Displaying publications 101 - 120 of 337 in total

Abstract:
Sort:
  1. Dewi R, Ibrahim N, Talib I, Ibarahim Z
    Sains Malaysiana, 2008;37:233-237.
    Thin films of barium strontium titanate (Ba0.6Sr0.4TiO3) perovskite system are promising candidates for microelectronic devices that can be integrated with semiconductor technology. Ba0.6Sr0.4TiO3 thin films have been prepared onto BST/TiO2/RuO2/SiO2/Si substrate using the spin coating and sol-gel process. Then the samples were subsequently annealed at 600oC, 650oC and 700oC for 60 minutes in air. The microstructure and dielectric properties show that the crystallization improved as the annealing temperature was increased. All of the films have nanometer grain size. The average grain size of the films increased as the temperature was increased. The dielectric constant and ac conductivity of the films also increased as the average grain size increased. These results showed that the microstructure and dielectric properties depend on the annealing temperature.
    Matched MeSH terms: Silicon Dioxide
  2. Jong DL, Park BG, Jung KD
    Sains Malaysiana, 2008;37:233-237.
    Bottom-contact pentacene OTFTs are fabricated using cross-linked poly(vinyl alcohol) (PVA) insulator and its reliability characteristics are analyzed. The hysteresis of the OTFTs is mainly caused by the electrons that are injected from the gate electrode to the cross-linked PVA insulator. To block the injection of electrons, plasma-enhanced chemical vapor deposition (PECVD) SiO2 layer is inserted between the gate electrode and the cross-linked PVA layer, so that the minimum hysteresis can be obtained. In addition, the effects of the gate bias stress as a function of time is investigated to examine the long-term reliability of the device during the operation.
    Matched MeSH terms: Silicon Dioxide
  3. Nather Khan I, Firuza Begham Mustafa
    Sains Malaysiana, 2010;39:189-198.
    Spatial and temporal variations in silica concentration were determined at various rivers and tributaries in the Linggi River Basin, which has been highly polluted due to urban, industrial and agricultural wastes. The silica content measured as reactive silicate in the whole Linggi River Basin ranged from 1.4 to 26.3 mg/L. A clear seasonal variation in silica was noted especially in the major rivers with higher concentration during dry months and lower concentration during the wet months. The concentration was found to decrease as the water flooded downstream. The large drainage area with granite dominated lithology and high denudation especially in the upper catchment is attributed for high silica content in the water of Linggi River Basin.
    Matched MeSH terms: Silicon Dioxide
  4. Rizal S, Fizree HM, Hossain MS, Ikramullah, Gopakumar DA, Wan Ni EC, et al.
    Heliyon, 2020 Mar;6(3):e03550.
    PMID: 32190763 DOI: 10.1016/j.heliyon.2020.e03550
    This study was conducted to determine the influence of the oil palm boiler ash (OPBA) reinforcement on the microstructural, physical, mechanical and thermal properties of epoxy polymer composites. The chemical composition analysis of OPBA revealed that it contains about 55 wt.% of SiO2 along with other metallic oxides and elements. The surface morphology of OPBA showed angular and irregular shapes with porous structures. The influence of OPBA as a reinforcement in epoxy composite was studied with varying filler loadings (10-50 wt.%) and different particle sizes (50-150 μm). The result showed that the incorporation of OPBA in composites has improved the physical, mechanical and thermal properties of the epoxy matrix. The highest physical and mechanical properties of fabricated composites were attained with 30 wt.% loading and size of 50 μm. Also, thermal stability and the percentage of char residue of the composite increased with increasing filler loading. Furthermore, the contact angle of OPBA reinforced epoxy composites increased with the increase of filler loading. The lowest value of the contact angle was obtained at 30 wt.% of filler loading with the OPBA particle size of 50 μm. The finding of this study reveals that the OPBA has the potential to be used as reinforcement or filler as well as an alternative of silica-based inorganic fillers used in the enhancement of mechanical, physical and thermal properties of the epoxy polymer composite.
    Matched MeSH terms: Silicon Dioxide
  5. Haibo Jiang, Zuguo Mo, Xiongbin Hou, Haijuan Wang
    Sains Malaysiana, 2017;46:2205-2213.
    The mechanical properties of fractured rock mass are largely dependent on the fracture structure under the coupling of freeze-thaw cycles and large temperature difference. Based on the traditional macroscopic continuum theory, the thermal and mechanical model and the corresponding theories ignore the material internal structure characteristics, which add difficulty in describing the mesoscopic thermal and mechanical behavior of the fractured rock mass among different phases. In order to uncover the inherent relationship and laws among the internal crack development, structural change and the physical and mechanical properties of rock under strong cold and frost weathering in cold area, typical granite and sandstone in cold region were analyzed in laboratory tests. The SEM scanning technology was introduced to record the microstructural change of rock samples subject to freeze-thaw cycles and large temperature difference. Association rules between the microstructure and the physical mechanical properties of rock mass were analyzed. The results indicated that, with the increase of the cyclic number, the macroscopic physical and mechanical indexes and the microscopic fracture index of granite and sandstone continuously and gradually deteriorate. The width of original micro crack continues to expand and extend and new local micro cracks are generated and continue to expand. The fracture area and width of the rock increase and the strength of the rock is continuously damaged. In particular, the strength and elastic modulus of granite decrease by 20.2% and 33.36%, respectively; the strength and elastic modulus of sandstone decrease by 33.4% and 36.43%, respectively.
    Matched MeSH terms: Silicon Dioxide
  6. Chai Hua, T., Norkhairunnisa, M.
    MyJurnal
    This research investigates the strength of kenaf or epoxy composite filled with mesoporous silica and
    studies the hybrid effects between mesoporous silica or kenaf in epoxy matrix. The volume of kenaf
    woven mat is maintained constantly at 7.2vol%, whereas proportion of epoxy is varied with inclusion of
    mesoporous silica and silicon, keeping constant the volume of the composite at 67.5cm3. The proportion
    of mesoporous silica is altered from 0.5vol%, 1.0vol%, 3.0vol% and 5.0vol%, while silicon is kept
    constant at 3.0vol%. A total of 11 specimens were produced, each with its distinctive composition and
    mechanical strengths. Variation of fillers composition affects the mechanical strengths of the composite.
    SEM analysis shows that epoxy bonds well with silicon, kenaf and mesoporous silica. Some de-bonding
    among the components is observed within the composite although there is also some tearing of fibres and
    impregnation of epoxy within fibre, proving that the components have good interaction and do not act
    individually. Flexural test shows that mesoporous silica improves the flexural strength of the composite,
    where the highest value is 35.14MPa, obtained at 5.0vol% Mesoporous Silica in Kenaf/Epoxy (SiaK/
    Ep). It also improves the flexural modulus, where the highest value is 1569.48MPa, obtained at 3.0vol%
    SiaK/Ep. DMA result reveals that adding mesoporous silica increases the Tg of the composite produced.
    Highest Tg is obtained at 0.5vol% Mesoporous Silica in Kenaf/Epoxy modofied Silicon (SiaK/Ep-Si)
    with the value of 87.54°C.
    Matched MeSH terms: Silicon Dioxide
  7. Vishwakarma R, Rosmi MS, Takahashi K, Wakamatsu Y, Yaakob Y, Araby MI, et al.
    Sci Rep, 2017 03 02;7:43756.
    PMID: 28251997 DOI: 10.1038/srep43756
    Low-temperature growth, as well as the transfer free growth on substrates, is the major concern of graphene research for its practical applications. Here we propose a simple method to achieve the transfer free graphene growth on SiO2 covered Si (SiO2/Si) substrate at 250 °C based on a solid-liquid-solid reaction. The key to this approach is the catalyst metal, which is not popular for graphene growth by chemical vapor deposition. A catalyst metal film of 500 nm thick was deposited onto an amorphous C (50 nm thick) coated SiO2/Si substrate. The sample was then annealed at 250 °C under vacuum condition. Raman spectra measured after the removal of the catalyst by chemical etching showed intense G and 2D peaks together with a small D and intense SiO2 related peaks, confirming the transfer free growth of multilayer graphene on SiO2/Si. The domain size of the graphene confirmed by optical microscope and atomic force microscope was about 5 μm in an average. Thus, this approach will open up a new route for transfer free graphene growth at low temperatures.
    Matched MeSH terms: Silicon Dioxide
  8. Kumar R, Shafiq N, Kumar A, Jhatial AA
    Environ Sci Pollut Res Int, 2021 Sep;28(35):49074-49088.
    PMID: 33928510 DOI: 10.1007/s11356-021-13918-2
    Research for alternative binders has become a necessity due to cement's embodied carbon, climate change, and depletion of natural resources. These binders could potentially reduce our reliance on cement as the sole binder for concrete while simultaneously enhancing the functional characteristics of concrete. Theoretically, the use of finer particles in the cement matrix densifies the pore structure of concrete and results in improved properties. To validate this hypothesis, current research was designed to investigate how the value-added benefits of nano-silica (NS) and metakaolin (MK) in fly ash (FA)-blended cement affect the mechanical and durability characteristics of concrete when used as ternary and quaternary blends. Additionally, the cost-benefit analysis and environmental impact assessment were conducted. It was observed that the synergy of MK and NS used in FA-blended cement had a greater impact on enhancing the functional characteristics of concrete, while 10% MK as ordinary Portland cement (OPC) replacement and 1% NS as an additive in FA-blended OPC concrete was the optimum combination which achieved 94-MPa compressive strength at the age of 91 days and showed more than 25% increment in the flexural and splitting tensile strengths compared to the control mix (MS00). The ultrasonic pulse velocity and dynamic modulus of elasticity were significantly improved, while a significant reduction in chloride migration of 50% was observed. In terms of environmental impact, MS100 (30% FA and 10% MK) exhibited the least embodied CO2 emissions of 319.89 kgCO2/m3, while the highest eco-strength efficiency of 0.268 MPa/kgCO2·m-3 with respect to 28-day compressive strength was exhibited by MS101. In terms of cost-benefit, MS00 was determined the cheapest, while the addition of MK and NS increased the cost. The lowest cost of producing 1 MPa was exhibited by MS01 with a merely 0.04-$/MPa/m3 reduction compared to MS00.
    Matched MeSH terms: Silicon Dioxide
  9. Kumar A, Bheel N, Ahmed I, Rizvi SH, Kumar R, Jhatial AA
    Environ Sci Pollut Res Int, 2022 Jan;29(1):1210-1222.
    PMID: 34350574 DOI: 10.1007/s11356-021-15734-0
    The production of cement releases an enormous amount of CO2 into the environment. Besides, industrial wastes like silica fume and fly ash need effective utilization to reduce their impacts on the environment. This research aims to explore the influence of silica fume (SF) and fly ash (FA) individually and combine them as binary cementitious material (BCM) on the hardened properties and embodied carbon of roller compacted concrete (RCC). A total of ten mixes were prepared with 1:2:4 mix ratio at the different water-cement ratios to keep the zero slump of roller compacted concrete. However, the replacement proportions for SF were 5%-15%, and FA were 5%-15% by the weight of cement individually and combine in roller compacted concrete for determining the hardened properties and embodied carbon. In this regard, several numbers of concrete specimens (cubes and cylinders) were cast and cured for 7 and 28 days correspondingly. It was observed that the compressive strength of RCC is boosted by 33.6 MPa and 30.6 MPa while using 10% of cement replaced with SF and FA individually at 28 days, respectively. Similarly, the splitting tensile strength of RCC is enhanced by 3.5 MPa at 10% cement replaced with SF and FA on 28 days, respectively. The compressive and splitting tensile strength of RCC is increased by 34.2 MPa and 3.8 MPa at SF7.5FA7.5 as BCM after 28 days consistently. In addition, the water absorption of RCC decreased while using SF and FA as cementitious material individually and together at 28 days. Besides, the embodied carbon of RCC decreased with increasing the replacement level of SF and FA by the mass of cement individually and combined.
    Matched MeSH terms: Silicon Dioxide
  10. Nurul Rizki I, Amalina I, Hasan NS, Khusnun NF, Abdul Jalil A, Firmansyah ML
    Chemosphere, 2023 Dec;345:140455.
    PMID: 37858767 DOI: 10.1016/j.chemosphere.2023.140455
    Electronic waste has become a global concern, as it has been steadily increasing over the years. The lack of regulation and appropriate processing facilities has rendered these wastes an environmental hazard. However, they represent excellent alternative sources of precious metals, which are highly in demand in various industries. Adsorption has been a popular method for metal removal/recovery because of several advantages, such as ease of use and low cost. In this regard, it is crucial to develop an inexpensive and functionalized adsorbent to selectively adsorb precious metals. Thus, silica, which is derived from rice husk and is abundantly present in Indonesia, was functionalized using an ionic liquid (SiRH_Im) and used for Au(III) adsorption from a simulated mobile phone leach liquor. SiRH_Im exhibited a high adsorption capacity (232.5 mg g-1). The Au(III) adsorption kinetic suitably fitted with the pseudo-second-order kinetic model. The Au(III) adsorption followed a chemisorption route that suited the monolayer model. Thomas' and Yoon-Nelson's models were well suited for the continuous Au(III) behavior. Selective recovery of Au(III) from SiRH_Im was achieved via sequential desorption. SiRH_Im also showed excellent reusability, as indicated by a negligible decrease in adsorptive performance over three cycles. The functionalization of silica derived from rice husk using an ionic liquid led to the successful creation of a solid adsorbent with a high adsorption capacity toward precious metals present in a simulated leach solution. Our results highlight the benefit of the functionalization of biomass through the immobilization of an ionic liquid toward the enhancement of its adsorption capability.
    Matched MeSH terms: Silicon Dioxide
  11. Shah SN, Tan TH, Tey OW, Leong GW, Chin YS, Yuen CW, et al.
    Sci Prog, 2022;105(2):368504221091186.
    PMID: 35379044 DOI: 10.1177/00368504221091186
    Lightweight cementitious composite (LCC) produced by incorporating lightweight silica aerogel was explored in this study. Silica aerogel was incorporated as 60% replacement of fine aggregate (sand/crushed glass) in producing the LCC. The effect of aerogel on the drying shrinkage and alkali-silica expansion of LCC was evaluated and compared with those of lightweight expanded perlite aggregate. At the density of 1600  ±  100 kg/m3, the aerogel/ expanded perlite LCC had attained compressive strength of about 17/24 MPa and 22/26 MPa in mixtures with sand and crushed glass as a fine aggregate, respectively. The inclusion of aerogel and expanded perlite increased the drying shrinkage. The drying shrinkage of aerogel LCC was up to about 3 times of the control mixtures. Although the presence of aerogel and expanded perlite could reduce the alkali-silica expansion when partially replacing crushed glass, the aerogel-glass LCC still recorded expansion exceeding the maximum limit of 0.10% at 14 days. However, when 15% cement was replaced with fly ash and granulated blast furnace slag, the alkali-silica expansion was reduced to 0.03% and 0.10%, respectively. Microstructural observations also revealed that the aerogel with fly ash can help in reducing the alkali-silica expansion in mixes containing the reactive crushed glass aggregate.
    Matched MeSH terms: Silicon Dioxide
  12. Korrani ZS, Khalili E, Kamyab H, Wan Ibrahim WA, Hashim H
    Environ Res, 2023 Dec 01;238(Pt 2):117167.
    PMID: 37722580 DOI: 10.1016/j.envres.2023.117167
    In this work, a simple sol-gel approach was used for the preparation of cyanopropyl (CNPr) functionalized silica nanoparticles (SiO2-CNPr) that tetraethoxysilane (TEOS) and cyanopropyltriethoxysilane (CNPrTEOS) used as precursors. This as-prepared SiO2-CNPr nanoparticle sorbent was first characterized using FESEM, EDX, FTIR, TGA, and BET techniques. Then, the SiO2-CNPr nanoparticle was applied as a new SPE sorbent for determining trace levels of OPPs in environmental water samples. To enhance the simultaneous extraction of non-polar or/and polar OPPs and to obtain the most efficient sorbent, several sol-gel synthesis parameters were studied. In addition, the effect of several effective parameters on SPE performance was investigated toward simultaneous extraction of non-polar or/and polar OPPs. Moreover, the figures of merit such as precision, linearity, LOQ, LOD, and recovery were evaluated for the sorbent. Finally, the designed SiO2-CNPr SPE was used to determine OPPs in real water samples, and its extraction performance was compared to commercial cartridges based on cyanopropyl.
    Matched MeSH terms: Silicon Dioxide
  13. Hashim S, Ibrahim SA, Che Omar SS, Alajerami YS, Saripan MI, Noor NM, et al.
    Appl Radiat Isot, 2014 Aug;90:258-60.
    PMID: 24858954 DOI: 10.1016/j.apradiso.2014.04.016
    Radiation effects of photon irradiation in pure Photonic Crystal Fibres (PCF) and Flat fibres (FF) are still much less investigated in thermoluminescense dosimetry (TLD). We have reported the TL response of PCF and FF subjected to 6 MV photon irradiation. The proposed dosimeter shows good linearity at doses ranging from 1 to 4 Gy. The small size of these detectors points to its use as a dosimeter at megavoltage energies, where better tissue-equivalence and the Bragg-Gray cavity theory prevails.
    Matched MeSH terms: Silicon Dioxide/radiation effects*; Silicon Dioxide/chemistry*
  14. Hashim S, Bradley DA, Saripan MI, Ramli AT, Wagiran H
    Appl Radiat Isot, 2010 Apr-May;68(4-5):700-3.
    PMID: 19892557 DOI: 10.1016/j.apradiso.2009.10.027
    This paper describes a preliminary study of the thermoluminescence (TL) response of doped SiO(2) optical fibres subjected to (241)AmBe neutron irradiation. The TL materials, which comprise Al- and Ge-doped silica fibres, were exposed in close contact with the (241)AmBe source to obtain fast neutron interactions through use of measurements obtained with and without a Cd filter (the filter being made to entirely enclose the fibres). The neutron irradiations were performed for exposure times of 1-, 2-, 3-, 5- and 7-days in a neutron tank filled with water. In this study, use was also made of the Monte Carlo N-particle (MCNP) code version 5 (V5) to simulate the neutron irradiations experiment. It was found that the commercially available Ge-doped and Al-doped optical fibres show a linear dose response subjected to fast neutrons from (241)AmBe source up to seven days of irradiations. The simulation performed using MCNP5 also exhibits a similar pattern, albeit differing in sensitivity. The TL response of Ge-doped fibre is markedly greater than that of the Al-doped fibre, the total absorption cross section for Ge in both the fast and thermal neutrons region being some ten times greater than that of Al.
    Matched MeSH terms: Silicon Dioxide/radiation effects*; Silicon Dioxide/chemistry*
  15. Zulfikar MA, Mohammad AW
    Med J Malaysia, 2004 May;59 Suppl B:141-2.
    PMID: 15468858
    Hybrid organic-inorganic membranes were fabricated using sol-gel technique using PMMA and TEOS with 80/20 (w/w) ratio at various solvents. The thin membrane films were then characterized using DSC and TGA. From DSC analysis, the Tg value of the PMMA moieties in hybrids membranes was in the order H-15-Toluene < Pure PMMA < H-15-THF < H-15-DMF. Furthermore, from TGA analysis it was found that the hybrid membranes have higher thermal stability compared to pure PMMA, and the type of solvents used play an important role in their degradation behavior.
    Matched MeSH terms: Silicon Dioxide/analysis; Silicon Dioxide/chemical synthesis*
  16. Kittappa S, Cui M, Ramalingam M, Ibrahim S, Khim J, Yoon Y, et al.
    PLoS One, 2015;10(7):e0130253.
    PMID: 26161510 DOI: 10.1371/journal.pone.0130253
    Mesoporous silica materials (MSMs) were synthesized economically using silica (SiO2) as a precursor via a modified alkaline fusion method. The MSM prepared at 500°C (MSM-500) had the highest surface area, pore size, and volume, and the results of isotherms and the kinetics of ibuprofen (IBP) removal indicated that MSM-500 had the highest sorption capacity and fastest removal speed vs. SBA-15 and zeolite. Compared with commercial granular activated carbon (GAC), MSM-500 had a ~100 times higher sorption rate at neutral pH. IBP uptake by MSM-500 was thermodynamically favorable at room temperature, which was interpreted as indicating relatively weak bonding because the entropy (∆adsS, -0.07 J mol(-1) K(-1)) was much smaller. Five times recycling tests revealed that MSM-500 had 83-87% recovery efficiencies and slower uptake speeds due to slight deformation of the outer pore structure. In the IBP delivery test, MSM-500 drug loading was 41%, higher than the reported value of SBA-15 (31%). The in vitro release of IBP was faster, almost 100%, reaching equilibrium within a few hours, indicating its effective loading and unloading characteristics. A cost analysis study revealed that the MSM was ~10-70 times cheaper than any other mesoporous silica material for the removal or delivery of IBP.
    Matched MeSH terms: Silicon Dioxide/economics; Silicon Dioxide/chemistry*
  17. Rahmat F, Fen YW, Anuar MF, Omar NAS, Zaid MHM, Matori KA, et al.
    Molecules, 2021 Feb 18;26(4).
    PMID: 33670482 DOI: 10.3390/molecules26041061
    In this paper, the structural and optical properties of ZnO-SiO2-based ceramics fabricated from oil palm empty fruit bunch (OPEFB) were investigated. The OPEFB waste was burned at 600, 700 and 800 °C to form palm ash and was then treated with sulfuric acid to extract silica from the ash. X-ray fluorescence (XRF) and X-ray diffraction (XRD) analyses confirmed the existence of SiO2 in the sample. Field emission scanning electron microscopy (FESEM) showed that the particles displayed an irregular shape and became finer after leaching. Then, the solid-state method was used to produce the ZnO-SiO2 composite and the samples were sintered at 600, 800, 1000, 1200 and 1400 °C. The XRD peaks of the Zn2SiO4 showed high intensity, which indicated high crystallinity of the composite. FESEM images proved that the grain boundaries were larger as the temperature increased. Upon obtaining the absorbance spectrum from ultraviolet-visible (UV-Vis) spectroscopy, the energy band gaps obtained were 3.192, 3.202 and 3.214 eV at room temperature, 600 and 800 °C, respectively, and decreased to 3.127, 2.854 and 2.609 eV at 1000, 1200 and 1400 °C, respectively. OPEFB shows high potential as a silica source in producing promising optical materials.
    Matched MeSH terms: Silicon Dioxide/chemical synthesis*; Silicon Dioxide/chemistry
  18. Onoja E, Chandren S, Razak FIA, Wahab RA
    J Biotechnol, 2018 Oct 10;283:81-96.
    PMID: 30063951 DOI: 10.1016/j.jbiotec.2018.07.036
    The study reports the preparation of a composite consisting of magnetite coated with nanosilica extracted from oil palm leaves (OPL) ash as nanosupports for immobilization of Candida rugosa lipase (CRL) and its application for the synthesis of butyl butyrate. Results of immobilization parameters showed that ∼ 80% of CRL (84.5 mg) initially offered was immobilized onto the surface of the nanosupports to yield a maximum protein loading and specific activity of 67.5 ± 0.72 mg/g and 320.8 ± 0.42 U/g of support, respectively. Surface topography, morphology as well as information on surface composition obtained by Raman spectroscopy, atomic force microscopy, field emission scanning electron microscopy and transmission electron microscopy showed that CRL was successfully immobilized onto the nanosupports, affirming its biocompatibility. Under optimal conditions (3.5 mg/mL protein loading, at 45 ℃, 3 h and molar ratio 2:1 (1-butanol:n-butyric acid) the CRL/Gl-A-SiO2-MNPs gave a maximum yield of 94 ± 0.24% butyl butyrate as compared to 84 ± 0.32% in the lyophilized CRL. CRL/Gl-A-SiO2-MNPs showed an extended operational stability, retaining 50% of its initial activity after 17 consecutive esterification cycles. The results indicated that OPL derived nanosilica coated on magnetite can potentially be employed as carrier for lipase immobilization in replacement of the non-renewable conventionalsilica sources.
    Matched MeSH terms: Silicon Dioxide/isolation & purification*; Silicon Dioxide/chemistry
  19. Pourshahrestani S, Kadri NA, Zeimaran E, Towler MR
    Biomater Sci, 2018 Dec 18;7(1):31-50.
    PMID: 30374499 DOI: 10.1039/c8bm01041b
    Immediate control of uncontrolled bleeding and infection are essential for saving lives in both combat and civilian arenas. Inorganic well-ordered mesoporous silica and bioactive glasses have recently shown great promise for accelerating hemostasis and infection control. However, to date, there has been no comprehensive report assessing their specific mechanism of action in accelerating the hemostasis process and exerting an antibacterial effect. After providing a brief overview of the hemostasis process, this review presents a critical overview of the recently developed inorganic mesoporous silica and bioactive glass-based materials proposed for hemostatic clinical applications and specifically investigates their unique characteristics that render them applicable for hemostatic applications and preventing infections. This article also identifies promising new research directions that should be undertaken to ascertain the effectiveness of these materials for hemostatic applications.
    Matched MeSH terms: Silicon Dioxide/pharmacology; Silicon Dioxide/chemistry*
  20. Entezam A, Khandaker MU, Amin YM, Ung NM, Bradley DA, Maah J, et al.
    PLoS One, 2016;11(5):e0153913.
    PMID: 27149115 DOI: 10.1371/journal.pone.0153913
    Study has been made of the thermoluminescence (TL) response of silica-based Ge-doped cylindrical, flat and photonic crystal fibres (referred to herein as PCF-collapsed) to electron (6, 12 and 20 MeV) and photon (6, 10 MV) irradiation and 1.25 MeV γ-rays, for doses from 0.1 Gy to 100 Gy. The electron and photon irradiations were delivered through use of a Varian Model 2100C linear accelerator located at the University of Malaya Medical Centre and γ-rays delivered from a 60Co irradiator located at the Secondary Standard Dosimetry Laboratory (SSDL), Malaysian Nuclear Agency. Tailor-made to be of various dimensions and dopant concentrations (6-10% Ge), the fibres were observed to provide TL yield linear with radiation dose, reproducibility being within 1-5%, with insensitivity to energy and angular variation. The sensitivity dependency of both detectors with respect to field size follows the dependency of the output factors. For flat fibres exposed to 6 MV X-rays, the 6% Ge-doped fibre provided the greatest TL yield while PCF-collapsed showed a response 2.4 times greater than that of the 6% Ge-doped flat fibres. The response of cylindrical fibres increased with core size. The fibres offer uniform response, high spatial resolution and sensitivity, providing the basis of promising TL systems for radiotherapy applications.
    Matched MeSH terms: Silicon Dioxide/radiation effects*; Silicon Dioxide/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links