Displaying publications 1321 - 1340 of 1723 in total

Abstract:
Sort:
  1. Ahmad Kamal NH, Selamat J, Sanny M
    PMID: 29334335 DOI: 10.1080/19440049.2018.1425553
    This study investigated the simultaneous formation of polycyclic aromatic hydrocarbons (PAHs) and heterocyclic aromatic amines (HCAs) in gas-grilled beef satay at different temperatures (150, 200, 250, 300, and 350°C). Solid-phase extraction (SPE) was used for sample clean-up. Fifteen PAHs were determined using high performance liquid chromatography with fluorescence detection (HPLC-FLD) and nine HCAs were quantified using liquid chromatography tandem-mass spectrometry (LC-MS/MS) with a gradient programme. The lowest significantly concentrations of PAHs and HCAs were generated at 150°C; the formation of PAHs and HCAs simultaneously increased with temperatures. Benzo[a]pyrene was detected in all samples and increased markedly at 300 and 350°C. The sums of 4 PAHs (PAH4) in marinated beef satay at 300 and 350°C exceeded the maximum level in Commission Regulation (EU) 2015/1125. Significant reductions of polar and non-polar HCAs (except PhIP) were found in marinated beef satay across all temperatures. Overall, PAHs and HCAs showed opposite trends of formation in beef satay with marination.
    Matched MeSH terms: Chromatography, High Pressure Liquid
  2. Mukhtar H, Suliman SM, Shabbir A, Mumtaz MW, Rashid U, Rahimuddin SA
    Protein Pept Lett, 2018;25(2):195-201.
    PMID: 29359654 DOI: 10.2174/0929866525666180122112805
    BACKGROUND: Lipid-producing microorganisms, said to be oleaginous have been recognized since several years. We had investigated the effects of medium components and culturing situations on cell growth and lipid accumulation of oleaginous yeasts which were analytically examined so as to enhance lipid yield for biodiesel production.

    OBJECTIVE: The main objective of this study was to explore oleaginous yeast, Yarrowia lipolytica isolated from soil and optimization of culture conditions and medium components to obtained better quality microbial oil for biodiesel production.

    METHODS: Fifty yeast strains were isolated from soil from different regions of Lahore and eleven of them were selected for oil production. The isolated yeast colonies were screened to further check their lipid producing capabilities by the qualitative analysis. Five yeast strains were designated as oleaginous because they produced more than 16% of oil based on their biomass. To estimate the total lipid content of yeast cells, the extraction of lipids was done by performing the procedure proposed by Bligh and Dyer. The transesterification of yeast oils was performed by using different methods. There were three different strategies customized to transesterifying microbial oil using base catalyzed transesterification, acid catalyzed transesterification and enzyme-based transesterification. After completion of transesterification, sample was used for fatty acid methyl esters (FAMEs) were analyzed by gas-chromatograph with ionization detector type MS.

    RESULTS: The isolate IIB-10 identified as Yarrowia lipolytica produced maximum amount of lipids i.e. 22.8%. More amount of biomass was obtained when cane molasses was utilized as carbon source where it produced 29.4 g/L of biomass while sucrose and lactose were not utilized by IIB-10 and no biomass was obtained. Similarly, meat extracts showed best results when it was used as nitrogen source because it resulted in 35.8 g/L biomass of Yarrowia lipolytica IIB-10. The culturing conditions like size of inoculum, effect of pH and time of incubation were also studied. The 10% of inoculum size produced 25.4 g/L biomass at 120 h incubation time, while the pH 7 was the optimum pH at which 24.8 g/L biomass was produced by Yarrowia lipolytica IIB-10. GC-MS analysis showed that biodiesel produced by transesterification contained similar fatty acids as found in vegetable oil for this reason it is widely accepted feedstock for biodiesel production.

    CONCLUSION: The analysis of fatty acids methyl esters showed the similar composition of microbial oil as in vegetable oils and high amount of methyl esters were obtained after transesterification. Therefore, potentially oleaginous yeast could be used to generate a large amount of lipids for biodiesel production that will be the better substitute of petroleum-based diesel and will also control the environmental pollution.

    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  3. Wong EHJ, Ng CG, Goh KL, Vadivelu J, Ho B, Loke MF
    Sci Rep, 2018 01 23;8(1):1409.
    PMID: 29362474 DOI: 10.1038/s41598-018-19697-0
    The biofilm-forming-capability of Helicobacter pylori has been suggested to be among factors influencing treatment outcome. However, H. pylori exhibit strain-to-strain differences in biofilm-forming-capability. Metabolomics enables the inference of spatial and temporal changes of metabolic activities during biofilm formation. Our study seeks to examine the differences in metabolome of low and high biofilm-formers using the metabolomic approach. Eight H. pylori clinical strains with different biofilm-forming-capability were chosen for metabolomic analysis. Bacterial metabolites were extracted using Bligh and Dyer method and analyzed by Liquid Chromatography/Quadrupole Time-of-Flight mass spectrometry. The data was processed and analyzed using the MassHunter Qualitative Analysis and the Mass Profiler Professional programs. Based on global metabolomic profiles, low and high biofilm-formers presented as two distinctly different groups. Interestingly, low-biofilm-formers produced more metabolites than high-biofilm-formers. Further analysis was performed to identify metabolites that differed significantly (p-value 
    Matched MeSH terms: Chromatography, Liquid
  4. Man F, Choo CY
    J Ethnopharmacol, 2018 Apr 06;215:21-26.
    PMID: 29288829 DOI: 10.1016/j.jep.2017.12.040
    ETHNOPHARMACOLOGICAL RELEVANCE: The seeds of Brucea javanica and its aqueous decoction is a traditional medicine consumed by diabetic patients in Malaysia. The daily consumption of B. javanica seeds and it's aqueous decoction causes much concern as the quassinoids and its glycosides from the seeds exhibited various pharmacological activity at low doses.

    AIMS OF STUDY: The aim of the present study is to evaluate the repeated dose toxicity of the standardized aqueous extract administered daily for 30 days through oral administration at its effective hypoglycemia doses.

    MATERIALS AND METHODS: The seeds were dried, ground and extracted in deionized water. A HPLC-photodiode array method was developed and validated for the standardization of both the hypoglycemia agents, namely bruceine D and E in aqueous extract. Both normoglycemia and streptozotocin (STZ)-induced diabetic rats were fed orally with 15, 30 and 60mg/kg body weight of standardized aqueous extract. The blood glucose was measured at 0-8h. In repeated dose toxicity, similar doses were administered orally to rats for 30 days. At the end of 30 days, the blood was withdrawn and subjected to biochemical and haematology analysis while organs were harvested for histology analysis.

    RESULTS: Oral administration of standardized aqueous extract exhibited a dose-response relationship in both the normoglycemia and STZ-induced diabetic rats. Daily oral administration of 15, 30 and 60mg/kg standardized aqueous extract for 30 days to rats did not show signs to toxicity in its biochemical, haematology and histology analysis.

    CONCLUSION: In conclusion, although the seeds were reported to contain compounds with various pharmacological activity, the daily oral administration to rats for 30 days do not showed signs of toxicity at its effective hypoglycemia doses.

    Matched MeSH terms: Chromatography, High Pressure Liquid
  5. Rozaini MNH, Yahaya N, Saad B, Kamaruzaman S, Hanapi NSM
    Talanta, 2017 Aug 15;171:242-249.
    PMID: 28551135 DOI: 10.1016/j.talanta.2017.05.006
    Molecularly imprinted polymer (MIP) was employed as sorbent in ultrasound assisted emulsification molecularly imprinted polymer micro-solid phase extraction (USAE-MIP-µ-SPE) of bisphenol A (BPA) in water, beverages and the aqueous liquid in canned foods prior to high performance liquid chromatography-diode array detector (HPLC-DAD) analysis. Several effective variables, such as types of emulsification solvent and its volume, types of desorption solvent and its volume, salting out effect, pH of sample solution, mass of sorbent, extraction and desorption time, and sample volume, were optimized comprehensively. Under the optimized USAE-MIP-µ-SPE and HPLC-DAD conditions, the method demonstrated good linearity over the range of 0.5-700μgL-1with a coefficient determination of R2=0.9973, low limit of detection (0.07μgL-1), good analyte recoveries (82.2-118.9%) and acceptable RSDs (0.7-14.2%, n=3) with enrichment factor of 49. The method was applied to thirty samples of drinking water, mineral water, river water, lake water, as well as beverages and canned foods, the presence of BPA was identified in four samples. The proposed method showed good selectivity and reusability for extraction of BPA, and hence the USAE-MIP-µ-SPE is rapid, simple, cost effective and environmentally friendly.
    Matched MeSH terms: Chromatography, High Pressure Liquid
  6. Mohamad S, Ismail NN, Parumasivam T, Ibrahim P, Osman H, A Wahab H
    BMC Complement Altern Med, 2018 Jan 08;18(1):5.
    PMID: 29310671 DOI: 10.1186/s12906-017-2077-5
    BACKGROUND: Costus speciosus, Cymbopogon citratus, and Tabernaemontana coronaria are herbal plants traditionally used as remedies for symptoms of tuberculosis (TB) including cough. The aims of the present study were to evaluate the in vitro anti-TB activity of different solvent partitions of these plants, to identify the phytochemical compounds, and to assess the effects of the most active partitions on the growth kinetics and cellular integrity of the tubercle organism.

    METHODS: The in vitro anti-TB activity of different solvent partitions of the plant materials was determined against M. tuberculosis H37Rv using a tetrazolium colorimetric microdilution assay. The phytochemical compounds in the most active partition of each plant were identified using gas chromatography-mass spectrometry (GC-MS) analysis. The effects of these partitions on the growth kinetics of the mycobacteria were evaluated over 7-day treatment period in a batch culture system. Their effects on the mycobacterial cellular integrity were observed under a scanning electron microscope (SEM).

    RESULTS: The respective n-hexane partition of C. speciosus, C. citratus, and T. coronaria exhibited the highest anti-TB activity with minimum inhibitory concentrations (MICs) of 100-200 μg/mL and minimum bactericidal concentration (MBC) of 200 μg/mL. GC-MS phytochemical analysis of these active partitions revealed that majority of the identified compounds belonged to lipophilic fatty acid groups. The active partitions of C. speciosus and T. coronaria exhibited high cidal activity in relation to time, killing more than 99% of the cell population. SEM observations showed that these active plant partitions caused multiple structural changes indicating massive cellular damages.

    CONCLUSIONS: The n-hexane partition of the plant materials exhibited promising in vitro anti-TB activity against M. tuberculosis H37Rv. Their anti-TB activity was supported by their destructive effects on the integrity of the mycobacterial cellular structure.

    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  7. Zzaman W, Bhat R, Yang TA, Easa AM
    J Sci Food Agric, 2017 Oct;97(13):4429-4437.
    PMID: 28251656 DOI: 10.1002/jsfa.8302
    BACKGROUND: Roasting is one of the important unit operations in the cocoa-based industries in order to develop unique flavour in products. Cocoa beans were subjected to roasting at different temperatures and times using superheated steam. The influence of roasting temperature (150-250°C) and time (10-50 min) on sugars, free amino acids and volatile flavouring compounds were investigated.

    RESULTS: The concentration of total reducing sugars was reduced by up to 64.61, 77.22 and 82.52% with increased roasting temperature at 150, 200 and 250°C for 50 min, respectively. The hydrophobic amino acids were reduced up to 29.21, 36.41 and 48.87% with increased roasting temperature at 150, 200 and 250°C for 50 min, respectively. A number of pyrazines, esters, aldehydes, alcohols, ketones, carboxyl acids and hydrocarbons were detected in all the samples at different concentration range. Formation of the most flavour active compounds, pyrazines, were the highest concentration (2.96 mg kg-1 ) at 200°C for 10 min.

    CONCLUSION: The superheated steam roasting method achieves the optimum roasting condition within a short duration Therefore, the quality of cocoa beans can be improved using superheated steam during the roasting process. © 2017 Society of Chemical Industry.

    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  8. Anada RP, Wong KT, Jayapalan JJ, Hashim OH, Ganesan D
    Electrophoresis, 2018 09;39(18):2308-2315.
    PMID: 29570807 DOI: 10.1002/elps.201700407
    The Glasgow Coma Scale (GCS), which classifies patients into mild, moderate or severe traumatic brain injury (TBI), is a system used to prioritize treatment and prognosticate the severity of head injury. In this study, sera of patients with various stages of TBI, as well as control subjects, were analyzed to screen for proteins that may be used to complement the GCS system. By subjecting pooled serum samples to iTRAQ analysis for quantitative comparison of protein abundance, and attesting their altered levels using ELISA, we have detected increased levels of serum amyloid A, C-reactive protein, leucine-rich alpha-2-glycoprotein, lipopolysaccharide-binding protein, fibronectin, vitronectin and alpha-1-antichymotrypsin in patients across all strata of TBI relative to the controls. However, kininogen was decreased only in moderate and severe TBI, whereas apolipoprotein E and zinc-alpha-2-glycoprotein were only increased in severe TBI. Hence, we propose a panel of serum biomarkers, which if analyzed within 24 h of the injury, can be used to diagnose patients with TBI into mild, moderate or severe stratification objectively, thus complementing the traditional GCS.
    Matched MeSH terms: Chromatography, High Pressure Liquid
  9. Benjamin MAZ, Ng SY, Saikim FH, Rusdi NA
    Molecules, 2022 Sep 30;27(19).
    PMID: 36234995 DOI: 10.3390/molecules27196458
    The therapeutic potential of bamboos has acquired global attention. Nonetheless, the biological activities of the plants are rarely considered due to limited available references in Sabah, Malaysia. Furthermore, the drying technique could significantly affect the retention and degradation of nutrients in bamboos. Consequently, the current study investigated five drying methods, namely, sun, shade, microwave, oven, and freeze-drying, of the leaves of six bamboo species, Bambusa multiplex, Bambusa tuldoides, Bambusa vulgaris, Dinochloa sublaevigata, Gigantochloa levis, and Schizostachyum brachycladum. The infused bamboo leaves extracts were analysed for their total phenolic content (TPC) and total flavonoid content (TFC). The antioxidant activities of the samples were determined via the 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and ferric reducing antioxidant power (FRAP) assays, whereas their toxicities were evaluated through the brine shrimp lethality assay (BSLA). The chemical constituents of the samples were determined using liquid chromatography−tandem mass spectrometry (LC-MS/MS). The freeze-drying method exhibited the highest phytochemical contents and antioxidant activity yield, excluding the B. vulgaris sample, in which the microwave-dried sample recorded the most antioxidant and phytochemical levels. The TPC and TFC results were within the 2.69 ± 0.01−12.59 ± 0.09 mg gallic acid equivalent (GAE)/g and 0.77 ± 0.01−2.12 ± 0.01 mg quercetin equivalent (QE)/g ranges, respectively. The DPPH and ABTS IC50 (half-maximal inhibitory concentration) were 2.92 ± 0.01−4.73 ± 0.02 and 1.89−0.01 to 3.47 ± 0.00 µg/mL, respectively, indicating high radical scavenging activities. The FRAP values differed significantly between the drying methods, within the 6.40 ± 0.12−36.65 ± 0.09 mg Trolox equivalent (TE)/g range. The phytochemical contents and antioxidant capacities exhibited a moderate correlation, revealing that the TPC and TFC were slightly responsible for the antioxidant activities. The toxicity assessment of the bamboo extracts in the current study demonstrated no toxicity against the BSLA based on the LC50 (lethal concentration 50) analysis at >1000 µg/mL. LC-MS analysis showed that alkaloid and pharmaceutical compounds influence antioxidant activities, as found in previous studies. The acquired information might aid in the development of bamboo leaves as functional food items, such as bamboo tea. They could also be investigated for their medicinal ingredients that can be used in the discovery of potential drugs.
    Matched MeSH terms: Chromatography, Liquid
  10. Sunasee S, Leong KH, Wong KT, Lee G, Pichiah S, Nah I, et al.
    Environ Sci Pollut Res Int, 2019 Jan;26(2):1082-1093.
    PMID: 28290089 DOI: 10.1007/s11356-017-8729-7
    Since bisphenol A (BPA) exhibits endocrine disrupting action and high toxicity in aqueous system, there are high demands to remove it completely. In this study, the BPA removal by sonophotocatalysis coupled with nano-structured graphitic carbon nitride (g-C3N4, GCN) was conducted with various batch tests using energy-based advanced oxidation process (AOP) based on ultrasound (US) and visible light (Vis-L). Results of batch tests indicated that GCN-based sonophotocatalysis (Vis-L/US) had higher rate constants than other AOPs and especially two times higher degradation rate than TiO2-based Vis-L/US. This result infers that GCN is effective in the catalytic activity in Vis-L/US since its surface can be activated by Vis-L to transport electrons from valence band (VB) for utilizing holes (h+VB) in the removal of BPA. In addition, US irradiation exfoliated the GCN effectively. The formation of BPA intermediates was investigated in detail by using high-performance liquid chromatography-mass spectrometry (HPLC/MS). The possible degradation pathway of BPA was proposed.
    Matched MeSH terms: Chromatography, High Pressure Liquid
  11. Kanakaraju D, Motti CA, Glass BD, Oelgemöller M
    Environ Sci Pollut Res Int, 2016 Sep;23(17):17437-48.
    PMID: 27230148 DOI: 10.1007/s11356-016-6906-8
    Given that drugs and their degradation products are likely to occur as concoctions in wastewater, the degradation of a mixture of two nonsteroidal anti-inflammatory drugs (NSAIDs), diclofenac (DCF) and naproxen (NPX), was investigated by solar photolysis and titanium dioxide (TiO2)-mediated solar photocatalysis using an immersion-well photoreactor. An equimolar ratio (1:1) of both NSAIDs in distilled water, drinking water, and river water was subjected to solar degradation. Solar photolysis of the DCF and NPX mixture was competitive particularly in drinking water and river water, as both drugs have the ability to undergo photolysis. However, the addition of TiO2 in the mixture significantly enhanced the degradation rate of both APIs compared to solar photolysis alone. Mineralization, as measured by chemical oxygen demand (COD), was incomplete under all conditions investigated. TiO2-mediated solar photocatalytic degradation of DCF and NPX mixtures produced 15 identifiable degradants corresponding to degradation of the individual NSAIDs, while two degradation products with much higher molecular weight than the parent NSAIDs were identified by liquid chromatography mass spectrometry (LC-MS) and Fourier transform-ion cyclotron resonance-mass spectrometry (FT-ICR-MS). This study showed that the solar light intensity and the water matrix appear to be the main factors influencing the overall performance of the solar photolysis and TiO2-mediated solar photocatalysis for degradation of DCF and NPX mixtures.
    Matched MeSH terms: Chromatography, Liquid
  12. Magam SM, Zakaria MP, Halimoon N, Aris AZ, Kannan N, Masood N, et al.
    Environ Sci Pollut Res Int, 2016 Mar;23(6):5693-704.
    PMID: 26581689 DOI: 10.1007/s11356-015-5804-9
    This is the first extensive report on linear alkylbenzenes (LABs) as sewage molecular markers in surface sediments collected from the Perlis, Kedah, Merbok, Prai, and Perak Rivers and Estuaries in the west of Peninsular Malaysia. Sediment samples were extracted, fractionated, and analyzed using gas chromatography mass spectrometry (GC-MS). The concentrations of total LABs ranged from 68 to 154 (Perlis River), 103 to 314 (Kedah River), 242 to 1062 (Merbok River), 1985 to 2910 (Prai River), and 217 to 329 ng g(-1) (Perak River) dry weight (dw). The highest levels of LABs were found at PI3 (Prai Estuary) due to the rapid industrialization and population growth in this region, while the lowest concentrations of LABs were found at PS1 (upstream of Perlis River). The LABs ratio of internal to external isomers (I/E) in this study ranged from 0.56 at KH1 (upstream of Kedah River) to 1.35 at MK3 (Merbok Estuary) indicating that the rivers receive raw sewage and primary treatment effluents in the study area. In general, the results of this paper highlighted the necessity of continuation of water treatment system improvement in Malaysia.
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  13. Tay KS, Rahman NA, Abas MR
    Environ Sci Pollut Res Int, 2013 May;20(5):3115-21.
    PMID: 23054788 DOI: 10.1007/s11356-012-1223-3
    This study investigated the degradation pathway of metoprolol, a widely used β-blocker, in the ozonation via the identification of generated ozonation by-products (OPs). Structure elucidation of OPs was performed using HPLC coupled with quadrupole time-of-flight high-resolution mass spectrometry. Seven OPs were identified, and four of these have not been reported elsewhere. Identified OPs of metoprolol included aromatic ring breakdown by-products; aliphatic chain degraded by-products and aromatic ring mono-, di-, and tetrahydroxylated derivatives. Based on the detected OPs, metoprolol could be degraded through aromatic ring opening reaction via reaction with ozone (O3) and degradation of aliphatic chain and aromatic ring via reaction with hydroxyl radical (•OH).
    Matched MeSH terms: Chromatography, High Pressure Liquid
  14. Hadibarata T, Zubir MM, Rubiyatno, Chuang TZ, Yusoff AR, Salim MR, et al.
    Folia Microbiol (Praha), 2013 Sep;58(5):385-91.
    PMID: 23307571 DOI: 10.1007/s12223-013-0221-2
    Characterization of anthracene metabolites produced by Armillaria sp. F022 was performed in the enzymatic system. The fungal culture was conducted in 100-mL Erlenmeyer flask containing mineral salt broth medium (20 mL) and incubated at 120 rpm for 5-30 days. The culture broth was then centrifuged at 10,000 rpm for 45 min to obtain the extract. Additionally, the effect of glucose consumption, laccase activity, and biomass production in degradation of anthracene were also investigated. Approximately, 92 % of the initial concentration of anthracene was degraded within 30 days of incubation. Dynamic pattern of the biomass production was affected the laccase activity during the experiment. The biomass of the fungus increased with the increasing of laccase activity. The isolation and characterization of four metabolites indicated that the structure of anthracene was transformed by Armillaria sp. F022 in two routes. First, anthracene was oxidized to form anthraquinone, benzoic acid, and second, converted into other products, 2-hydroxy-3-naphthoic acid and coumarin. Gas chromatography-mass spectrometry analysis also revealed that the molecular structure of anthracene was transformed by the action of the enzyme, generating a series of intermediate compounds such as anthraquinone by ring-cleavage reactions. The ligninolytic enzymes expecially free extracellular laccase played an important role in the transformation of anthracene during degradation period.
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  15. Sahgal G, Ramanathan S, Sasidharan S, Mordi MN, Ismail S, Mansor SM
    Molecules, 2009 Nov 06;14(11):4476-85.
    PMID: 19924080 DOI: 10.3390/molecules14114476
    This study examines the in vitro antioxidant activities of the methanol extract of Swietenia mahagoni seeds (SMCM seed extract). The extract was screened for possible antioxidant activities by free radical scavenging activity (DPPH), xanthine oxidase inhibition (XOI), hydrogen peroxide scavenging activity (HPSA) and ferric-reducing antioxidant power (FRAP) assays. The total phenolic and flavonoid contents were also determined. The extract exhibits antioxidant activity of 23.29% with an IC(50 )value of 2.3 mg/mL in the DPPH radical scavenging method, 47.2% in the XOI assay, 49.5% by the HPSA method, and 0.728 mmol/Fe(II)g in the FRAP method at the concentration tested. The amount of total phenolics and flavonoid contents was 70.83 mg gallic acid equivalent (GAE) and 2.5 +/- 0.15 mg of catechin equivalent per gram of dry extract, respectively. High Performance Thin Layer Chromatography (HPTLC) screening indicates the presence of phenolic compounds in the SMCM seed extract. The results indicate that the extract has both high free radical scavenging and xanthine oxidase inhibition activity. The antioxidant activity of SMCM seed extract is comparable with that of other Malaysian tropical fruits and herbal plants.
    Matched MeSH terms: Chromatography, Thin Layer
  16. Khoo HE, Prasad KN, Kong KW, Jiang Y, Ismail A
    Molecules, 2011 Feb 18;16(2):1710-38.
    PMID: 21336241 DOI: 10.3390/molecules16021710
    Fruits and vegetables are colorful pigment-containing food sources. Owing to their nutritional benefits and phytochemicals, they are considered as 'functional food ingredients'. Carotenoids are some of the most vital colored phytochemicals, occurring as all-trans and cis-isomers, and accounting for the brilliant colors of a variety of fruits and vegetables. Carotenoids extensively studied in this regard include β-carotene, lycopene, lutein and zeaxanthin. Coloration of fruits and vegetables depends on their growth maturity, concentration of carotenoid isomers, and food processing methods. This article focuses more on several carotenoids and their isomers present in different fruits and vegetables along with their concentrations. Carotenoids and their geometric isomers also play an important role in protecting cells from oxidation and cellular damages.
    Matched MeSH terms: Chromatography, High Pressure Liquid
  17. Levitsky LI, Ivanov MV, Goncharov AO, Kliuchnikova AA, Bubis JA, Lobas AA, et al.
    J Proteome Res, 2023 Jun 02;22(6):1695-1711.
    PMID: 37158322 DOI: 10.1021/acs.jproteome.2c00740
    The proteogenomic search pipeline developed in this work has been applied for reanalysis of 40 publicly available shotgun proteomic datasets from various human tissues comprising more than 8000 individual LC-MS/MS runs, of which 5442 .raw data files were processed in total. This reanalysis was focused on searching for ADAR-mediated RNA editing events, their clustering across samples of different origins, and classification. In total, 33 recoded protein sites were identified in 21 datasets. Of those, 18 sites were detected in at least two datasets, representing the core human protein editome. In agreement with prior artworks, neural and cancer tissues were found to be enriched with recoded proteins. Quantitative analysis indicated that recoding the rate of specific sites did not directly depend on the levels of ADAR enzymes or targeted proteins themselves, rather it was governed by differential and yet undescribed regulation of interaction of enzymes with mRNA. Nine recoding sites conservative between humans and rodents were validated by targeted proteomics using stable isotope standards in the murine brain cortex and cerebellum, and an additional one was validated in human cerebrospinal fluid. In addition to previous data of the same type from cancer proteomes, we provide a comprehensive catalog of recoding events caused by ADAR RNA editing in the human proteome.
    Matched MeSH terms: Chromatography, Liquid
  18. Ziganshin RH, Ivanova OM, Lomakin YA, Belogurov AA, Kovalchuk SI, Azarkin IV, et al.
    Mol Cell Proteomics, 2016 Jul;15(7):2366-78.
    PMID: 27143409 DOI: 10.1074/mcp.M115.056036
    Acute inflammatory demyelinating polyneuropathy (AIDP) - the main form of Guillain-Barre syndrome-is a rare and severe disorder of the peripheral nervous system with an unknown etiology. One of the hallmarks of the AIDP pathogenesis is a significantly elevated cerebrospinal fluid (CSF) protein level. In this paper CSF peptidome and proteome in AIDP were analyzed and compared with multiple sclerosis and control patients. A total protein concentration increase was shown to be because of even changes in all proteins rather than some specific response, supporting the hypothesis of protein leakage from blood through the blood-nerve barrier. The elevated CSF protein level in AIDP was complemented by activization of protein degradation and much higher peptidome diversity. Because of the studies of the acute motor axonal form, Guillain-Barre syndrome as a whole is thought to be associated with autoimmune response against neurospecific molecules. Thus, in AIDP, autoantibodies against cell adhesion proteins localized at Ranvier's nodes were suggested as possible targets in AIDP. Indeed, AIDP CSF peptidome analysis revealed cell adhesion proteins degradation, however no reliable dependence on the corresponding autoantibodies levels was found. Proteome analysis revealed overrepresentation of Gene Ontology groups related to responses to bacteria and virus infections, which were earlier suggested as possible AIDP triggers. Immunoglobulin blood serum analysis against most common neuronal viruses did not reveal any specific pathogen; however, AIDP patients were more immunopositive in average and often had polyinfections. Cytokine analysis of both AIDP CSF and blood did not show a systemic adaptive immune response or general inflammation, whereas innate immunity cytokines were up-regulated. To supplement the widely-accepted though still unproven autoimmunity-based AIDP mechanism we propose a hypothesis of the primary peripheral nervous system damaging initiated as an innate immunity-associated local inflammation following neurotropic viruses egress, whereas the autoantibody production might be an optional complementary secondary process.
    Matched MeSH terms: Chromatography, Liquid
  19. Ooi TC, Ahmad A, Rajab NF, Sharif R
    Nutrients, 2023 Jul 18;15(14).
    PMID: 37513601 DOI: 10.3390/nu15143184
    Senescence is a normal biological process that is accompanied with a series of deteriorations in physiological function. This study aimed to investigate the effects of bovine colostrum milk supplementation on metabolic changes and the expression of various biomarkers on inflammation, antioxidant and oxidative damage, nutrient metabolism, and genomic stability among older adults. Older adults (50-69 years old) who participated in the 12-week randomized, double-blinded, placebo-controlled trial were instructed to consume the IgCo bovine colostrum-enriched skim milk or regular skim milk (placebo) twice daily. Following 12 weeks of intervention, participants in the intervention group had lower expression levels in pro-inflammatory mediators (CRP, IL-6, and TNF-α), with significant (p < 0.05) interaction effects of the group and time observed. However, no significant interaction effect was observed in the vitamin D, telomerase, 8-OHdG, MDA, and SOD activities. UPLC-MS-based untargeted metabolomics analysis revealed that 22 metabolites were upregulated and 11 were downregulated in the intervention group compared to the placebo group. Glycerophospholipid metabolism, along with cysteine and methionine metabolism were identified as the potential metabolic pathways that are associated with bovine colostrum milk consumption. In conclusion, consuming bovine colostrum milk may induce metabolic changes and reduce the expression of various pro-inflammatory mediators, thus improving the immune function in older adults.
    Matched MeSH terms: Chromatography, Liquid
  20. Ali A, Chong CH, Mah SH, Abdullah LC, Choong TSY, Chua BL
    Molecules, 2018 Feb 23;23(2).
    PMID: 29473847 DOI: 10.3390/molecules23020484
    The phenolic constituents in Piper betle are well known for their antioxidant potential; however, current literature has very little information on their stability under the influence of storage factors. Present study evaluated the stability of total phenolic content (TPC) and antioxidant activity together with individual phenolic constituents (hydroxychavicol, eugenol, isoeugenol and allylpyrocatechol 3,4-diacetate) present in dried Piper betle's extract under different storage temperature of 5 and 25 °C with and without light for a period of six months. Both light and temperature significantly influenced TPC and its corresponding antioxidant activity over time. More than 95% TPC and antioxidant activity was retained at 5 °C in dark condition after 180 days of storage. Hydroxychavicol demonstrated the best stability with no degradation while eugenol and isoeugenol displayed moderate stability in low temperature (5 °C) and dark conditions. 4-allyl-1,2-diacetoxybenzene was the only compound that underwent complete degradation. A new compound, 2,4-di-tert-butylphenol, was detected after five weeks of storage only in the extracts exposed to light. Both zero-order and first-order kinetic models were adopted to describe the degradation kinetics of the extract's antioxidant activity. Zero-order displayed better fit with higher correlation coefficients (R² = 0.9046) and the half-life was determined as 62 days for the optimised storage conditions (5 °C in dark conditions).
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links