AIMS AND METHODS: Keeping these facts in consideration, we have made an another attempt to prepare semisolid formulations containing 1% w/w of norfloxacin and metronidazole with different bases like Carbopol, polyethylene glycol, and hydroxypropylmethyl cellulose for effective treatment of bacterial infections and burn wounds. The prepared formulations were evaluated for physicochemical parameters, in vitro drug release, antimicrobial activity, and burn wound healing properties.
RESULTS: The prepared formulations were compared with Silver Sulfadiazine cream 1%, USP. Antimicrobial activity of norfloxacin semisolid formulations was found to be equally effective against both aerobic and anaerobic bacteria in comparison to a marketed formulation of Silver Sulfadiazine 1% cream, USP. Based on the burn wound healing property, the prepared norfloxacin semisolid formulation was found to be in good agreement with marketed Silver Sulfadiazine 1% cream, USP.
CONCLUSIONS: These findings suggest formulations containing norfloxacin and metronidazole may also prove as an effective alternative for existing remedies in the treatment of bacterial infections and burn wounds.
AIMS: This study aimed at developing and characterizing the ethanolic vesicular hydrogel system of Nigella sativa (NS) oil (NS EV hydrogel) for the enhancement of anti-psoriatic activity.
OBJECTIVE: The objective of this study was to develop NS EV hydrogel and evaluate its anti-psoriatic activity.
METHODS: The identification and quantification of TQ content in different NS seed extracts and marketed oil were measured by an HPTLC method using n-hexane and ethyl acetate as solvent systems. Preparation of ethanolic vesicles (EVs) was performed by solvent injection method, while its antipsoriatic activity was evaluated employing an Imiquad (IMQ)-induced plaque psoriasis animal model.
RESULTS: A compact HPTLC band was obtained for TQ at an Rf value of 0.651. The calibration plot was linear in the range of 1-10 μg/spot, and the correlation coefficient of 0.990 was indicative of good linear dependence of peak area on concentration. From the different NS sources, the high TQ content was obtained in the marketed cold press oil, i.e., 1.45±0.08mg/ml. Out of various NS oilloaded EVs, the F6 formulation revealed the smallest particle size (278.1nm), with log-normal size distribution (0.459) and adequate entrapment efficiency. A non-uniform shape was observed in the transmission electron microscopy. The viscosity of F6 formulation hydrogel was 32.34 (Pa·s), which exhibited plastic behavior. In vivo, efficacy studies demonstrated decreased inflammation of the epidermis and dermis and a marked decrease in the levels of IL-17 by NS EV hydrogel compared to plain NS oil and standard drugs (Betamethasone and Dr. JRK Psorolin Oil).
CONCLUSION: It may be concluded from the findings that NS-loaded EV gel was as good as betamethasone cream but more efficacious than the other treatments.
AIM OF THE REVIEW: The present review aims to collate and analyze the available data and information on distribution, traditional uses, chemical constituents and pharmacological activities of Blepharis.
METHODS: Scientific information of genus Blepharis was retrieved from the online bibliographic databases such as MEDLINE/PubMed, SciFinder, Web of Science and Google Scholar and secondary resources including books and proceedings.
RESULTS: Seven species of Blepharis were found to be reported frequently as useful in folklore in African and Asian countries. B. maderaspatensis was found to be widely used in Indian traditional medicines whereas the B. ciliaris and B. edulis were common in folklore of Egypt, Jordan, and Arabia. Active phytochemicals of Blepharis are flavonoids from B. ciliaris, alkaloids from B. sindica, phenolic acid derivatives, and phytosterols, and derivatives of hydroxamic acids from B. edulis resulted in possessing diverse biological properties such as anti-microbial, anti-inflammatory, and anti-cancer.
CONCLUSIONS: Various species of Blepharis were found to be used in traditional medicine systems in African and Asian countries. Few of these species were studied for their bioactive chemical constituents however the activity guided isolation studies are not performed. Similarly, detailed pharmacological studies in animal models to explore their mechanism of action are also not reported. Future studies should focus on these aspects related to the medicinally used species of Blepharis. The detailed and comprehensive comparative analysis presented here gives valuable information of the currently used Blepharis species and pave the way to investigate other useful species of Blepharis pertaining to ethnobotany, phytochemistry and discovery of new drugs.