Purpose: In this study, we have investigated the cytotoxic effects of the B. javanica hexane, ethanolic extracts against colon cancer cells. HT29 colon cells were selected as an in vitro cancer model to evaluate the anticancer activity of B. javanica ethanolic extract (BJEE) and the possible mechanisms of action that induced apoptosis.
Methods: 3-(4,5-dimethylthiazol-2-yl)-2, 5,-diphenyltetrazolium bromide (MTT), lactate dehydrogenase, acridine orange/propidium iodide, and annexin-V-fluorescein isothiocyanate assays were performed to determine the antiproliferative and apoptosis validation of BJEE on cancer cells. Measurement of reactive oxygen species (ROS) production, caspase activities, nucleus factor-κB activity, and gene expression experiments was done to investigate the potential mechanisms of action in the apoptotic process.
Results: The results obtained from this study illustrated the significant antiproliferative effect of BJEE on colorectal cancer cells, with a concentration value that inhibits 50% of the cell growth of 25±3.1 µg/mL after 72 h of treatment. MTT assay demonstrated that the BJEE is selectively toxic to cancer cells, and BJEE induced cell apoptosis via activation of caspase-8 along with modulation of apoptosis-related proteins such as Fas, CD40, tumor necrosis factor-related apoptosis-inducing ligands, and tumor necrosis factor receptors, which confirmed the contribution of extrinsic pathway. Meanwhile, increased ROS production in treated cells subsequently activated caspase-9 production, which triggered the intrinsic pathways. In addition, overexpression of cytochrome-c, Bax, and Bad proteins along with suppression of Bcl-2 illustrated that mitochondrial-dependent pathway also contributed to BJEE-induced cell death. Consistent with the findings from this study, BJEE-induced cancer cell death proceeds via extrinsic and intrinsic mitochondrial-dependent and -independent events.
Conclusion: From the evidence obtained from this study, it is concluded that the BJEE is a promising natural extract to combat colorectal cancer cells (HT29 cells) via induction of apoptosis through activation of extrinsic and intrinsic pathways.
MATERIALS AND METHODS: K. odoratissima methanol extract (KME) was prepared, and MTT assay was used to evaluate the cytotoxicity. To identify the cytotoxic compound, a bioassay-guided investigation was performed on methanol extract. 8-Hydroxy-ar-turmerone was isolated as a bioactive compound. In vivo study was performed in the breast cancer rat model. LA7 cell line was used to induce the breast tumor. Histopathological and expression changes of PCNA, Bcl-2, Bax, p27 and p21 and caspase-3 were examined. The induction of apoptosis was tested using Annexin V-fluorescein isothiocyanate (FITC) assay. To confirm the intrinsic pathway of apoptosis, caspase-7 and caspase-9 assays were utilized. In addition, cell cycle arrest was evaluated.
RESULTS: Our results demonstrated that K. odoratissima has an obvious effect on the arrest of proliferation of cancer cells. It induced apoptosis, transduced the cell death signals, decreased the threshold of mitochondrial membrane potential (MMP), upregulated Bax and downregulated Bcl-2.
CONCLUSION: This study demonstrated that K. odoratissima exhibits antitumor activity against breast cancer cells via cell death and cell cycle arrest.
Methods: In the current study, new ester 3-hydroxyoctyl -5- trans-docosenoate (compound-1) was isolated from the chloroform soluble fraction of A. anchusa using column chromatography. Using MTT assay, the anticancer effect of the compound was determined in human hepatocellular carcinoma cells (HepG-2) compared with normal epithelial cell line (Vero). DPPH and ABTS radical scavenging assays were performed to assess the antioxidant potential. The Molecular Operating Environment (MOE-2016) tool was used against tyrosine kinase.
Results: The structure of the compound was elucidated based on IR, EI, and NMR spectroscopy technique. It exhibited a considerable cytotoxic effect against HepG-2 cell lines with IC50 value of 6.50 ± 0.70 µg/mL in comparison to positive control (doxorubicin) which showed IC50 value of 1.3±0.21 µg/mL. The compound did not show a cytotoxic effect against normal epithelial cell line (Vero). The compound also exhibited significant DPHH scavenging ability with IC50 value of 12 ± 0.80 µg/mL, whereas ascorbic acid, used as positive control, demonstrated activity with IC50 = 05 ± 0.15 µg/mL. Similarly, it showed ABTS radical scavenging ability (IC50 = 130 ± 0.20 µg/mL) compared with the value obtained for ascorbic acid (06 ± 0.85 µg/mL). In docking studies using MOE-2016 tool, it was observed that compound-1 was highly bound to tyrosine kinase by having two hydrogen bonds at the hinge region. This good bonding network by the compound might be one of the reasons for showing significant activity against this enzyme.
Conclusion: Our findings led to the isolation of a new compound from A. anchusa which has significant cytotoxic activity against HepG-2 cell lines with marked antioxidant potential.
AIM OF STUDY: Although anticancer activity has been reported for the plant, the goal of the study was designed to isolate and characterize the active metabolites from G. mangostana and measure their cytotoxic properties. In this research, the mechanism of antiproliferative/cytotoxic effects of the tested compounds was investigated.
MATERIALS AND METHODS: The CHCl3 fraction of the air-dried fruit hulls was repeatedly chromatographed on SiO2, RP18, Diaion HP-20, and polyamide columns to furnish fourteen compounds. The structures of these metabolites were proven by UV, IR, 1D, and 2D NMR measurements and HRESIMS. Additionally, the cytotoxic potential of all compounds was assessed against MCF-7, HCT-116, and HepG2 cell lines using SRB-U assay. Antiproliferative and cell cycle interference effects of potentially potent compounds were tested using DNA content flow cytometry. The mechanism of cell death induction was also studied using annexin-V/PI differential staining coupled with flow cytometry.
RESULTS: The CHCl3 soluble fraction afforded two new xanthones: mangostanaxanthones V (1) and VI (2), along with twelve known compounds: mangostanaxanthone IV (3), β-mangostin (4), garcinone E (5), α-mangostin (6), nor-mangostin (7), garcimangosone D (8), aromadendrin-8-C-β-D-glucopyranoside (9), 1,2,4,5-tetrahydroxybenzene (10), 2,4,3`-trihydroxybenzophenone-6-O-β-glucopyranoside (11), maclurin-6-O-β-D-glucopyranoside (rhodanthenone) (12), epicatechin (13), and 2,4,6,3`,5`-pentahydroxybenzophenone (14). Only compound 5 showed considerable antiproliferative/cytotoxic effects with IC50's ranging from 15.8 to 16.7µM. Compounds 3, 4, and 6 showed moderate to weak cytotoxic effects (IC50's ranged from 45.7 to 116.4µM). Using DNA content flow cytometry, it was found that only 5 induced significant cell cycle arrest at G0/G1-phase which is indicative of its antiproliferative properties. Additionally, by using annexin V-FITC/PI differential staining, 5 induced cells killing effect via the induction of apoptosis and necrosis in both HepG2 and HCT116 cells. Compound 3 produce necrosis and apoptosis only in HCT116 cells. On contrary, 6 induced apoptosis and necrosis in HepG2 cells and moderate necrosis in HCT116 cells.
CONCLUSION: Fourteen compounds were isolated from chloroform fraction of G. mangostana fruit hulls. Cytotoxic properties exhibited by the isolated xanthones from G. mangostana reinforce the avail of it as a natural cytotoxic agent against various cancers. These evidences could provide relevant bases for the scientific rationale of using G. mangostana in anti-cancer treatment.
AIM OF THE STUDY: In this study, the effects of F3, lutein and β-sitosterol on tumor development and metastasis were investigated in 4T1-induced mouse mammary carcinoma model.
MATERIALS AND METHODS: Tumor-bearing mice were fed with F3 (100 mg/kg/day), lutein (50 mg/kg/day) and β-sitosterol (50 mg/kg/day) for 30 days (n = 5 each group). Tumor physical growth parameters, animal body weight and development of secondary tumors were investigated. The safety profile of F3 was assessed using hematological and histomorphological changes on the major organs in normal control mice (NM).
RESULTS: Our findings revealed significant reduction of physical tumor growth parameters in all tumor-bearing mice treated with F3 (TM-F3), lutein (TM-L) or β-sitosterol (TM-β) as compared with the untreated group (TM). Statistically significant reduction in body weight was observed in TM compared to the NM or treated (TM-F3, TM-L and TM-β) groups. Histomorphological examination of tissue sections from the F3-treated group showed normal features of the vital organs (i.e., liver, kidneys, lungs and spleen) which were similar to those of NM. Administration of F3 to NM mice (NM-F3) did not cause significant changes in full blood count values.
CONCLUSION: F3 significantly reduced the total tumor burden and prevented secondary tumor development in metastatic breast cancer without significant toxicities in 4T1-induced mouse mammary carcinoma model. The current study provides further support for therapeutic development of F3 with further pharmacokinetics studies.
METHODS AND RESULTS: Five groups of rats: normal control, cancer control, TPHE low dose, TPHE high dose and positive control (tamoxifen) were used for the in vivo study. Histopathological examination showed that TPHE significantly suppressed the carcinogenic effect of LA7 tumour cells. The tumour sections from TPHE-treated rats demonstrated significantly reduced expression of Ki67 and PCNA compared to the cancer control group. Using a bioassay-guided approach, the cytotoxic compound of TPHE was identified as a tricyclic sesquiterpene lactone, namely, 8β- hydroxyl- 4β, 15- dihydrozaluzanin C (HDZC). Signs of early and late apoptosis were observed in MCF7 cells treated with HDZC and were attributed to the mitochondrial intrinsic pathway based on the up-regulation of Bax and the down-regulation of Bcl-2. HDZC induced cell cycle arrest in MCF7 cells and increased the expression of p21 and p27 at the mRNA and protein levels.
CONCLUSION: This results of this study substantiate the anticancer effect of TPHE and highlight the involvement of HDZC as one of the contributing compounds that act by initiating mitochondrial-mediated apoptosis.