METHODS: A total of 234 invasive cervical carcinomas (152 squamous cell carcinomas, 61 adenocarcinomas and 21 adenosquamous carcinomas) and 16 cervical intraepithelial neoplasia (CIN) I, six CIN II and 25 CIN III were immunohistochemically studied for p53.
RESULTS: p53 was detected more frequently in CIN and invasive carcinoma (100% of CIN I, 74.2% CIN II + III and 70.1% invasive carcinoma) compared with benign cervices (P< 0.001); however, only three squamous cell carcinomas, 11 adenocarcinomas and two adenosquamous carcinomas exhibited p53 expression in >75% of tumour nuclei. Six of the 11 adenocarcinomas and both adenosquamous carcinomas were poorly differentiated compared with one of the three squamous carcinomas. p53 immunoreactive cells were randomly distributed in invasive carcinoma, confined to the lower third of the epithelium in CIN I, reached the middle third in 20% of CIN II and upper third in 16.6% of CIN III.
CONCLUSIONS: Assuming that p53 immunoreactivity indicates gene mutation when the majority (> 75%) of neoplastic cells express p53, p53 mutations would seem uncommon in cervical carcinogenesis. Nonetheless, glandular malignancies, in particular poorly differentiated variants, may show a higher frequency of mutation. p53 was detected more frequently in CIN I compared with CIN II/III and invasive carcinoma which may be due to p53 protein degradation following interaction with high risk human papillomavirus E6 protein in CIN II/III and invasive carcinoma.
AIMS: In this updated comprehensive review, we discuss the emerging implication of mutations in neurotransmitter-mediated receptors and ion channels. We aim to provide critical findings of the current literature about the role of neurotransmitters in epilepsy.
MATERIALS AND METHODS: A comprehensive literature review was conducted to identify and critically evaluate studies analyzing the possible relationship between epilepsy and neurotransmitters. The PubMed database was searched for related research articles.
KEY FINDINGS: Glutamate and gamma-aminobutyric acid (GABA) are the main neurotransmitters playing a critical role in the pathophysiology of this balance, and irreversible neuronal damage may occur as a result of abnormal changes in these molecules. Acetylcholine (ACh), the main stimulant of the autonomic nervous system, mediates signal transmission through cholinergic and nicotinic receptors. Accumulating evidence indicates that dysfunction of nicotinic ACh receptors, which are widely expressed in hippocampal and cortical neurons, may be significantly implicated in the pathogenesis of epilepsy. The dopamine-norepinephrine-epinephrine cycle activates hormonal and neuronal pathways; serotonin, norepinephrine, histamine, and melatonin can act as both hormones and neurotransmitters. Recent reports have demonstrated that nitric oxide mediates cognitive and memory-related functions via stimulating neuronal transmission.
SIGNIFICANCE: The elucidation of the role of the main mediators and receptors in epilepsy is crucial for developing new diagnostic and therapeutic approaches.
OBJECTIVE: Here we synthesize 10 chalcone derivatives to be evaluated their in vitro enzymatic inhibition activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE).
METHODS: The synthesis was carried out using Claissen-Schimdt condensation and the in vitro assay was conducted using Ellman Method.
RESULTS: Compounds 2b and 4b demonstrated as the best IC50 of 9.3 μM and 68.7 μM respectively, towards AChE and BChE inhibition. Molecular docking studies predicted that this activity might be due to the interaction of the chalcones with important amino acid residues in the binding site of AChE such as SER200 and in that of BChE, such as TRP82, SER198, TRP430, TYR440, LEU286 and VAL288.
CONCLUSION: Chalcone can be used as the scaffold for cholinesterase inhibitor, in particularly either fluorine or nitro group to be augmented at the para-position of Ring B, whereas the hydrophobic chain is necessary at the meta-position of Ring B.
RESULT: The screening of six physical conditions by Plackett-Burman Design has identified pH, inoculum size and incubation time as exerting significant effects on lipase production. These three conditions were further optimised using, Box-Behnken Design of Response Surface Methodology, which predicted an optimum medium comprising pH 6, 24 h incubation time and 2% inoculum size. T1 lipase activity of 2.0 U/mL was produced with a biomass of OD600 23.0.
CONCLUSION: The process of using RSM for optimisation yielded a 3-fold increase of T1 lipase over medium before optimisation. Therefore, this result has proven that T1 lipase can be produced at a higher yield in P. guilliermondii.