Displaying publications 1341 - 1360 of 3446 in total

Abstract:
Sort:
  1. Lau NS, Furusawa G
    Sci Total Environ, 2024 Feb 20;912:169134.
    PMID: 38070563 DOI: 10.1016/j.scitotenv.2023.169134
    In this study, we present the genome characterization of a novel chitin-degrading strain, KSP-S5-2, and comparative genomics of 33 strains of Cellvibrionaceae. Strain KSP-S5-2 was isolated from mangrove sediment collected in Balik Pulau, Penang, Malaysia, and its 16S rRNA gene sequence showed the highest similarity (95.09%) to Teredinibacter franksiae. Genome-wide analyses including 16S rRNA gene sequence similarity, average nucleotide identity, digital DNA-DNA hybridization, and phylogenomics, suggested that KSP-S5-2 represents a novel species in the family Cellvibrionaceae. The Cellvibrionaceae pan-genome exhibited high genomic variability, with only 1.7% representing the core genome, while the flexible genome showed a notable enrichment of genes related to carbohydrate metabolism and transport pathway. This observation sheds light on the genetic plasticity of the Cellvibrionaceae family and the gene pools that form the basis for the evolution of polysaccharide-degrading capabilities. Comparative analysis of the carbohydrate-active enzymes across Cellvibrionaceae strains revealed that the chitinolytic system is not universally present within the family, as only 18 of the 33 genomes encoded chitinases. Strain KSP-S5-2 displayed an expanded repertoire of chitinolytic enzymes (25 GH18, two GH19 chitinases, and five GH20 β-N-acetylhexosaminidases) but lacked genes for agar, xylan, and pectin degradation, indicating specialized enzymatic machinery focused primarily on chitin degradation. Further, the strain degraded 90% of chitin after 10 days of incubation. In summary, our findings provided insights into strain KSP-S5-2's genomic potential, the genetics of its chitinolytic system, genomic diversity within the Cellvibrionaceae family in terms of polysaccharide degradation, and its application for chitin degradation.
    Matched MeSH terms: DNA
  2. Sugrue E, Wickenhagen A, Mollentze N, Aziz MA, Sreenu VB, Truxa S, et al.
    PLoS Pathog, 2022 Nov;18(11):e1010973.
    PMID: 36399512 DOI: 10.1371/journal.ppat.1010973
    HIV-1 transmission via sexual exposure is an inefficient process. When transmission does occur, newly infected individuals are colonized by the descendants of either a single virion or a very small number of establishing virions. These transmitted founder (TF) viruses are more interferon (IFN)-resistant than chronic control (CC) viruses present 6 months after transmission. To identify the specific molecular defences that make CC viruses more susceptible to the IFN-induced 'antiviral state', we established a single pair of fluorescent TF and CC viruses and used arrayed interferon-stimulated gene (ISG) expression screening to identify candidate antiviral effectors. However, we observed a relatively uniform ISG resistance of transmitted HIV-1, and this directed us to investigate possible underlying mechanisms. Simple simulations, where we varied a single parameter, illustrated that reduced growth rate could possibly underly apparent interferon sensitivity. To examine this possibility, we closely monitored in vitro propagation of a model TF/CC pair (closely matched in replicative fitness) over a targeted range of IFN concentrations. Fitting standard four-parameter logistic growth models, in which experimental variables were regressed against growth rate and carrying capacity, to our in vitro growth curves, further highlighted that small differences in replicative growth rates could recapitulate our in vitro observations. We reasoned that if growth rate underlies apparent interferon resistance, transmitted HIV-1 would be similarly resistant to any growth rate inhibitor. Accordingly, we show that two transmitted founder HIV-1 viruses are relatively resistant to antiretroviral drugs, while their matched chronic control viruses were more sensitive. We propose that, when present, the apparent IFN resistance of transmitted HIV-1 could possibly be explained by enhanced replicative fitness, as opposed to specific resistance to individual IFN-induced defences. However, further work is required to establish how generalisable this mechanism of relative IFN resistance might be.
    Matched MeSH terms: DNA Replication
  3. Yong HY, Bakar FD, Illias RM, Mahadi NM, Murad AM
    Braz J Microbiol, 2013 Dec;44(4):1241-50.
    PMID: 24688518
    The mitogen-activated protein (MAP) kinase pathways has been implicated in the pathogenicity of various pathogenic fungi and plays important roles in regulating pathogenicity-related morphogenesis. This work describes the isolation and characterization of MAP kinase gene, Cgl-SLT2, from Colletotrichum gloeosporioides. A DNA sequence, including 1,633 bp of Cgl-SLT2 open-reading frame and its promoter and terminator regions, was isolated via DNA walking and cloned. To analyze gene function, a gene disruption cassette containing hygromycin-resistant gene was constructed, and Cgl-SLT2 was inactivated via gene deletion. Analysis on Cgl-slt2 mutant revealed a defect in vegetative growth and sporulation as compared to the wild-type strain. When grown under nutrient-limiting conditions, hyperbranched hyphal morphology was observed in the mutant. Conidia induction for germination on rubber wax-coated hard surfaces revealed no differences in the percentage of conidial germination between the wild-type and Cgl-slt2 mutant. However, the percentage of appressorium formation in the mutant was greatly reduced. Bipolar germination in the mutant was higher than in the wild-type at 8-h post-induction. A pathogenicity assay revealed that the mutant was unable to infect either wounded or unwounded mangoes. These results suggest that the Cgl-SLT2 MAP kinase is required for C. gloeosporioides conidiation, polarized growth, appressorium formation and pathogenicity.
    Matched MeSH terms: DNA, Fungal/genetics; DNA, Fungal/chemistry; Sequence Analysis, DNA
  4. Chung FF, Maldonado SG, Nemc A, Bouaoun L, Cahais V, Cuenin C, et al.
    Clin Epigenetics, 2023 Jun 12;15(1):102.
    PMID: 37309009 DOI: 10.1186/s13148-023-01509-6
    BACKGROUND: Epigenetic alterations are a near-universal feature of human malignancy and have been detected in malignant cells as well as in easily accessible specimens such as blood and urine. These findings offer promising applications in cancer detection, subtyping, and treatment monitoring. However, much of the current evidence is based on findings in retrospective studies and may reflect epigenetic patterns that have already been influenced by the onset of the disease.

    METHODS: Studying breast cancer, we established genome-scale DNA methylation profiles of prospectively collected buffy coat samples (n = 702) from a case-control study nested within the EPIC-Heidelberg cohort using reduced representation bisulphite sequencing (RRBS).

    RESULTS: We observed cancer-specific DNA methylation events in buffy coat samples. Increased DNA methylation in genomic regions associated with SURF6 and REXO1/CTB31O20.3 was linked to the length of time to diagnosis in the prospectively collected buffy coat DNA from individuals who subsequently developed breast cancer. Using machine learning methods, we piloted a DNA methylation-based classifier that predicted case-control status in a held-out validation set with 76.5% accuracy, in some cases up to 15 years before clinical diagnosis of the disease.

    CONCLUSIONS: Taken together, our findings suggest a model of gradual accumulation of cancer-associated DNA methylation patterns in peripheral blood, which may be detected long before clinical manifestation of cancer. Such changes may provide useful markers for risk stratification and, ultimately, personalized cancer prevention.

    Matched MeSH terms: DNA Methylation
  5. Mostafa N, Omar H, Tan SG, Napis S
    Molecules, 2011 Mar 22;16(3):2599-608.
    PMID: 21441863 DOI: 10.3390/molecules16032599
    Haematococcus pluvialis (Flotow) is a unicellular green alga, which is considered to be the best astaxanthin-producing organism. Molecular markers are suitable tools for the purpose of finding out genetic variations in organisms; however there have been no studies conducted on ISSR or RAPD molecular markers for this organism. The DNA of 10 different strains of H. pluvialis (four strains from Iran, two strains from Finland, one strain from Switzerland and three strains from the USA) was extracted. A genetic similarity study was carried out using 14 ISSR and 12 RAPD primers. Moreover, the molecular weights of the bands produced ranged from 0.14 to 3.4 Kb. The PCA and dendrogram clustered the H. pluvialis strains into various groups according to their geographical origin. The lowest genetic similarity was between the Iran2 and USA2 strains (0.08) and the highest genetic similarity was between Finland1 and Finland2 (0.64). The maximum numbers of bands produced by the ISSR and RAPD primers were 35 and 6 bands, respectively. The results showed that ISSR and RAPD markers are useful for genetic diversity studies of Haematococcus as they showed geographical discrimination.
    Matched MeSH terms: Random Amplified Polymorphic DNA Technique
  6. Hasan WANBW, Nezhad NG, Yaacob MA, Salleh AB, Rahman RNZRA, Leow TC
    World J Microbiol Biotechnol, 2024 Feb 22;40(4):106.
    PMID: 38386107 DOI: 10.1007/s11274-024-03927-x
    Enzymes are often required to function in a particular reaction condition by the industrial procedure. In order to identify critical residues affecting the optimum pH of Staphylococcal lipases, chimeric lipases from homologous lipases were generated via a DNA shuffling strategy. Chimeric 1 included mutations of G166S, K212E, T243A, H271Y. Chimeric 2 consisted of substitutions of K212E, T243A, H271Y. Chimeric 3 contained substitutions of K212E, R359L. From the screening results, the pH profiles for chimeric 1 and 2 lipases were shifted from pH 7 to 6. While the pH of chimeric 3 was shifted to 8. It seems the mutation of K212E in chimeric 1 and 2 decreased the pH to 6 by changing the electrostatic potential surface. Furthermore, chimeric 3 showed 10 ˚C improvement in the optimum temperature due to the rigidification of the catalytic loop through the hydrophobic interaction network. Moreover, the substrate specificity of chimeric 1 and 2 was increased towards the longer carbon length chains due to the mutation of T243A adjacent to the lid region through increasing the flexibility of the lid. Current study illustrated that directed evolution successfully modified lipase properties including optimum pH, temperature and substrate specificity through mutations, especially near catalytic and lid regions.
    Matched MeSH terms: DNA Shuffling
  7. N W N A M, R A, N H KA, E S, M A A K, M H I, et al.
    J Biomed Mater Res B Appl Biomater, 2024 Jan;112(1):e35306.
    PMID: 37522375 DOI: 10.1002/jbm.b.35306
    Porous NiTi (pNiTi) is a promising biomaterial for functional long-term implantation that has been produced using various manufacturing techniques and tested for biocompatibility. pNiTi produced using a more recent technology of Metal Injection Molding (MIM) has shown better physical and mechanical properties than those produced by earlier manufacturing methods, but its biocompatibility has yet to be determined. Hence, extracts from pNiTi dental implants produced by MIM were tested for cytotoxicity and genotoxicity in this work. Its toxicity was evaluated at the cellular and in vitro levels using elution and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assays. Short-term testing revealed that pNiTi extract was cytocompatible with L-929 fibroblast and V79-4 lung cells, with no cell lysis or reactivity observed, respectively (USP grade 0). Following exposure to varied extract concentrations, good cell viability was observed where the lowest concentration showed the highest optical density (OD) and cell viability (2.968 ± 0.117 and 94%, respectively), and the highest concentration had the least OD and cell viability (2.251 ± 0.054 and 71%, respectively). pNiTi extracts demonstrated genocompatibility in two independent assays: mutagenic potential using a bacterial reverse mutation test and a clastogenic effect on chromosomes using the micronucleus test. Similar to the negative control reactions, there was no significant increase in revertant colonies following exposure to 100% pNiTi extract with and without metabolic activation (p = .00). No DNA clastogenic activity was caused by pNiTi at varied extract concentrations as compared to the negative control when tested with and without metabolic activation (p = .00). As a result, both cytotoxic and genotoxic investigations have confirmed that pNiTi dental implants utilizing the MIM process are cytocompatible and genocompatible in the short term, according to the International Standard, ISO 10993 - Parts 3, 5, and 33.
    Matched MeSH terms: DNA Damage
  8. Sam IC, See KH, Puthucheary SD
    J Clin Microbiol, 2009 May;47(5):1556-8.
    PMID: 19297597 DOI: 10.1128/JCM.01657-08
    A patient with a clonal infection of Burkholderia pseudomallei had subpopulations with ceftazidime and amoxicillin-clavulanate susceptibilities that differed among the clinical specimens. Resistance was associated with a novel Cys69Tyr substitution in the Ambler class A beta-lactamase. Susceptibility testing of multiple colony variants from different sites should be performed for patients with culture-confirmed melioidosis.
    Matched MeSH terms: DNA, Bacterial/genetics; DNA, Bacterial/chemistry; Sequence Analysis, DNA
  9. Chew CH, Lim YA, Lee PC, Mahmud R, Chua KH
    J Clin Microbiol, 2012 Dec;50(12):4012-9.
    PMID: 23035191 DOI: 10.1128/JCM.06454-11
    Malaria remains one of the major killers of humankind and persists to threaten the lives of more than one-third of the world's population. Given that human malaria can now be caused by five species of Plasmodium, i.e., Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, Plasmodium ovale, and the recently included Plasmodium knowlesi, there is a critical need not only to augment global health efforts in malaria control but also, more importantly, to develop a rapid, accurate, species-sensitive/species-specific, and economically effective diagnostic method for malaria caused by these five species. Therefore, in the present study, a straightforward single-step hexaplex PCR system targeting five human Plasmodium 18S small-subunit rRNAs (ssu rRNAs) was designed, and the system successfully detected all five human malaria parasites. In addition, this system enables the differentiation of single infection as well as mixed infections up to the two-species level. This assay was validated with 50 randomly blinded test and 184 clinical samples suspected to indicate malaria. This hexaplex PCR system is not only an ideal alternative for routine malaria diagnosis in laboratories with conventional PCR machines but also adds value to diagnoses when there is a lack of an experienced microscopist or/and when the parasite morphology is confusing. Indeed, this system will definitely enhance the accuracy and accelerate the speed in the diagnosis of malaria, as well as improve the efficacy of malaria treatment and control, in addition to providing reliable data from epidemiological surveillance studies.
    Matched MeSH terms: DNA, Ribosomal/genetics; DNA, Protozoan/genetics
  10. Ngui R, Ravindran S, Ong DB, Chow TK, Low KP, Nureena ZS, et al.
    J Clin Microbiol, 2014 Sep;52(9):3468-70.
    PMID: 24989613 DOI: 10.1128/JCM.01191-14
    We report a rare and unusual case of invasive Enterobius vermicularis infection in a fallopian tube. The patient was a 23-year-old Malaysian woman who presented with suprapubic pain and vaginal bleeding. A clinical diagnosis of ruptured right ovarian ectopic pregnancy was made. She underwent a laparotomy with a right salpingo-oophorectomy. Histopathological examination of the right fallopian tube showed eggs and adult remnants of E. vermicularis, and the results were confirmed using PCR and DNA sequencing.
    Matched MeSH terms: Sequence Analysis, DNA; DNA, Helminth/genetics; DNA, Helminth/chemistry
  11. Bashiru G, Bahaman AR
    Indian J Med Res, 2018 Jan;147(1):15-22.
    PMID: 29749356 DOI: 10.4103/ijmr.IJMR_1022_16
    Considerable progress has been made in the field of leptospiral vaccines development since its first use as a killed vaccine in guinea pigs. Despite the fact that the immunity conferred is restricted to serovars with closely related lipopolysaccharide antigen, certain vaccines have remained useful, especially in endemic regions, for the protection of high-risk individuals. Other conventional vaccines such as the live-attenuated vaccine and lipopolysaccharide (LPS) vaccine have not gained popularity due to the reactive response that follows their administration and the lack of understanding of the pathogenesis of leptospirosis. With the recent breakthrough and availability of complete genome sequences of Leptospira, development of novel vaccine including recombinant protein vaccine using reverse vaccinology approaches has yielded encouraging results. However, factors hindering the development of effective leptospiral vaccines include variation in serovar distribution from region to region, establishment of renal carrier status following vaccination and determination of the dose and endpoint titres acceptable as definitive indicators of protective immunity. In this review, advancements and progress made in LPS-based vaccines, killed- and live-attenuated vaccines, recombinant peptide vaccines and DNA vaccines against leptospirosis are highlighted.
    Matched MeSH terms: Vaccines, DNA
  12. Halim MA, Tan FHP, Azlan A, Rasyid II, Rosli N, Shamsuddin S, et al.
    Malays J Med Sci, 2020 May;27(3):7-19.
    PMID: 32684802 MyJurnal DOI: 10.21315/mjms2020.27.3.2
    Ageing is a phenomenon where the accumulation of all the stresses that alter the functions of living organisms, halter them from maintaining their physiological balance and eventually lead to death. The emergence of epigenetic tremendously contributed to the knowledge of ageing. Epigenetic changes in cells or tissues like deoxyribonucleic acid (DNA) methylation, modification of histone proteins, transcriptional modification and also the involvement of non-coding DNA has been documented to be associated with ageing. In order to study ageing, scientists have taken advantage of several potential organisms to aid them in their study. Drosophila melanogaster has been an essential model in establishing current understanding of the mechanism of ageing as they possess several advantages over other competitors like having homologues to more than 75% of human disease genes, having 50% of Drosophila genes are homologues to human genes and most importantly they are genetically amenable. Here, we would like to summarise the extant knowledge about ageing and epigenetic process and the role of Drosophila as an ideal model to study epigenetics in association with ageing process.
    Matched MeSH terms: DNA
  13. Stroehlein AJ, Korhonen PK, Chong TM, Lim YL, Chan KG, Webster B, et al.
    Gigascience, 2019 Sep 01;8(9).
    PMID: 31494670 DOI: 10.1093/gigascience/giz108
    BACKGROUND: Schistosoma haematobium causes urogenital schistosomiasis, a neglected tropical disease affecting >100 million people worldwide. Chronic infection with this parasitic trematode can lead to urogenital conditions including female genital schistosomiasis and bladder cancer. At the molecular level, little is known about this blood fluke and the pathogenesis of the disease that it causes. To support molecular studies of this carcinogenic worm, we reported a draft genome for S. haematobium in 2012. Although a useful resource, its utility has been somewhat limited by its fragmentation.

    FINDINGS: Here, we systematically enhanced the draft genome of S. haematobium using a single-molecule and long-range DNA-sequencing approach. We achieved a major improvement in the accuracy and contiguity of the genome assembly, making it superior or comparable to assemblies for other schistosome species. We transferred curated gene models to this assembly and, using enhanced gene annotation pipelines, inferred a gene set with as many or more complete gene models as those of other well-studied schistosomes. Using conserved, single-copy orthologs, we assessed the phylogenetic position of S. haematobium in relation to other parasitic flatworms for which draft genomes were available.

    CONCLUSIONS: We report a substantially enhanced genomic resource that represents a solid foundation for molecular research on S. haematobium and is poised to better underpin population and functional genomic investigations and to accelerate the search for new disease interventions.

    Matched MeSH terms: Sequence Analysis, DNA
  14. Babadi AA, Rahmati S, Fakhlaei R, Heidari R, Baradaran S, Akbariqomi M, et al.
    Sci Rep, 2022 Nov 12;12(1):19416.
    PMID: 36371566 DOI: 10.1038/s41598-022-23996-y
    The current COVID-19 pandemic outbreak poses a serious threat to public health, demonstrating the critical need for the development of effective and reproducible detection tests. Since the RT-qPCR primers are highly specific and can only be designed based on the known sequence, mutation sensitivity is its limitation. Moreover, the mutations in the severe acute respiratory syndrome β-coronavirus (SARS-CoV-2) genome led to new highly transmissible variants such as Delta and Omicron variants. In the case of mutation, RT-qPCR primers cannot recognize and attach to the target sequence. This research presents an accurate dual-platform DNA biosensor based on the colorimetric assay of gold nanoparticles and the surface-enhanced Raman scattering (SERS) technique. It simultaneously targets four different regions of the viral genome for detection of SARS-CoV-2 and its new variants prior to any sequencing. Hence, in the case of mutation in one of the target sequences, the other three probes could detect the SARS-CoV-2 genome. The method is based on visible biosensor color shift and a locally enhanced electromagnetic field and significantly amplified SERS signal due to the proximity of Sulfo-Cyanine 3 (Cy3) and AuNPs intensity peak at 1468 cm-1. The dual-platform DNA/GO/AuNP biosensor exhibits high sensitivity toward the viral genome with a LOD of 0.16 ng/µL. This is a safe point-of-care, naked-eye, equipment-free, and rapid (10 min) detection biosensor for diagnosing COVID-19 cases at home using a nasopharyngeal sample.
    Matched MeSH terms: DNA
  15. Le TH, Anh NT, Nguyen KT, Nguyen NT, Thuy do TT, Gasser RB
    Infect Genet Evol, 2016 Jan;37:94-8.
    PMID: 26584512 DOI: 10.1016/j.meegid.2015.11.009
    Toxocara canis of canids is a parasitic nematode (ascaridoid) that infects humans and other hosts, causing different forms of toxocariasis. This species of Toxocara appears to be the most important cause of human disease, likely followed by Toxocara cati from felids. Although some studies from Malaysia and China have shown that cats can harbor another congener, T. malaysiensis, no information is available about this parasite for other countries. Moreover, the zoonotic potential of this parasite is unknown at this point. In the present study, we conducted the first investigation of domestic dogs and cats for Toxocara in Vietnam using molecular tools. Toxocara malaysiensis was identified as a common ascaridoid of domestic cats (in the absence of T. cati), and T. canis was commonly found in dogs. Together with findings from previous studies, the present results emphasize the need to explore the significance and zoonotic potential of T. malaysiensis in Vietnam and other countries where this parasite is endemic and prevalent in cats.
    Matched MeSH terms: DNA, Helminth/analysis*
  16. Javadi Nobandegani MB, Saud HM, Yun WM
    Biomed Res Int, 2014;2014:496562.
    PMID: 25580434 DOI: 10.1155/2014/496562
    Primers corresponding to conserved bacterial repetitive of BOX elements were used to show that BOX-DNA sequences are widely distributed in phosphate solubilizing Pseudomonas strains. Phosphate solubilizing Pseudomonas was isolated from oil palm fields (tropical soil) in Malaysia. BOX elements were used to generate genomic fingerprints of a variety of Pseudomonas isolates to identify strains that were not distinguishable by other classification methods. BOX-PCR, that derived genomic fingerprints, was generated from whole purified genomic DNA by liquid culture of phosphate solubilizing Pseudomonas. BOX-PCR generated the phosphate solubilizing Pseudomonas specific fingerprints to identify the relationship between these strains. This suggests that distribution of BOX elements' sequences in phosphate solubilizing Pseudomonas strains is the mirror image of their genomic structure. Therefore, this method appears to be a rapid, simple, and reproducible method to identify and classify phosphate solubilizing Pseudomonas strains and it may be useful tool for fast identification of potential biofertilizer strains.
    Matched MeSH terms: DNA Fingerprinting*
  17. Haridan US, Mokhtar U, Machado LR, Abdul Aziz AT, Shueb RH, Zaid M, et al.
    PLoS One, 2015;10(1):e0116791.
    PMID: 25594501 DOI: 10.1371/journal.pone.0116791
    The FCGR3 locus encoding the low affinity activating receptor FcγRIII, plays a vital role in immunity triggered by cellular effector and regulatory functions. Copy number of the genes FCGR3A and FCGR3B has previously been reported to affect susceptibility to several autoimmune diseases and chronic inflammatory conditions. However, such genetic association studies often yield inconsistent results; hence require assays that are robust with low error rate. We investigated the accuracy and efficiency in estimating FCGR3 CNV by comparing Sequenom MassARRAY and paralogue ratio test-restriction enzyme digest variant ratio (PRT-REDVR). In addition, since many genetic association studies of FCGR3B CNV were carried out using real-time quantitative PCR, we have also included the evaluation of that method's performance in estimating the multi-allelic CNV of FCGR3B. The qPCR assay exhibited a considerably broader distribution of signal intensity, potentially introducing error in estimation of copy number and higher false positive rates. Both Sequenom and PRT-REDVR showed lesser systematic bias, but Sequenom skewed towards copy number normal (CN = 2). The discrepancy between Sequenom and PRT-REDVR might be attributed either to batch effects noise in individual measurements. Our study suggests that PRT-REDVR is more robust and accurate in genotyping the CNV of FCGR3, but highlights the needs of multiple independent assays for extensive validation when performing a genetic association study with multi-allelic CNVs.
    Matched MeSH terms: DNA Copy Number Variations/genetics
  18. Chandrasekaran H, Govind SK, Panchadcharam C, Bathmanaban P, Raman K, Thergarajan G
    Parasit Vectors, 2014;7:469.
    PMID: 25358755 DOI: 10.1186/s13071-014-0469-7
    Blastocystis sp., a widely prevalent intestinal protozoan parasite is found in a wide range of animals, including humans. The possibility of zoonotic transmission to human from birds especially ostriches led us to investigate on the cross infectivity of Blastocystis sp. isolated from the ostrich feces as well as the phenotypic and subtype characteristics. There is a need to investigate this especially with the rising number of ostrich farms due to the growing global ostrich industry.
    Matched MeSH terms: DNA, Protozoan/genetics
  19. Tan LL, Lau TY, Timothy W, Prabakaran D
    ScientificWorldJournal, 2014;2014:935846.
    PMID: 25574497 DOI: 10.1155/2014/935846
    Chloroquine resistance (CQR) in falciparum malaria was identified to be associated with several mutations in the chloroquine resistance transporter gene (pfcrt) that encodes the transmembrane transporter in digestive vacuole membrane of the parasite. This study aimed to investigate the point mutations across the full-length pfcrt in Plasmodium falciparum isolates in Sabah, Malaysia. A total of 31 P. falciparum positive samples collected from Keningau, Kota Kinabalu, and Kudat, Sabah, were analyzed. pfcrt was PCR amplified and cloned prior to sequence analysis. This study showed that all the previously described 10 point mutations associated with CQR at codons 72, 74, 75, 76, 97, 220, 271, 326, 356, and 371 were found with different prevalence. Besides, two novel point mutations, I166V and H273N, were identified with 22.5% and 19.3%, respectively. Three haplotypes, namely, CVMNK (29%), CVIET (3.2%), and SVMNT (67.7%), were identified. High prevalence of SVMNT among P. falciparum isolates from Sabah showed that these isolates are closer to the P. falciparum isolates from Papua New Guinea rather than to the more proximal Southeast Asian CVIET haplotype. Full-length analysis of pfcrt showed that chloroquine resistant P. falciparum in Sabah is still prevalent despite the withdrawal of chloroquine usage since 1979.
    Matched MeSH terms: Sequence Analysis, DNA*
  20. Pomilla C, Amaral AR, Collins T, Minton G, Findlay K, Leslie MS, et al.
    PLoS One, 2014;9(12):e114162.
    PMID: 25470144 DOI: 10.1371/journal.pone.0114162
    A clear understanding of population structure is essential for assessing conservation status and implementing management strategies. A small, non-migratory population of humpback whales in the Arabian Sea is classified as "Endangered" on the IUCN Red List of Threatened Species, an assessment constrained by a lack of data, including limited understanding of its relationship to other populations. We analysed 11 microsatellite markers and mitochondrial DNA sequences extracted from 67 Arabian Sea humpback whale tissue samples and compared them to equivalent datasets from the Southern Hemisphere and North Pacific. Results show that the Arabian Sea population is highly distinct; estimates of gene flow and divergence times suggest a Southern Indian Ocean origin but indicate that it has been isolated for approximately 70,000 years, remarkable for a species that is typically highly migratory. Genetic diversity values are significantly lower than those obtained for Southern Hemisphere populations and signatures of ancient and recent genetic bottlenecks were identified. Our findings suggest this is the world's most isolated humpback whale population, which, when combined with low population abundance estimates and anthropogenic threats, raises concern for its survival. We recommend an amendment of the status of the population to "Critically Endangered" on the IUCN Red List.
    Matched MeSH terms: DNA, Mitochondrial/analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links