Displaying publications 1301 - 1320 of 10538 in total

Abstract:
Sort:
  1. Leong KY, Adnan R, Lim PE, Ng SL, Seng CE
    Environ Sci Pollut Res Int, 2017 Sep;24(26):20959-20971.
    PMID: 28726220 DOI: 10.1007/s11356-017-9636-7
    The effects of dry biomass density in cryogel beads, shaking speed and initial concentration ratio of phenol to 4-chlorophenol (4-CP) on the bioregeneration efficiencies of binary phenol and 4-CP-loaded granular activated carbon (GAC) for phenol and 4-CP, respectively, were investigated under the simultaneous adsorption and biodegradation approach. The results revealed higher bioregeneration efficiencies of binary-loaded GAC for phenol and 4-CP at higher dry biomass density but moderate shaking speed. The optimum dry biomass density in cryogel beads and shaking speed for use in bioregeneration were found to be 0.01 g/mL and 250 rpm, respectively. With respect to the initial phenol to 4-CP concentration ratio, the bioregeneration efficiencies were lower under increasing phenol and 4-CP initial concentrations, respectively, with the effect being more conspicuous under increasing 4-CP concentration. Higher bioregeneration efficiencies were achieved with the use of immobilized rather than suspended biomasses.
    Matched MeSH terms: Chlorophenols/chemistry*; Phenol/chemistry*
  2. Khalik WF, Ong SA, Ho LN, Wong YS, Voon CH, Yusuf SY, et al.
    Environ Sci Pollut Res Int, 2016 Aug;23(16):16716-21.
    PMID: 27184147 DOI: 10.1007/s11356-016-6840-9
    This study investigated the effect of different supporting electrolyte (Na2SO4, MgSO4, NaCl) in degradation of Reactive Black 5 (RB5) and generation of electricity. Zinc oxide (ZnO) was immobilized onto carbon felt acted as photoanode, while Pt-coated carbon paper as photocathode was placed in a single chamber photocatalytic fuel cell, which then irradiated by UV lamp for 24 h. The degradation and mineralization of RB5 with 0.1 M NaCl rapidly decreased after 24-h irradiation time, followed by MgSO4, Na2SO4 and without electrolyte. The voltage outputs for Na2SO4, MgSO4 and NaCl were 908, 628 and 523 mV, respectively, after 24-h irradiation time; meanwhile, their short-circuit current density, J SC, was 1.3, 1.2 and 1.05 mA cm(-2), respectively. The power densities for Na2SO4, MgSO4 and NaCl were 0.335, 0.256 and 0.245 mW cm(-2), respectively. On the other hand, for without supporting electrolyte, the voltage output and short-circuit current density was 271.6 mV and 0.055 mA cm(-2), respectively. The supporting electrolyte NaCl showed greater performance in degradation of RB5 and generation of electricity due to the formation of superoxide radical anions which enhance the degradation of dye. The mineralization of RB5 with different supporting electrolyte was measured through spectrum analysis and reduction in COD concentration.
    Matched MeSH terms: Environmental Pollutants/chemistry*; Naphthalenesulfonates/chemistry*
  3. Taha M, Rahim F, Zaman K, Anouar EH, Uddin N, Nawaz F, et al.
    J Biomol Struct Dyn, 2023 Mar;41(5):1649-1664.
    PMID: 34989316 DOI: 10.1080/07391102.2021.2023640
    We have synthesized benzo[d]oxazole derivatives (1-21) through a multistep reaction. Alteration in the structure of derivatives was brought in the last step via using various substituted aromatic aldehydes. In search of an anti-Alzheimer agent, all derivatives were evaluated against acetylcholinesterase and butyrylcholinesterase enzyme under positive control of standard drug donepezil (IC50 = 0.016 ± 0.12 and 4.5 ± 0.11 µM) respectively. In case of acetylcholinesterase enzyme inhibition, derivatives 8, 9 and 18 (IC50 = 0.50 ± 0.01, 0.90 ± 0.05 and 0.3 ± 0.05 µM) showed very promising inhibitory potentials. While in case of butyrylcholinesterase enzyme inhibition, most of the derivatives like 6, 8, 9, 13, 15, 18 and 19 (IC50 = 2.70 ± 0.10, 2.60 ± 0.10, 2.20 ± 0.10, 4.25 ± 0.10, 3.30 ± 0.10, 0.96 ± 0.05 and 3.20 ± 0.10 µM) displayed better inhibitory potential than donepezil. Moreover, derivative 18 is the most potent one among the series in both inhibitions. The binding interaction of derivatives with the active gorge of the enzyme was confirmed via a docking study. Furthermore, the binding interaction between derivatives and the active site of enzymes was correlated through the SAR study. Structures of all derivatives were confirmed through spectroscopic techniques such as 1H-NMR, 13C-NMR and HREI-MS, respectively.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Cholinesterase Inhibitors/chemistry; Schiff Bases/chemistry
  4. Abdalla Ali A, Mhamad SA, Hasan AH, Ahmad I, Abdullah SA, Jamil S, et al.
    J Biomol Struct Dyn, 2024 Apr;42(7):3604-3615.
    PMID: 37293930 DOI: 10.1080/07391102.2023.2220032
    Acetylcholinesterase inhibitors (AChEIs) have become a significant target in the search for an efficient treatment of Alzheimer's disease. Chalcone-based compounds display a strong potency to hinder AChE. So, this study focused on the synthesis of a series of new chalcone derivatives with anti-cholinesterase potential and their structures were characterized based on spectroscopic methods including IR, 1H NMR, 13C NMR and HRMS. Chalcone derivatives were screened against AChE. Most of them exhibited potent inhibitory activity against AChE. Compound 11i showed the most potent activity toward acetylcholinesterase compared to the positive compound, Galantamine. Docking studies into the active site of the acetylcholinesterase enzyme ravealed the significant docking score of the synthesized compounds with docking score of -7.959 to -9.277 kcal/mol when compared to the co-crystallized ligand, Donepezil (-10.567 kcal/mol). The interaction's stability was further assessed using a conventional atomistic 100 ns dynamics simulation study, which revealed the conformational stability of representative compound 11i in the cavity of the acetylcholinesterase enzyme.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Acetylcholinesterase/chemistry; Cholinesterase Inhibitors/chemistry
  5. Phuah ET, Lee YY, Tang TK, Akoh C, Cheong LZ, Tan CP, et al.
    Annu Rev Food Sci Technol, 2024 Jun;15(1):409-430.
    PMID: 38134384 DOI: 10.1146/annurev-food-072023-034440
    Lipid modifications play a crucial role in various fields, including food science, pharmaceuticals, and biofuel production. Traditional methods for lipid modifications involve physical and chemical approaches or enzymatic reactions, which often have limitations in terms of specificity, efficiency, and environmental impact. In recent years, nonconventional technologies have emerged as promising alternatives for lipid modifications. This review provides a comprehensive overview of nonconventional technologies for lipid modifications, including high-pressure processing, pulsed electric fields, ultrasound, ozonation, and cold plasma technology. The principles,mechanisms, and advantages of these technologies are discussed, along with their applications in lipid modification processes. Additionally, the challenges and future perspectives of nonconventional technologies in lipid modifications are addressed, highlighting the potential and challenges for further advancements in this field. The integration of nonconventional technologies with traditional methods has the potential to revolutionize lipid modifications, enabling the development of novel lipid-based products with enhanced functional properties and improved sustainability profiles.
    Matched MeSH terms: Ozone/chemistry; Plasma Gases/chemistry
  6. Tripathy A, Pramanik S, Cho J, Santhosh J, Osman NA
    Sensors (Basel), 2014 Sep 03;14(9):16343-422.
    PMID: 25256110 DOI: 10.3390/s140916343
    The humidity sensing characteristics of different sensing materials are important properties in order to monitor different products or events in a wide range of industrial sectors, research and development laboratories as well as daily life. The primary aim of this study is to compare the sensing characteristics, including impedance or resistance, capacitance, hysteresis, recovery and response times, and stability with respect to relative humidity, frequency, and temperature, of different materials. Various materials, including ceramics, semiconductors, and polymers, used for sensing relative humidity have been reviewed. Correlations of the different electrical characteristics of different doped sensor materials as the most unique feature of a material have been noted. The electrical properties of different sensor materials are found to change significantly with the morphological changes, doping concentration of different materials and film thickness of the substrate. Various applications and scopes are pointed out in the review article. We extensively reviewed almost all main kinds of relative humidity sensors and how their electrical characteristics vary with different doping concentrations, film thickness and basic sensing materials. Based on statistical tests, the zinc oxide-based sensing material is best for humidity sensor design since it shows extremely low hysteresis loss, minimum response and recovery times and excellent stability.
    Matched MeSH terms: Polymers/chemistry*; Zinc Oxide/chemistry*
  7. Shaibullah S, Mohd-Sharif N, Ho KL, Firdaus-Raih M, Nathan S, Mohamed R, et al.
    Acta Crystallogr F Struct Biol Commun, 2014 Dec 01;70(Pt 12):1697-700.
    PMID: 25484229 DOI: 10.1107/S2053230X14025278
    Melioidosis is an infectious disease caused by the pathogenic bacterium Burkholderia pseudomallei. Whole-genome sequencing revealed that the B. pseudomallei genome includes 5855 coding DNA sequences (CDSs), of which ∼25% encode hypothetical proteins. A pathogen-associated hypothetical protein, BPSL1038, was overexpressed in Escherichia coli, purified and crystallized using vapour-diffusion methods. A BPSL1038 protein crystal that grew using sodium formate as precipitant diffracted to 1.55 Å resolution. It belonged to space group C2221, with unit-cell parameters a = 85.36, b = 115.63, c = 46.73 Å. The calculated Matthews coefficient (VM) suggests that there are two molecules per asymmetric unit, with a solvent content of 48.8%.
    Matched MeSH terms: Bacterial Proteins/chemistry*; Burkholderia pseudomallei/chemistry*
  8. Nur Fatin Nazurah R, Noranizan MA, Nor-Khaizura MAR, Nur Hanani ZA
    Int J Biol Macromol, 2024 Jul;273(Pt 2):132972.
    PMID: 38876241 DOI: 10.1016/j.ijbiomac.2024.132972
    The use of essential oils as natural antioxidant, antimicrobial and insect repellent agent was limited by the loss of bioactive components especially volatile compounds. This study aimed to improve biological properties of curry leaf essential oil (CLEO) by producing nanometer sized particles through two different synthesis techniques; nanoencapsulation and nanoprecipitation. The methods produced different nanostructures; nanocapsules and nanospheres distinguished by the morphological structure (TEM analysis). Successful loading of CLEO into chitosan nanocarrier was proven by FTIR spectra. Zeta potential values for both nanostructures were more than +30 mV implying their stability against aggregation. CLEO loaded nanocapsules exhibited highest antibacterial properties against Gram-positive bacteria compared to nanospheres. Meanwhile, CLEO loaded nanospheres recorded up until 90.44 % DPPH radical scavenging properties, higher compared to nanocapsules. Both nanostructures demonstrated further improvement in antioxidant and antibacterial activities with the incorporation of higher chitosan concentration. In vitro release analysis indicated that CLEO undergo two-stage discharge mechanism where fast discharge occurred up until 12 h followed by sustained released afterwards. The two synthesis methods applied synergistically with greater chitosan concentration successfully produced nanostructures with >60 % encapsulation efficiency (EE). This concluded that both techniques were reliable to protect the bioactive constituents of CLEO for further used.
    Matched MeSH terms: Drug Carriers/chemistry; Nanocapsules/chemistry
  9. Sahu JN, Dhaouadi F, Sellaoui L, Khor LX, Lee SY, Daud WMAW, et al.
    Environ Sci Pollut Res Int, 2024 Apr;31(19):27980-27987.
    PMID: 38526713 DOI: 10.1007/s11356-024-33002-9
    The adsorption of ammonium from water was studied on an activated carbon obtained using raw oil palm shell and activated with acetic acid. The performance of this adsorbent was tested at different operating conditions including the solution pH, adsorbent dosage, and initial ammonium concentration. Kinetic and equilibrium studies were carried out, and their results were analyzed with different models. For the adsorption kinetics, the pseudo-first order equation was the best model to correlate this system. Calculated adsorption rate constants ranged from 0.071 to 0.074 g/mg min. The ammonium removal was 70-80% at pH 6-8, and it was significantly affected by electrostatic interaction forces. Ammonium removal (%) increased with the adsorbent dosage, and neutral pH condition favored the adsorption of this pollutant. The best ammonium adsorption conditions were identified with a response surface methodology model where the maximum removal was 91.49% with 2.27 g/L of adsorbent at pH 8.11 for an initial ammonium concentration of 36.90 mg/L. The application of a physical monolayer model developed by statistical physics theory indicated that the removal mechanism of ammonium was multi-ionic and involved physical interactions with adsorption energy of 29 kJ/mol. This activated carbon treated with acetic acid is promising to depollute aqueous solutions containing ammonium.
    Matched MeSH terms: Charcoal/chemistry; Arecaceae/chemistry
  10. Muhammad Yunus F, Alias Y, Yahya N, Mohamad Zain NN, Raoov M
    PMID: 38466777 DOI: 10.1080/19440049.2024.2326426
    Poly(methyl methacrylate-vinyl imidazole bromide) (poly-MMA-IL)-grafted magnetic nanoparticles were successfully developed and applied in the micro-magnetic solid phase extraction (μ-MSPE) for 16 types of polycyclic aromatic hydrocarbons (PAHs) from tea, fried food, and grilled food samples via gas chromatography flame ionization detector (GC-FID). One variable at a time (OVAT) and response surface methodology (RSM) were used for efficient optimization. The validation method showed a good coefficient of determination (R2) ranging from 0.9901 to 0.9982 (n = 3) with linearity of 0.2 μg L-1-500 μg L-1. Detection and quantification limits were 0.06 µg L-1-0.32 µg L-1 and 0.18 µg L-1-0.97 µg L-1. Additionally, satisfactory reproducibility was attained with intra-day and inter-day precisions having RSD ranges of 3.6%-11.1%. The spiked recovery value of 16 PAHs in fried food, grilled food and tea samples obtained from the night market in Malaysia ranged from 80%-12%, respectively.
    Matched MeSH terms: Polymers/chemistry; Tea/chemistry
  11. Rana S, Kumar A, Lai CW, Sharma G, Dhiman P
    Chemosphere, 2024 May;356:141800.
    PMID: 38554860 DOI: 10.1016/j.chemosphere.2024.141800
    In pursuit of advancing photocatalysts for superior performance in water treatment and clean energy generation, researchers are increasingly focusing on layered double hydroxides (LDHs) which have garnered significant attention due to their customizable properties, morphologies, distinctive 2D layered structure and flexible options for modifying anions and cations. No review has previously delved specifically into ZnCr and NiCr LDH-based photocatalysts and therefore, this review highlights the recent surge in ZnCr and NiCr-based LDHs as potential photocatalysts for their applications in water purification and renewable energy generation. The structural and fundamental characteristics of layered double hydroxides and especially ZnCr-LDHs and NiCr-LDHs are outlined. Further, the various synthesis techniques for the preparation of ZnCr-LDHs, NiCr-LDHs and their composite and heterostructure materials have been briefly discussed. The applicability of ZnCr-LDH and NiCr-LDH based photocatalysts in tackling significant issues in water treatment and sustainable energy generation is the main emphasis of this review. It focuses on photocatalytic degradation of organic pollutants in wastewater, elucidating the principles and advancements for enhancing the efficiency of these materials. It also explores their role in H2 production through water splitting, conversion of CO2 into valuable fuels and NH3 synthesis from N2, shedding light on their potential for clean energy solutions. The insights presented herein offer valuable guidance for researchers working towards sustainable solutions for environmental remediation and renewable energy generation.
    Matched MeSH terms: Water Pollutants, Chemical/chemistry; Waste Water/chemistry
  12. Wang C, Lin X, Zhang X, Show PL
    Environ Pollut, 2024 May 01;348:123860.
    PMID: 38537803 DOI: 10.1016/j.envpol.2024.123860
    Algae, comprising microalgae and macroalgae, have emerged as a promising feedstock for the production of functional biochar. Recently, the application of algal biochar in environmental remediation gains increasing attention. This review summarizes research advancements in the synthesis and application of algal biochar, a versatile and sustainable material for environmental remediation ranging from wastewater treatment to soil improvement. Algal biochar can be prepared by pyrolysis, microwave-assisted pyrolysis, and hydrothermal carbonization. Physical and chemical modifications have proven to be effective for improving biochar properties. Algal biochar is promising for removing diverse pollutants including heavy metals, organic pollutants, and microplastics. The role in soil improvement signifies a sustainable approach to enhancing soil structure, nutrient retention, and microbial activity. Research gaps are identified based on current understanding, necessitating further exploration into variations in biochar characteristics, the performance improvement, large-scale applications, and the long-term evaluation for environmental application. This review provides a better understanding of algal biochar as a sustainable and effective tool in environmental remediation.
    Matched MeSH terms: Charcoal/chemistry; Soil/chemistry
  13. Bin Mokaizh AA, Nour AH, Kerboua K
    Ultrason Sonochem, 2024 May;105:106852.
    PMID: 38518410 DOI: 10.1016/j.ultsonch.2024.106852
    The "ultrasonic-assisted extraction (UAE)" method was utilized in this work to assess how different process parameters affected the yield and recovery of phenolic compounds from the leaf of Commiphora gileadensis, which is one of the medicinal plants with a variety of biological functions. Its leaf is used for a various of therapeutic applications, such as the treatment of bacterial infections, inflammation, and wound healing. The "One-Factor-At-a-Time (OFAT)" approach was employed to examine the impacts of various UAE process parameters on the process of extraction, which include time of extraction, sample/solvent ratio, ultrasonic frequency, and solvent (ethanol) concentration. The extracts were then investigated for the presence of several phytochemicals using analytical techniques such as "Gas Chromatography-Mass Spectroscopy (GC-MS)" and "Fourier Transform Infrared Spectroscopy (FTIR)" studies. The findings showed that the maximum extraction yield, the total phenolic content (TPC), and the total flavonoids content (TFC) of the ethanolic extract of the leaves of C. gileadensis using the UAE method were at 31.80 ± 0.41 %, 96.55 ± 2.81 mg GAE/g d.w. and 31.66 ± 2.01 mg QE/g d.w. accordingly under a procedure duration of 15 min, ultrasonic frequency of 20 kHz, solvent/sample ratio of 1:20 g/mL, and solvent concentration of 40 % v/v. The leaves extract of C. gileadensis included 25 phenolic compounds that were previously unreported, and GC-MS analysis confirmed their presence. Hence, it follows that the UAE technique can successfully extract the phytochemicals from C. gileadensis for a variety of therapeutic uses.
    Matched MeSH terms: Plant Extracts/chemistry; Solvents/chemistry
  14. Qutob M, Alshehri S, Shakeel F, Alam P, Rafatullah M
    Environ Sci Pollut Res Int, 2024 Apr;31(18):26452-26479.
    PMID: 38546921 DOI: 10.1007/s11356-024-33040-3
    The advanced oxidation process (AOP) is an efficient method to treat recalcitrance pollutants such as pharmaceutical compounds. The essential physicochemical factors in AOP experiments significantly influence the efficiency, speed, cost, and safety of byproducts of the treatment process. In this review, we collected recent articles that investigated the elimination of pharmaceutical compounds by various AOP systems in a water medium, and then we provide an overview of AOP systems, the formation mechanisms of active radicals or reactive oxygen species (ROS), and their detection methods. Then, we discussed the role of the main physicochemical parameters (pH, chemical interference, temperature, catalyst, pollutant concentration, and oxidant concentration) in a critical way. We gained insight into the most frequent scenarios for the proper and improper physicochemical parameters for the degradation of pharmaceutical compounds. Also, we mentioned the main factors that restrict the application of AOP systems in a commercial way. We demonstrated that a proper adjustment of AOP experimental parameters resulted in promoting the treatment performance, decreasing the treatment cost and the treatment operation time, increasing the safeness of the system products, and improving the reaction stoichiometric efficiency. The outcomes of this review will be beneficial for future AOP applicants to improve the pharmaceutical compound treatment by providing a deeper understanding of the role of the parameters. In addition, the proper application of physicochemical parameters in AOP systems acts to track the sustainable development goals (SDGs).
    Matched MeSH terms: Pharmaceutical Preparations/chemistry; Water Pollutants, Chemical/chemistry
  15. Alkhalidi HM, Alahmadi AA, Rizg WY, Yahya EB, H P S AK, Mushtaq RY, et al.
    Macromol Rapid Commun, 2024 May;45(9):e2300687.
    PMID: 38430068 DOI: 10.1002/marc.202300687
    Cancer stands as a leading cause of global mortality, with chemotherapy being a pivotal treatment approach, either alone or in conjunction with other therapies. The primary goal of these therapies is to inhibit the growth of cancer cells specifically, while minimizing harm to healthy dividing cells. Conventional treatments, often causing patient discomfort due to side effects, have led researchers to explore innovative, targeted cancer cell therapies. Thus, biopolymer-based aerogels emerge as innovative platforms, showcasing unique properties that respond intelligently to diverse stimuli. This responsiveness enables precise control over the release of anticancer drugs, enhancing therapeutic outcomes. The significance of these aerogels lies in their ability to offer targeted drug delivery with increased efficacy, biocompatibility, and a high drug payload. In this comprehensive review, the author discuss the role of biopolymer-based aerogels as an emerging functionalized platforms in anticancer drug delivery. The review addresses the unique properties of biopolymer-based aerogels showing their smart behavior in responding to different stimuli including temperature, pH, magnetic and redox potential to control anticancer drug release. Finally, the review discusses the application of different biopolymer-based aerogel in delivering different anticancer drugs and also discusses the potential of these platforms in gene delivery applications.
    Matched MeSH terms: Biopolymers/chemistry; Drug Carriers/chemistry
  16. Salihu AS, Salleh WMNHW, Ogunwa TH
    Nat Prod Res, 2024 Jul;38(14):2516-2521.
    PMID: 36855270 DOI: 10.1080/14786419.2023.2184359
    The genus Knema Lour. is distributed mainly in Southeast Asian and widely used in folk medicine for treating diseases such as jaundice, chronic fever, and inflammation. The chemical composition, acetylcholinesterase inhibition, and molecular docking studies of essential oil from Knema hookeriana Warb. were investigated in this study. The essential oil was achieved through hydrodistillation and was characterised using gas chromatography (GC-FID) and gas chromatography-mass spectrometry (GC-MS). The acetylcholinesterase inhibitory activity was evaluated using Ellman method while molecular docking studies were carried out using Autodock v.4.3.2. The results revealed that the essential oil examined consisted mainly of β-caryophyllene (26.2%), germacrene D (12.5%), δ-cadinene (9.2%), germacrene B (8.8%) and bicyclogermacrene (5.5%). The essential oil showed acetylcholinesterase activity with IC50 value of 70.5 µg/mL. The enzyme-ligand molecular docking study showed that β-caryophyllene and δ-cadinene exhibited good binding affinities towards AChE with docking scores -8.1 kcal/mol and -8.3 kcal/mol, respectively.
    Matched MeSH terms: Sesquiterpenes/chemistry; Sesquiterpenes, Germacrane/chemistry
  17. Budiman A, Rusdin A, Subra L, Aulifa DL
    Int J Nanomedicine, 2023;18:5473-5493.
    PMID: 37791322 DOI: 10.2147/IJN.S426120
    In 2020, there were 2.21 million new instances of lung cancer, making it the top cause of mortality globally, responsible for close to 10 million deaths. The physicochemical problems of chemotherapy drugs are the primary challenge that now causes a drug's low effectiveness. Solubility is a physicochemical factor that has a significant impact on a drug's biopharmaceutical properties, starting with the rate at which it dissolves and extending through how well it is absorbed and bioavailable. One of the most well-known methods for addressing a drug's solubility is mesoporous silica, which has undergone excellent development due to the conjugation of polymers and ligands that increase its effectiveness. However, there are still very few papers addressing the success of this discovery, particularly those addressing its molecular pharmaceutics and mechanism. Our study's objectives were to explore and summarize the effects of targeting mediator on drug development using mesoporous silica with and without functionalized polymer. We specifically focused on highlighting the molecular pharmaceutics and mechanism in this study's innovative findings. Journals from the Scopus, PubMed, and Google Scholar databases that were released during the last ten years were used to compile this review. According to inclusion and exclusion standards adjusted. This improved approach produced very impressive results, a very significant change in the characteristics of mesoporous silica that can affect effectiveness. Mesoporous silica approaches have the capacity to greatly enhance a drug's physicochemical issues, boost therapeutic efficacy, and acquire superb features.
    Matched MeSH terms: Drug Carriers/chemistry; Silicon Dioxide/chemistry
  18. El Omari N, Mrabti HN, Benali T, Ullah R, Alotaibi A, Abdullah ADI, et al.
    Front Biosci (Landmark Ed), 2023 Sep 27;28(9):229.
    PMID: 37796709 DOI: 10.31083/j.fbl2809229
    BACKGROUND: Screening new natural molecules with pharmacological and/or cosmetic properties remains a highly sought-after area of research. Moreover, essential oils and volatile compounds have recently garnered significant interest as natural substance candidates. In this study, the volatile components of Pistacia lentiscus L. essential oils (PLEOs) isolated from the fruit and its main compounds, alpha-pinene, and limonene, are investigated for antioxidant, antidiabetic, and dermatoprotective activities.

    METHODS: In vitro antioxidant activity was investigated using 2,2'-diphenyl-1-picrylhydrazyl (DPPH), fluorescence recovery after photobleaching (FRAP), and 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) methods. The antidiabetic and dermatoprotective effects were studied using enzyme inhibitory activities.

    RESULTS: Antioxidant tests showed that PLEO has the best activity (ranging from 29.64 ± 3.04 to 73.80 ± 3.96 µg/mL) compared to its main selected molecules (ranging from 74 ± 3.72 to 107.23 ± 5.03 µg/mL). The α-glucosidase and α-amylase assays demonstrated that the elements tested have a promising antidiabetic potential with IC50values ranging from 78.03 ± 2.31 to 116.03 ± 7.42 µg/mL and 74.39 ± 3.08 to 112.35 ± 4.92 µg/mL for the α-glucosidase and α-amylase assays, respectively, compared to the standard drug. For the tyrosinase test, we found that the EOs (IC50 = 57.72 ± 2.86 µg/mL) followed by limonene (IC50 = 74.24 ± 2.06 µg/mL) and α-pinene (IC50 = 97.45 ± 5.22 µg/mL) all exhibited greater inhibitory effects than quercetin (IC50 = 246.90 ± 2.54 µg/mL).

    CONCLUSIONS: Our results suggest that the biological activities of PLEO, as well as its main compounds, make them promising candidates for the development of new strategies aimed at improving dermatoprotection and treating diseases associated with diabetes mellitus and oxidative stress.

    Matched MeSH terms: Antioxidants/chemistry; Hypoglycemic Agents/chemistry
  19. Sivaranjani SK, Durairaj K, Jayalakshmi G, Sumathi J, Balasubramanian B, Chelliapan S, et al.
    Environ Res, 2023 Nov 01;236(Pt 1):116692.
    PMID: 37500033 DOI: 10.1016/j.envres.2023.116692
    Semiconductor metal oxide with TiO2 nanoparticles removes hazardous compounds from environmental samples. TiO2 nanoparticles have shown potential as an efficient photocatalyst by being employed as a nano-catalyst for the breakdown of organic contaminants in wastewater samples. To separate substances from contaminated samples, combined UV and visible light irradiation has been used. Sol-gel synthesis was used to produce a copper chromite-titanium nanocomposite, which was then evaluated using analytical methods, such as XRD, BET, DRS-UV, and FT-IR. Using visible light, the photocatalytic activity of a nanocomposite made of CuCr2O4 and TiO2 was investigated for its role in the breakdown of malachite green. The effects of several parameters, including pH change, anions presence, contact time, catalyst amount, concentration variation, and the kinetics of photocatalytic degradation were investigated. The magnitude of transition energy calculated using UV-DRS spectra was found to be 3.1 eV for CuCr2O4-TiO2 nanocomposite. Maximum degradation was observed at pH 7.0. The surface area and pore volume of the co-doped samples of Cr2O4 - TiO2 obtained from BET were found to be 6.1213 m2/g and 0.045063 cm3/g respectively. The average particle size of the catalyst of the nano-catalysts calculated from XRD was found to be 8 nm for TiO2 and 66 nm for TiO2-CuCrO4. The peaks obtained in FTIR between the range of 900-500 cm-1 were due to the presence of an aromatic compound. The binding mechanism of a dye molecule to the surface of CuCr2O4-TiO2 nanocomposite was analysed using quantum chemical calculations with the self-consistent reaction field technique employing integral equation formalism for the polarized continuum method and the UFF atomic radii set.
    Matched MeSH terms: Coloring Agents/chemistry; Titanium/chemistry
  20. Pantong W, Pederick JL, Maenpuen S, Tinikul R, Jayapalan JJ, Jovcevski B, et al.
    Protein Sci, 2023 Jun;32(6):e4654.
    PMID: 37165541 DOI: 10.1002/pro.4654
    Methylenetetrahydrofolate reductase (MTHFR) is a key metabolic enzyme in colonization and virulence of Neisseria meningitidis, a causative agent of meningococcal diseases. Here, the biochemical and structural properties of MTHFR from a virulent strain of N. meningitidis serogroup B (NmMTHFR) were characterized. Unlike other orthologs, NmMTHFR functions as a unique homohexamer, composed of three homo-dimerization partners, as shown in our 2.7 Å resolution crystal structure. Six active sites were formed solely within monomers and located away from the oligomerization interfaces. Flavin adenine dinucleotide cofactor formed hydrogen bonds with conserved sidechains, positioning its isoalloxazine ring adjacent to the overlapping binding sites of nicotinamide adenine dinucleotide (NADH) coenzyme and CH2 -H4 folate substrate. NmMTHFR utilized NADH (Km  = 44 μM) as an electron donor in the NAD(P)H-CH2 -H4 folate oxidoreductase assay, but not nicotinamide adenine dinucleotide phosphate (NADPH) which is the donor required in human MTHFR. In silico analysis and mutagenesis studies highlighted the significant difference in orientation of helix α7A (Phe215-Thr225) with that in the human enzyme. The extended sidechain of Met221 on helix α7A plays a role in stabilizing the folded structure of NADH in the hydrophobic box. This supports the NADH specificity by restricting the phosphate group of NADPH that causes steric clashes with Glu26. The movement of Met221 sidechain allows the CH2 -H4 folate substrate to bind. The unique topology of its NADH and CH2 -H4 folate binding pockets makes NmMTHFR a promising drug target for the development of new antimicrobial agents that may possess reduced off-target side effects.
    Matched MeSH terms: Folic Acid/chemistry; NAD/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links