METHODS AND RESULTS: Histopathology revealed increased collagen deposition and altered fiber arrangement in the NP and isoproterenol hydrochloride (ISO) groups compared with the blank group. Systolic and diastolic functions were impaired. Western blotting and qRT-PCR demonstrated that the expression of central myofibrosis-related proteins (collagens Ι and ΙΙΙ, MMP2, MMP9, TGF-β1, α-SMA, IL-1β, and TGF-β1) and genes (Collagen Ι, Collagen ΙΙΙ, TGF-β1, and α-SMA mRNA) was upregulated in the NP and ISO groups compared with the blank group. The mRNA-seq analysis indicated differential expression of TGF-β1 signaling pathway-associated genes and proteins. Fibrosis-related protein and gene expression increased in the CFs stimulated with the recombinant human TGF-β1 and NP, which was consistent with the results of animal experiments. According to the immunofluorescence analysis and western blotting, NP exposure activated the TGF-β1/LIMK1 signaling pathway whose action mechanism in NP-induced CFs was further validated using the LIMK1 inhibitor (BMS-5). The inhibitor modulated the TGF-β1/LIMK1 signaling pathway and suppressed the NP-induced increase in fibrosis-related protein expression in the CFs. Thus, the aforementioned pathway is involved in NP-induced fibrosis.
CONCLUSION: We here provide the first evidence that perinatal NP exposure causes myocardial fibrosis in growing male rat pups and reveal the molecular mechanism and functional role of the TGF-β1/LIMK1 signaling pathway in this process.
METHODS: In total, 80 samples of tumor and matched adjacent normal tissues were collected from breast cancer patients at Seberang Jaya Hospital (SJH) and Kepala Batas Hospital (KBH), both in Penang, Malaysia. The protein expression profiles of breast cancer and normal tissues were mapped by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The Gel-Eluted Liquid Fractionation Entrapment Electrophoresis (GELFREE) Technology System was used for the separation and fractionation of extracted proteins, which also were analyzed to maximize protein detection. The protein fractions were then analyzed by tandem mass spectrometry (LC-MS/MS) analysis using LC/MS LTQ-Orbitrap Fusion and Elite. This study identified the proteins contained within the tissue samples using de novo sequencing and database matching via PEAKS software. We performed two different pathway analyses, DAVID and STRING, in the sets of proteins from stage 2 and stage 3 breast cancer samples. The lists of molecules were generated by the REACTOME-FI plugin, part of the CYTOSCAPE tool, and linker nodes were added in order to generate a connected network. Then, pathway enrichment was obtained, and a graphical model was created to depict the participation of the input proteins as well as the linker nodes.
RESULTS: This study identified 12 proteins that were detected in stage 2 tumor tissues, and 17 proteins that were detected in stage 3 tumor tissues, related to their normal counterparts. It also identified some proteins that were present in stage 2 but not stage 3 and vice versa. Based on these results, this study clarified unique proteins pathways involved in carcinogenesis within stage 2 and stage 3 breast cancers.
CONCLUSIONS: This study provided some useful insights about the proteins associated with breast cancer carcinogenesis and could establish an important foundation for future cancer-related discoveries using differential proteomics profiling. Beyond protein identification, this study considered the interaction, function, network, signaling pathway, and protein pathway involved in each profile. These results suggest that knowledge of protein expression, especially in stage 2 and stage 3 breast cancer, can provide important clues that may enable the discovery of novel biomarkers in carcinogenesis.
RESULTS: Rumen ammonia concentration was higher in CNT group compared to treatment groups receiving dietary oils. The total VFA and acetate concentration were higher in SF and OL groups, which showed that they were significantly affected by the dietary treatments. There were no differences in total microbial population. However, fibre degrading bacteria populations were affected by the interaction between treatment and day of sampling. Significant differences were observed in apparent digestibility of crude protein and ether extract of treatment groups containing dietary oils compared to the control group.
CONCLUSIONS: This study demonstrated that supplementation of different dietary oils containing different fatty acid profiles improved rumen fermentation by reducing ammonia concentration and increasing total VFA concentration, altering fibre degrading bacteria population, and improving apparent digestibility of crude protein and ether extract.