Displaying publications 101 - 120 of 220 in total

Abstract:
Sort:
  1. Dalu T, Wasserman RJ, Wu Q, Froneman WP, Weyl OLF
    Environ Sci Pollut Res Int, 2018 Jan;25(3):2842-2852.
    PMID: 29143261 DOI: 10.1007/s11356-017-0728-1
    The effect of metals on environmental health is well documented and monitoring these and other pollutants is considered an important part of environmental management. Developing countries are yet to fully appreciate the direct impacts of pollution on aquatic ecosystems and as such, information on pollution dynamics is scant. Here, we assessed the temporal and spatial dynamics of stream sediment metal and nutrient concentrations using contaminant indices (e.g. enrichment factors, pollution load and toxic risk indices) in an arid temperate environment over the wet and dry seasons. The mean sediment nutrient, organic matter and metal concentration were highest during the dry season, with high values being observed for the urban environment. Sediment contaminant assessment scores indicated that during the wet season, the sediment quality was acceptable, but not so during the dry season. The dry season had low to moderate levels of enrichment for metals B, Cu, Cr, Fe, Mg, K and Zn. Overall, applying the sediment pollution load index highlighted poor quality river sediment along the length of the river. Toxic risk index indicated that most sites posed no toxic risk. The results of this study highlighted that river discharge plays a major role in structuring temporal differences in sediment quality. It was also evident that infrastructure degradation was likely contributing to the observed state of the river quality. The study contributes to our understanding of pollution dynamics in arid temperate landscapes where vast temporal differences in base flow characterise the riverscape. Such information is further useful for contrasting sediment pollution dynamics in aquatic environments with other climatic regions.
    Matched MeSH terms: Geologic Sediments/chemistry*
  2. Kadhum SA, Ishak MY, Zulkifli SZ
    Environ Sci Pollut Res Int, 2016 Apr;23(7):6312-21.
    PMID: 26614452 DOI: 10.1007/s11356-015-5853-0
    The Bernam River is one of the most important rivers in Malaysia in that it provides water for industries and agriculture located along its banks. The present study was conducted to assess the level of contamination of heavy metals (Cd, Ni, Cr, Sn, and Fe) in surface sediments in the Bernam River. Nine surface sediment samples were collected from the lower, middle, and upper courses of the river. The results indicated that the concentrations of the metals decreased in the order of Sn > Cr > Ni > Fe > Cd (56.35, 14.90, 5.3, 4.6, and 0.62 μg/g(1) dry weight). Bernam River sediments have moderate to severe enrichment for Sn, moderate for Cd, and no enrichment for Cr, Ni, and Fe. The contamination factor (CF) results demonstrated that Cd and Sn are responsible for the high contamination. The pollution load index (PLI), for all the sampling sites, suggests that the sampling stations were generally unpolluted with the exception of the Bagan Tepi Sungai, Sabak Bernam, and Tanjom Malim stations. Multivariate techniques including Pearson's correlation and hierarchical cluster analysis were used to apportion the various sources of the metals. The results suggested that the sediment samples collected from the upper course of the river had lower metal concentrations, while sediments in the middle and lower courses of the river had higher metal concentrations. Therefore, our results can be useful as a baseline data for government bodies to adopt corrective measure on the issues related to heavy metal pollution in the Bernam River in the future.
    Matched MeSH terms: Geologic Sediments/analysis*
  3. Magam SM, Zakaria MP, Halimoon N, Aris AZ, Kannan N, Masood N, et al.
    Environ Sci Pollut Res Int, 2016 Mar;23(6):5693-704.
    PMID: 26581689 DOI: 10.1007/s11356-015-5804-9
    This is the first extensive report on linear alkylbenzenes (LABs) as sewage molecular markers in surface sediments collected from the Perlis, Kedah, Merbok, Prai, and Perak Rivers and Estuaries in the west of Peninsular Malaysia. Sediment samples were extracted, fractionated, and analyzed using gas chromatography mass spectrometry (GC-MS). The concentrations of total LABs ranged from 68 to 154 (Perlis River), 103 to 314 (Kedah River), 242 to 1062 (Merbok River), 1985 to 2910 (Prai River), and 217 to 329 ng g(-1) (Perak River) dry weight (dw). The highest levels of LABs were found at PI3 (Prai Estuary) due to the rapid industrialization and population growth in this region, while the lowest concentrations of LABs were found at PS1 (upstream of Perlis River). The LABs ratio of internal to external isomers (I/E) in this study ranged from 0.56 at KH1 (upstream of Kedah River) to 1.35 at MK3 (Merbok Estuary) indicating that the rivers receive raw sewage and primary treatment effluents in the study area. In general, the results of this paper highlighted the necessity of continuation of water treatment system improvement in Malaysia.
    Matched MeSH terms: Geologic Sediments/chemistry*
  4. Udechukwu BE, Ismail A, Zulkifli SZ, Omar H
    Environ Sci Pollut Res Int, 2015 Mar;22(6):4242-55.
    PMID: 25292304 DOI: 10.1007/s11356-014-3663-4
    Sungai Puloh mangrove estuary supports a large diversity of macrobenthic organisms and provides social benefits to the local community. Recently, it became a major recipient of heavy metals originating from industries in the hinterland as a result of industrialization and urbanization. This study was conducted to evaluate mobility and pollution status of heavy metals (Cd, Cu, Ni, Pb, Zn, and Fe) in intertidal surface sediments of this area. Surface sediment samples were collected based on four different anthropogenic sources. Metals concentrations were analyzed using an atomic absorption spectrophotometer (AAS). Results revealed that the mean concentrations were Zn (1023.68 ± 762.93 μg/g), Pb (78.8 ± 49.61 μg/g), Cu (46.89 ± 43.79 μg/g), Ni (35.54 ± 10.75 μg/g), Cd (0.94 ± 0.29 μg/g), and Fe (7.14 ± 0.94%). Most of the mean values of analyzed metals were below both the interim sediment quality guidelines (ISQG-low and ISQG-high), except for Pb concentration (above ISQG-low) and Zn concentration (above ISQG-high), thus suggesting that Pb and Zn may pose some environmental concern. Cadmium, Pb, and Zn concentrations were above the threshold effect level (TEL), indicating seldom adverse effect of these metals on macrobenthic organisms. Pollution load index (PLI) indicated deterioration and other indices revealed the intertidal surface sediment is moderately polluted with Cd, Pb, and Zn. Therefore, this mangrove area requires urgent attention to mitigate further contamination. Finally, this study will contribute to data sources for Malaysia in establishing her own ISQG since it is a baseline study with detailed contamination assessment indices for surface sediment of intertidal mangrove area.
    Matched MeSH terms: Geologic Sediments/chemistry*
  5. Affandi FA, Ishak MY
    Environ Sci Pollut Res Int, 2019 Jun;26(17):16939-16951.
    PMID: 31028621 DOI: 10.1007/s11356-019-05137-7
    Mining activities are responsible for the elevated input levels of suspended sediment and hazardous metals into the riverine ecosystem. These have been shown to threaten the riverine fish populations and can even lead to localized population extinction. To date, research on the effects of mining activities on fish has been focused within metal contamination and bioaccumulation and its threat to human consumption, neglecting the effects of suspended sediment. This paper reviews the effects of suspended sediment and metal pollution on riverine ecosystem and fish population by examining the possibilities of genetic changes and population extinction. In addition, possible assessments and studies of the riverine fish population are discussed to cope with the risks from mining activities and fish population declines.
    Matched MeSH terms: Geologic Sediments/chemistry*
  6. Said KS, Shuhaimi-Othman M, Ahmad AK
    Pak J Biol Sci, 2012 May 15;15(10):459-68.
    PMID: 24187900
    A study of water quality parameters (temperature, conductivity, total dissolved solid, dissolved oxygen, pH and water hardness) in Titiwangsa Lake was conducted in January, April, July and October 2010. The water quality parameters were tested and recorded at different sampling stations chosen randomly using hydrolab data sonde 4 and surveyor 4 a water quality multi probe (USA). Six metals i.e., cadmium, chromium, lead, nickel, zinc and copper were determined in five different compartments of the lake namely water, total suspended solids, plankton, sediment and fish. The metals concentration were determined by Inductively Coupled Plasma Mass Spectrometer (ICP-MS), perkin elmer elan, model 9000. The water quality parameters were compared with National Water Quality Standard (NWQS Malaysia) while metal concentrations were compared with Malaysian and international standards. The study shows that water quality parameters are of class 2. This condition is suitable for recreational activities where body contact is allowed and suitable for sensitive fishing activities. Furthermore, metal concentrations were found to be lower than the international standards, therefore toxic effects for these metals would be rarely observed and the adverse effects to aquatic organisms would not frequently occur.
    Matched MeSH terms: Geologic Sediments/chemistry
  7. Said KS, Shuhaimi-Othman M, Ahmad AK
    Pak J Biol Sci, 2012 May 01;15(9):437-47.
    PMID: 24163953
    A study of water quality parameters (temperature, conductivity, total dissolved solid, dissolved oxygen, pH and water hardness) in Ampang Hilir Lake was conducted in January, April, July and October 2010. The water quality parameters were tested and recorded at different sampling stations chosen randomly using Hydrolab Data Sonde 4 and Surveyor 4 a water quality multi probe (USA). Six metals which were cadmium, chromium, lead, nickel, zinc and copper were determined in five different compartments of the lake namely water, total suspended solids, plankton, sediment and fish. The metals concentration were determined by Inductively Coupled Plasma Mass Spectrometer (ICP-MS), Perkin Elmer Elan, model 9000.The water quality parameters were compared with National Water Quality Standard (NWQS Malaysia) while metal concentrations were compared with Malaysian and international standards. The study shows that water quality parameters are of class 2. This condition is suitable for recreational activities where body contact is allowed and suitable for sensitive fishing activities. Furthermore, metal concentrations were found to be lower than the international standards, therefore toxic effects for these metals would be rarely observed and the adverse effects to aquatic organisms would not frequently occur.
    Matched MeSH terms: Geologic Sediments/chemistry
  8. Yap CK, Tan SG, Ismail A, Omar H
    Environ Int, 2004 Mar;30(1):39-46.
    PMID: 14664863
    It has been widely reported that heavy metal contamination in coastal waters can modify the allozyme profiles of marine organisms. Previous studies have recorded elevated metal concentrations in sediments and mussel tissues off Peninsular Malaysia. In the present study, horizontal starch gel electrophoresis was carried out to estimate the levels of allelic variation of the green-lipped mussel, Perna viridis, collected from one contaminated and three relatively uncontaminated sites off Peninsular Malaysia. Fourteen polymorphic loci were observed. In addition, the concentrations of cadmium, copper, lead, mercury and zinc were determined in the sediments and in the soft tissues of the mussels. Mussels from contaminated site, evidenced by high metal pollution indices (MPI) of the sediment and the mussel tissues, showed the highest percentage of polymorphic loci (78.6%), while those collected from the uncontaminated sites had lower MPI of the sediment and mussel tissue, and exhibited lower percentages of polymorphic loci (35.7-57.1%). The population from the contaminated site showed the highest excess of heterozygosity (0.289) when compared to that of the populations from the three uncontaminated sites (0.108-0.149). Allozyme frequencies at the phosphoglucomutase (PGM; E.C. 2.7.5.1) locus also differed between the contaminated and uncontaminated populations. Previous studies have shown that exposure to heavy metals can select or counter-select for particular alleles at this locus. The present results suggest that allozyme polymorphism in P. viridis is a potential biomonitoring tool for heavy metal contamination but further validation is required.
    Matched MeSH terms: Geologic Sediments/chemistry*
  9. Ashraf A, Saion E, Gharibshahi E, Kamari HM, Kong YC, Hamzah MS, et al.
    Appl Radiat Isot, 2016 Jan;107:17-23.
    PMID: 26405840 DOI: 10.1016/j.apradiso.2015.09.004
    A study was carried out on the concentration of REEs (Dy, Sm, Eu,Yb, Lu, La and Ce) that are present in the core marine sediments of East Malaysia from three locations at South China Sea and one location each at Sulu Sea and Sulawesi Sea. The sediment samples were collected at a depth of between 49 and 109 m, dried, and crushed to powdery form. The entire core sediments prepared for Instrumental Neutron Activation Analysis (INAA) were weighted approximately 0.0500 g to 0.1000 g for short irradiation and 0.1500 g to 0.2000 g for long irradiation. The samples were irradiated with a thermal neutron flux of 4.0×10(12) cm(-2) s(-1) in a TRIGA Mark II research reactor operated at 750 kW. Blank samples and standard reference materials SL-1 were also irradiated for calibration and quality control purposes. It was found that the concentration of REEs varies in the range from 0.11 to 36.84 mg/kg. The chondrite-normalized REEs for different stations suggest that all the REEs are from similar origins. There was no significant REEs contamination as the enrichment factors normalized for Fe fall in the range of 0.42-2.82.
    Matched MeSH terms: Geologic Sediments
  10. Douglas I
    Philos Trans R Soc Lond B Biol Sci, 1999 Nov 29;354(1391):1725-38.
    PMID: 11605617
    Investigations of land management impacts on hydrology are well developed in South-East Asia, having been greatly extended by national organizations in the last two decades. Regional collaborative efforts, such as the ASEAN-US watershed programme, have helped develop skills and long-running monitoring programmes. Work in different countries is significant for particular aspects: the powerful effects of both cyclones and landsliding in Taiwan, the significance of lahars in Java, of small-scale agriculture in Thailand and plantation establishment in Malaysia. Different aid programmes have contributed specialist knowledge such as British work on reservoir sedimentation, Dutch, Swedish and British work on softwood plantations and US work in hill-tribe agriculture. Much has been achieved through individual university research projects, including PhD and MSc theses. The net result is that for most countries there is now good information on changes in the rainfall-run-off relationship due to forest disturbance or conversion, some information on the impacts on sediment delivery and erosion of hillslopes, but relatively little about the dynamics and magnitude of nutrient losses. Improvements have been made in the ability to model the consequences of forest conversion and of selective logging and exciting prospects exist for the development of better predictions of transfer of water from the hillslopes to the stream channels using techniques such as multilevel modelling. Understanding of the processes involved has advanced through the detailed monitoring made possible at permanent field stations such as that at Danum Valley, Sabah.
    Matched MeSH terms: Geologic Sediments
  11. Al-Mutairi KA, Yap CK
    PMID: 33801910 DOI: 10.3390/ijerph18062798
    The heavy metal (HM) pollution in sediment is of serious concern, particularly in the Red Sea environment. This study aimed to review and compile data on the concentrations of four HMs (Cd, Cu, Pb, and Zn) in the coastal surface sediments from the Red Sea, mainly from Saudi Arabia, Egypt, and Yemen, published in the literature from 1992 to 2021. The coastal sediments included those from mangrove, estuaries, and intertidal ecosystems. It was found that the mean values of Cd, Cu, Pb, and Zn in coastal Red Sea sediments were elevated and localized in high human activity sites in comparison to the earth upper continental crust and to reference values for marine sediments. From the potential ecological risk index (PERI) aspect, 32 reports (47.1%) were categorized as 'considerable ecological risk' and 23 reports (33.8%) as 'very high ecological risk'. From the human health risk assessment (HHRA) aspect, the non-carcinogenic risk (NCR) values (HI values < 1.0) of Cd, Cu, Pb, and Zn represented no NCR for the ingestion and the dermal contact routes for sediments from the Red Sea countries. The reassessment of the HM data cited in the literature allowed integrative and accurate comparisons of the PERI and HHRA data, which would be useful in the management and sustainable development of the Red Sea area, besides being a helpful database for future use. This warrants extensive and continuous monitoring studies to understand the current and the projected HM pollution situation and to propose possible protective and conservative measures in the future for the resource-rich Red Sea ecosystem.
    Matched MeSH terms: Geologic Sediments
  12. Garcia-Tenorio R, Rozmaric M, Harms A, Godoy JMO, Barsanti M, Schirone A, et al.
    Mar Pollut Bull, 2020 Oct;159:111490.
    PMID: 32738641 DOI: 10.1016/j.marpolbul.2020.111490
    Laboratories from 14 countries (with different levels of expertise in radionuclide measurements and 210Pb dating) participated in an interlaboratory comparison exercise (ILC) related to the application of 210Pb sediment dating technique within the framework of the IAEA Coordinated Research Project. The laboratories were provided with samples from a composite sediment core and were required to provide massic activities of several radionuclides and an age versus depth model from the obtained results, using the most suitable 210Pb dating model. Massic concentrations of Zn and Cu were also determined to be used for chronology validation. The ILC results indicated good analytical performances while the dating results didn't demonstrate the same degree of competence in part due to the different experience in dating of the participant laboratories. The ILC exercise enabled evaluation of the difficulties faced by laboratories implementing 210Pb dating methods and identified some limitations in providing reliable chronologies.
    Matched MeSH terms: Geologic Sediments
  13. Stankovic M, Ambo-Rappe R, Carly F, Dangan-Galon F, Fortes MD, Hossain MS, et al.
    Sci Total Environ, 2021 Aug 20;783:146858.
    PMID: 34088119 DOI: 10.1016/j.scitotenv.2021.146858
    Seagrasses have the ability to contribute towards climate change mitigation, through large organic carbon (Corg) sinks within their ecosystems. Although the importance of blue carbon within these ecosystems has been addressed in some countries of Southeast Asia, the regional and national inventories with the application of nature-based solutions are lacking. In this study, we aim to estimate national coastal blue carbon stocks in the seagrass ecosystems in the countries of Southeast Asia including the Andaman and Nicobar Islands of India. This study further assesses the potential of conservation and restoration practices and highlights the seagrass meadows as nature-based solution for climate change mitigation. The average value of the total carbon storage within seagrass meadows of this region is 121.95 ± 76.11 Mg ha-1 (average ± SD) and the total Corg stock of the seagrass meadows of this region was 429.11 ± 111.88 Tg, with the highest Corg stock in the Philippines (78%). The seagrass meadows of this region have the capacity to accumulate 5.85-6.80 Tg C year-1, which accounts for $214.6-249.4 million USD. Under the current rate of decline of 2.82%, the seagrass meadows are emitting 1.65-2.08 Tg of CO2 year-1 and the economic value of these losses accounts for $21.42-24.96 million USD. The potential of the seagrass meadows to the offset current CO2 emissions varies across the region, with the highest contribution to offset is in the seagrass meadows of the Philippines (11.71%). Current national policies and commitments of nationally determined contributions do not include blue carbon ecosystems as climate mitigation measures, even though these ecosystems can contribute up to 7.03% of the countries' reduction goal of CO2 emissions by 2030. The results of this study highlight and promote the potential of the southeast Asian seagrass meadows to national and international agencies as a practical scheme for nature-based solutions for climate change mitigation.
    Matched MeSH terms: Geologic Sediments
  14. Ashraf A, Saion E, Gharibshahi E, Kamari HM, Yap CK, Hamzah MS, et al.
    Appl Radiat Isot, 2017 Apr;122:96-105.
    PMID: 28129589 DOI: 10.1016/j.apradiso.2017.01.006
    A study was carried out on the distribution and enrichment of trace elements in the core marine sediments of East Malaysia from three stations at South China Sea and one station each at Sulu Sea and Sulawesi Sea. Five stations of sediment cores were recovered and the vertical concentration profiles of six elements namely Br, Cs, Hf, Rb, Ta, and V were determined using the instrumental neutron activation analysis. The enrichment factor, geoaccumulation index and the modified degree of contamination were used to calculate the anthropogenic and pollution status of the elements in the samples. Except for Cs and Hf, which by the enrichment factor are categorized from minimum enrichment to moderate enrichment in all stations and for V and Rb in Sulu Sea and Sulawesi Sea, which are categorized minimum enrichment, other elements are found to be no enrichment at all stations. The geoaccumulation index of Hf in one station shows moderately polluted and for other elements are unpolluted. However, the modified degree values of all samples are less than 1, suggesting very low contamination of elements found in all the stations.
    Matched MeSH terms: Geologic Sediments
  15. Elias MS, Ibrahim S, Samuding K, Rahman SA, Wo YM
    MethodsX, 2018;5:454-465.
    PMID: 30090704 DOI: 10.1016/j.mex.2018.05.001
    Fourteen sediment samples were collected along Linggi River, Malaysia. Neutron activation analysis (NAA) and inductively coupled plasma-mass spectrometry (ICP-MS) techniques were used in the determination of toxic element contents. The results showed that As, Cd and Sb concentrations were higher at all sampling stations, with enrichment factor values ranging from 17.7 to 75.0, 2.1 to 19.5 and 6.6 to 28.4, respectively. Elements of Pb and Zn) were also enriched at most of the sampling stations whilst Cu, Cr and Ni were shown as background levels. The sediment of Linggi River can be categorised as low (<8.0) to very high degree of contamination (>32.0). The mean concentrations of elements viz. Cd, Cr, Ni, Pb, Sb and Zn were lower than the threshold effect level (TEL) of FSQGs values except for As. The concentration of As (arsenic) was higher than PEL and PEC of FSQGs values.
    Matched MeSH terms: Geologic Sediments
  16. Yap C
    Sains Malaysiana, 2012;41:389-394.
    In this study, heavy metal data (including four geochemical fractions) from offshore and intertidal sediments collected off the west coast of Peninsular Malaysia were analyzed using factor analysis. A similarity was found when comparing between offshore and intertidal sediments, where out of the 20 variables, five factors (resistant Cu, total Cu, resistant Pb, total Pb and total Zn) could be clearly selected on the basis of their high loadings as derived by factor analysis in both sediment sampling areas. However, the statistical outputs based on the present study using factor analysis cannot be practically acceptable mainly because the resistant fractions are not of anthropogenic origins and ecotoxicologists are more concern on the anthropogenic ones. Only a modification using a specific normalizing agent such as the nonresistant fraction, should be tested to show feasibility of the contribution of anthropogenic sources in the two sampling areas. However, a more comprehensive metal monitoring data should be compiled to complement the results obtainable from factor analysis, before a valid Malaysian Marine Sediment Pollution Index or Sediment Quality Guidelines, can be proposed to be established.
    Matched MeSH terms: Geologic Sediments
  17. Ashraf A, Saion E, Gharibshahi E, Yap CK, Kamari HM, Elias MS, et al.
    Appl Radiat Isot, 2018 Feb;132:222-231.
    PMID: 29183762 DOI: 10.1016/j.apradiso.2017.11.012
    Fifty-five core marine sediments from three locations at South China Sea and one location each at Sulu Sea and Sulawesi Sea of coastal East Malaysia were analyzed for heavy metals by instrumental neutron activation analysis and inductively coupled plasma mass spectroscopy. The enrichment factor and the modified degree of contamination were used to calculate the anthropogenic and pollution status of the elements in the samples. The enrichment factor of As, Cd, Cr, Cu, Ni, Pb, and Zn varied from 0.42-4.26, 0.50-2.34, 0.31-0.82, 0.20-0.61, 0.91-1.92, 0.23-1.52, and 0.90-1.28, respectively, with the modified degree of contamination values below 0.6. Comparative data showed that coastal East Malaysia has low levels of contamination.
    Matched MeSH terms: Geologic Sediments
  18. Sheikhy Narany T, Sefie A, Aris AZ
    Sci Total Environ, 2018 Jul 15;630:931-942.
    PMID: 29499548 DOI: 10.1016/j.scitotenv.2018.02.190
    In many regions around the world, there are issues associated with groundwater resources due to human and natural factors. However, the relation between these factors is difficult to determine due to the large number of parameters and complex processes required. In order to understand the relation between land use allocations, the intrinsic factors of the aquifer, climate change data and groundwater chemistry in the multilayered aquifer system in Malaysia's Northern Kelantan Basin, twenty-two years hydrogeochemical data set was used in this research. The groundwater salinisation in the intermediate aquifer, which mainly extends along the coastal line, was revealed through the hydrogeochemical investigation. Even so, there had been no significant trend detected on groundwater salinity from 1989 to 2011. In contrast to salinity, as seen from the nitrate contaminations there had been significantly increasing trends in the shallow aquifer, particularly in the central part of the study area. Additionally, a strong association between high nitrate values and the areas covered with palm oil cultivations and mixed agricultural have been detected by a multiple correspondence analysis (MCA), which implies that the increasing nitrate concentrations are associated with nitrate loading from the application of N-fertilisers. From the process of groundwater salinisation in the intermediate aquifer, could be seen that it has a strong correlation the aquifer lithology, specifically marine sediments which are influenced by the ancient seawater trapped within the sediments.
    Matched MeSH terms: Geologic Sediments
  19. Chen HL, Selvam SB, Ting KN, Gibbins CN
    Environ Monit Assess, 2023 Jan 18;195(2):307.
    PMID: 36652034 DOI: 10.1007/s10661-022-10856-5
    Recent increase in awareness of the extent of microplastic contamination in marine and freshwater systems has heightened concerns over the ecological and human health risks of this ubiquitous material. Assessing risks posed by microplastic in freshwater systems requires sampling to establish contamination levels, but standard sampling protocols have yet to be established. An important question is whether sampling and assessment should focus on microplastic concentrations in the water or the amount deposited on the bed. On three dates, five replicated water and bed sediment samples were collected from each of the eight sites along the upper reach of the Semenyih River, Malaysia. Microplastics were found in all 160 samples, with mean concentrations of 3.12 ± 2.49 particles/L in river water and 6027.39 ± 16,585.87 particles/m2 deposited on the surface of riverbed sediments. Fibres were the dominant type of microplastic in all samples, but fragments made up a greater proportion of the material on the bed than in the water. Within-site variability in microplastic abundance was high for both water and bed sediments, and very often greater than between-site variability. Patterns suggest that microplastic accumulation on the bed is spatially variable, and single samples are therefore inadequate for assessing bed contamination levels at a site. Sites with the highest mean concentrations in samples of water were not those with the highest concentrations on the bed, indicating that monitoring based only on water samples may not provide a good picture of either relative or absolute bed contamination levels, nor the risks posed to benthic organisms.
    Matched MeSH terms: Geologic Sediments
  20. Tao H, Al-Hilali AA, Ahmed AM, Mussa ZH, Falah MW, Abed SA, et al.
    Chemosphere, 2023 Mar;317:137914.
    PMID: 36682637 DOI: 10.1016/j.chemosphere.2023.137914
    Heavy metals (HMs) are a vital elements for investigating the pollutant level of sediments and water bodies. The Murray-Darling river basin area located in Australia is experiencing severe damage to increased crop productivity, loss of soil fertility, and pollution levels within the vicinity of the river system. This basin is the most effective primary production area in Australia where agricultural productivity is increased the gross domastic product in the entire mainland. In this study, HMs contaminations are examined for eight study sites selected for the Murray-Darling river basin where the inverse Distance Weighting interpolation method is used to identify the distribution of HMs. To pursue this, four different pollution indices namely the Geo-accumulation index (Igeo), Contamination factor (CF), Pollution load index (PLI), single-factor pollution index (SPLI), and the heavy metal pollution index (HPI) are computed. Following this, the Pearson correlation matrix is used to identify the relationships among the two HM parameters. The results indicate that the conductivity and N (%) are relatively high in respect to using Igeo and PLI indexes for study sites 4, 6, and 7 with 2.93, 3.20, and 1.38, respectively. The average HPI is 216.9071 that also indicates higher level pollution in the Murray-Darling river basin and the highest HPI value is noted in sample site 1 (353.5817). The study also shows that the levels of Co, P, Conductivity, Al, and Mn are mostly affected by HMs and that these indices indicate the maximum HM pollution level in the Murray-Darling river basin. Finally, the results show that the high HM contamination level appears to influence human health and local environmental conditions.
    Matched MeSH terms: Geologic Sediments
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links