULTS: Incorporation of a higher amount of hydrophilic component showed an improvement in formulating a fully amorphous system based on XRPD, yet the dissolution rate increment showed no significant difference from the lower. Hence, the degree of crystallinity is proven not to be the crucial factor contributing to dissolution rate improvement. The presence of a concomitant hydrophobic component, however, showed ability in resisting precipitation and sustaining supersaturation.
CONCLUSION: Hydrophobicity in a binary carrier system plays an important role in achieving and maintaining the supersaturated state particularly for an amorphous solid dispersion. Graphical Abstract.
OBJECTIVE: Potential of a polysaccharide (rhamnogalacturonan)-based hydrogel from Linseeds (Linum usitatissimum L.) was investigated as an intelligent drug delivery material.
MATERIALS AND METHODS: Different concentrations of Linseed hydrogel (LSH) were used to prepare caffeine and diacerein tablets and further investigated for pH and salt solution-responsive swelling, pH-dependent drug release, and release kinetics. Morphology of tablets was observed using SEM.
RESULTS: LSH tablets exhibited dynamic swelling-deswelling behavior with tendency to swell at pH 7.4 and in deionized water while deswell at pH 1.2, in normal saline and ethanol. Consequently, pH controlled release of the drugs was observed from tablets with lower release (<10%) at pH 1.2 and higher release at pH 6.8 and 7.4. SEM showed elongated channels in swollen then freeze-dried tablets.
DISCUSSION: The drug release was greatly influenced by the amount of LSH in the tablets. Drug release from LSH tablets was governed by the non-Fickian diffusion.
CONCLUSIONS: These finding indicates that LSH holds potential to be developed as sustained release material for tablet.