Displaying publications 121 - 140 of 180 in total

Abstract:
Sort:
  1. Jaafaru MS, Nordin N, Rosli R, Shaari K, Bako HY, Saad N, et al.
    Neurotoxicology, 2019 12;75:89-104.
    PMID: 31521693 DOI: 10.1016/j.neuro.2019.09.008
    Neurodegenerative diseases (NDDs) are pathological conditions characterised by progressive damage of neuronal cells leading to eventual loss of structure and function of the cells. Due to implication of multi-systemic complexities of signalling pathways in NDDs, the causes and preventive mechanisms are not clearly delineated. The study was designed to investigate the potential signalling pathways involved in neuroprotective activities of purely isolated glucomoringin isothiocyanate (GMG-ITC) against H2O2-induced cytotoxicity in neuroblastoma (SH-SY5Y) cells. GMG-ITC was isolated from Moringa oleifera seeds, and confirmed with NMR and LC-MS based methods. Gene expression analysis of phase II detoxifying markers revealed significant increase in the expression of all the genes involved, due to GMG-ITC pre-treatment. GMG-ITC also caused significant decreased in the expression of NF-kB, BACE1, APP and increased the expressions of IkB and MAPT tau genes in the differentiated cells as confirmed by multiplex genetic system analysis. The effect was reflected on the expressed proteins in the differentiated cells, where GMG-ITC caused increased in expression level of Nrf2, SOD-1, NQO1, p52 and c-Rel of nuclear factor erythroid factor 2 (Nrf2) and nuclear factor kappa-B (NF-kB) pathways respectively. The findings revealed the potential of GMG-ITC to abrogate oxidative stress-induced neurodegeneration through Nrf2 and NF-kB signalling pathways.
  2. Rahmawati R, Bilad MR, Laziz AM, Nordin NAHM, Jusoh N, Putra ZA, et al.
    J Environ Manage, 2019 Nov 01;249:109359.
    PMID: 31404857 DOI: 10.1016/j.jenvman.2019.109359
    Membrane based technologies are highly reliable for water and wastewater treatment, including for removal of total oil and grease from produced water. However, performances of the pressure driven processes are highly restricted by membrane fouling and the application of traditional air bubbling system is limited by their low shear stress due to poor contacts with the membrane surface. This study develops and assesses a novel finned spacer, placed in between vertical panel, for membrane fouling control in submerged plate-and-frame module system for real produced water filtration. Results show that permeability of the panel is enhanced by 87% from 201 to 381 L/(m2 h bar). The spacer system can be operated in switching mode to accommodate two-sided panel aeration. This leads to panel permeability increment by 22% higher than the conventional vertical system. The mechanisms of finned spacer in encouraging the flow trajectory was proven by visual observation and flow simulation. The fins alter the air bubbles flow trajectory toward the membrane surface to effectively scour-off the foulant. Overall results demonstrate the efficacy of the developed spacer in projecting the air bubble trajectory toward the membrane surface and thus significantly enhances membrane panel productivity.
  3. Seth EA, Lee HC, Yusof HHBM, Nordin N, Cheah YK, Ho ETW, et al.
    PLoS One, 2020;15(7):e0236826.
    PMID: 32730314 DOI: 10.1371/journal.pone.0236826
    Down syndrome (DS), is the most common cause of intellectual disability, and is characterized by defective neurogenesis during perinatal development. To identify metabolic aberrations in early neurogenesis, we profiled neurospheres derived from the embryonic brain of Ts1Cje, a mouse model of Down syndrome. High-throughput phenotypic microarray revealed a significant decrease in utilisation of 17 out of 367 substrates and significantly higher utilisation of 6 substrates in the Ts1Cje neurospheres compared to controls. Specifically, Ts1Cje neurospheres were less efficient in the utilisation of glucose-6-phosphate suggesting a dysregulation in the energy-producing pathway. T Cje neurospheres were significantly smaller in diameter than the controls. Subsequent preliminary study on supplementation with 6-phosphogluconic acid, an intermediate of glucose-6-phosphate metabolism, was able to rescue the Ts1Cje neurosphere size. This study confirmed the perturbed pentose phosphate pathway, contributing to defects observed in Ts1Cje neurospheres. We show for the first time that this comprehensive energetic assay platform facilitates the metabolic characterisation of Ts1Cje cells and confirmed their distinguishable metabolic profiles compared to the controls.
  4. Chin VK, Chuah YK, Lee TY, Nordin N, Ibraheem ZO, Zakaria ZA, et al.
    Exp Parasitol, 2020 Sep;216:107946.
    PMID: 32622941 DOI: 10.1016/j.exppara.2020.107946
    This study was aimed at investigating the involvement of Receptor for Advanced Glycation End Products (RAGE) during malaria infection and the effects of modulating RAGE on the inflammatory cytokines release and histopathological conditions of affected organs in malarial animal model. Plasmodium berghei (P. berghei) ANKA-infected ICR mice were treated with mRAGE/pAb and rmRAGE/Fc Chimera drugs from day 1 to day 4 post infection. Survival and parasitaemia levels were monitored daily. On day 5 post infection, mice were sacrificed, blood were drawn for cytokines analysis and major organs including kidney, spleen, liver, brain and lungs were extracted for histopathological analysis. RAGE levels were increased systemically during malaria infection. Positive correlation between RAGE plasma concentration and parasitaemia development was observed. Treatment with RAGE related drugs did not improve survival of malaria-infected mice. However, significant reduction on the parasitaemia levels were recorded. On the other hand, inhibition and neutralization of RAGE production during the infection significantly increased the plasma levels of interleukin (IL-4, IL-17A, IL-10 and IL-2) and reduced interferon (IFN)-γ secretion. Histopathological analysis revealed that all treated malarial mice showed a better outcome in histological assessment of affected organs (brain, liver, spleen, lungs and kidney). RAGE is involved in malaria pathogenesis and targeting RAGE could be beneficial in malaria infected host in which RAGE inhibition or neutralization increased the release of anti-inflammatory cytokines (IL-10 and IL-4) and reduce pro-inflammatory cytokine (IFNγ) which may help alleviate tissue injury and improve histopathological conditions of affected organs during the infection.
  5. Taha H, Hadi AH, Nordin N, Najmuldeen IA, Mohamad K, Shirota O, et al.
    Chem Pharm Bull (Tokyo), 2011;59(7):896-7.
    PMID: 21720044
    Pseuduvarines A (1) and B (2), two new dioxoaporphine alkaloids with an amino moiety, were isolated from the stem bark of Pseuduvaria rugosa and their structures were elucidated by combination of 2D-NMR spectroscopic analysis. Pseuduvarines A (1) and B (2) showed cytotoxicity against MCF7, HepG2, and HL-60 (1: IC₅₀, 0.9, 21.7, and >50.0 µM, respectively, 2: IC₅₀ >50.0, 15.7, and 12.4 µM, respectively).
  6. Abdullahi SA, Unyah NZ, Nordin N, Basir R, Nasir WM, Alapid AA, et al.
    Mini Rev Med Chem, 2020;20(9):739-753.
    PMID: 31660810 DOI: 10.2174/1389557519666191029105736
    Identification of drug target in protozoan T. gondii is an important step in the development of chemotherapeutic agents. Likewise, exploring phytochemical compounds effective against the parasite can lead to the development of new drug agent that can be useful for prophylaxis and treatment of toxoplasmosis. In this review, we searched for the relevant literature on the herbs that were tested against T. gondii either in vitro or in vivo, as well as different phytochemicals and their potential activities on T. gondii. Potential activities of major phytochemicals, such as alkaloid, flavonoid, terpenoids and tannins on various target sites on T. gondii as well as other related parasites was discussed. It is believed that the phytochemicals from natural sources are potential drug candidates for the treatment of toxoplasmosis with little or no toxicity to humans.
  7. Nordin N, Yeap SK, Rahman HS, Zamberi NR, Mohamad NE, Abu N, et al.
    Molecules, 2020 Jun 09;25(11).
    PMID: 32526880 DOI: 10.3390/molecules25112670
    Cancer nano-therapy has been progressing rapidly with the introduction of many novel drug delivery systems. The previous study has reported on the in vitro cytotoxicity of citral-loaded nanostructured lipid carrier (NLC-Citral) on MDA-MB-231 cells and some preliminary in vivo antitumor effects on 4T1 breast cancer cells challenged mice. However, the in vivo apoptosis induction and anti-metastatic effects of NLC-Citral have yet to be reported. In this study, the in vitro cytotoxic, anti-migration, and anti-invasion effects of NLC-Citral were tested on 4T1 breast cancer cells. In addition, the in vivo antitumor effects of oral delivery of NLC-Citral was also evaluated on BALB/c mice induced with 4T1 cells. In vitro cytotoxicity results showed that NLC-Citral and citral gave similar IC50 values on 4T1 cells. However, wound healing, migration, and invasion assays reflected better in vitro anti-metastasis potential for NLC-Citral than citral alone. Results from the in vivo study indicated that both NLC-Citral and citral have anti-tumor and anti-metastasis effects, whereby the NLC-Citral showed better efficacy than citral in all experiments. Also, the delay of tumor progression was through the suppression of the c-myc gene expression and induction of apoptosis in the tumor. In addition, the inhibition of metastasis of 4T1 cells to lung and bone marrow by the NLC-Citral and citral treatments was correlated with the downregulation of metastasis-related genes expression including MMP-9, ICAM, iNOS, and NF-kB and the angiogenesis-related proteins including G-CSF alpha, Eotaxin, bFGF, VEGF, IL-1alpha, and M-CSF in the tumor. Moreover, NLC-Citral showed greater downregulation of MMP-9, iNOS, ICAM, Eotaxin, bFGF, VEGF, and M-CSF than citral treatment in the 4T1-challenged mice, which may contribute to the better anti-metastatic effect of the encapsulated citral. This study suggests that NLC is a potential and effective delivery system for citral to target triple-negative breast cancer.
  8. Gan CC, Jalalonmuhali M, Nordin NZ, Abdul Wahab MZ, Yahya R, Ng KP, et al.
    Transplant Proc, 2021 Apr;53(3):856-864.
    PMID: 33487455 DOI: 10.1016/j.transproceed.2020.10.038
    Malaysia has a low deceased-donor donation rate and has not embarked on a paired kidney exchange program; therefore, ABO-incompatible and HLA-incompatible transplantation remain the main contributor to the sustainability of the national kidney transplantation (KT) program. There were 26 cases of ABO-incompatible KTs performed from 2011 to 2018 in 3 major transplant centers, namely, Hospital Kuala Lumpur, University Malaya Medical Centre, and Prince Court Medical Centre. We collected perioperative and follow-up data through June 2019. The desensitization protocol varies and is center specific: the localized Japanese protocol and Swedish protocol with a target anti-A/B isoagglutinin titer of 16 or 32 on the day of transplant. The induction and tacrolimus-based maintenance protocol was nearly identical. The median follow-up time was 62.3 months (interquartile range, 37.0-79.7). Fifteen subjects had the highest predesensitization anti-A/B titer of ≥32 (57.7%). The acute cellular rejection and antibody-mediated rejection incidence were 12.5% (3 cases) and 8.3% (2 cases), respectively. Patient, graft, and death-censored graft survival rates were 96.2%, 92.3%, and 96.0%, respectively, 1 year post-living-donor KT (LDKT) and 96.2%, 87.2%, and 90.7%, respectively, 5 years post-LDKT. Our experience shows that ABO-incompatible LDKT using a suitable desensitization technique could be a safe and feasible choice for LDKT even with varied desensitization regimens for recipients with relatively high baseline isoagglutinin titers.
  9. Teow Kheng Leong K, Abu Kassim SNA, Sidhu JK, Zohari Z, Sivalingam T, Ramasamy S, et al.
    BMC Ophthalmol, 2021 Mar 09;21(1):128.
    PMID: 33750348 DOI: 10.1186/s12886-021-01882-x
    BACKGROUND: The current practice for new-born eye examination by an Ophthalmologist in Malaysian hospitals is limited to only preterm new-borns, syndromic or ill infants. Healthy term new-borns are usually discharged without a thorough eye examination. This study is aimed at determining the proportion and types of ocular abnormalities detected in purportedly healthy term new-borns.

    METHOD: This cross-sectional study is comprised of 203 participants, all purportedly healthy term new-born infants from the Obstetrics and Gynaecology ward at Hospital Kuala Lumpur over a 6 months period. The examination list includes external eye examination, red reflex test, and fundus imaging using a wide-field digital retinal imaging system (Phoenix Clinical ICON Paediatric Retinal Camera) by a trained Investigator. The pathologies detected were documented. The results were compared and correlated with similar studies published in the literature previously.

    RESULTS: Total ocular abnormalities were detected in 34% of the infants. The most common finding was retinal haemorrhage in 29.6% of the infants, of which 53.3% occurred bilaterally. Spontaneous vaginal delivery (SVD) remained the greatest risk factor which has nearly 3.5 times higher risk of new-borns developing retinal haemorrhage compared to Lower Segment Caesarean Section (LSCS). There was a 6% increased likelihood of developing retinal haemorrhage for every 1-min increment in the duration of 2nd stage of labour.

    CONCLUSION: Universal eye screening for all new-borns using a wide-field digital imaging system is realistically possible, safe, and useful in detecting posterior segment disorders. The most common abnormality detected is retinal haemorrhage.

  10. Sharudin SN, Huda Al Firdas AN, Hitam S, Hamid Z, Nordin NJ, Othman N, et al.
    Malays J Pathol, 2020 Aug;42(2):287-291.
    PMID: 32860384
    INTRODUCTION: Lymphoma of parapharyngeal space (PPS) is a rare condition. The clinical presentations may vary and often masquerades as infection or an inflammatory condition. A misdiagnosis will lead to a delay in treatment of the disease. Due to the complex anatomy of PPS, any attributed pressure from masses can lead to a life-threatening event such as cardiac syncope.

    CASE REPORT: We report a rare case of PPS B-cell non-Hodgkin lymphoma with superimposed Tuberculosis (TB) and fungal infection that presents with several episodes of syncope and hemodynamic depression.

    DISCUSSION: The clinical entities in PPS lesions syncope and its associated syndromes, pathophysiology, and differential diagnosis together with possible managements are further discussed.

  11. Lee SL, Ho LN, Ong SA, Wong YS, Voon CH, Khalik WF, et al.
    Chemosphere, 2017 Jan;166:118-125.
    PMID: 27693872 DOI: 10.1016/j.chemosphere.2016.09.082
    Photocatalytic fuel cell (PFC) is a potential wastewater treatment technology that can generate electricity from the conversion of chemical energy of organic pollutants. An immobilized ZnO/Zn fabricated by sonication and heat attachment method was applied as the photoanode and Pt/C plate was used as the cathode of the PFC in this study. Factors that affect the decolorization efficiency and electricity generation of the PFC such as different initial dye concentrations and pH were investigated. Results revealed that the degradation of Reactive Green 19 (RG19) was enhanced in a closed circuit PFC compared with that of a opened circuit PFC. Almost 100% decolorization could be achieved in 8 h when 250 mL of 30 mg L(-1) of RG19 was treated in a PFC without any supporting electrolyte. The highest short circuit current of 0.0427 mA cm(-2) and maximum power density of 0.0102 mW cm(-2) was obtained by PFC using 30 mg L(-1) of RG19. The correlation between dye degradation, conductivity and voltage output were also investigated and discussed.
  12. El Habbash AI, Mohd Hashim N, Ibrahim MY, Yahayu M, Omer FAE, Abd Rahman M, et al.
    PeerJ, 2017;5:e3460.
    PMID: 28740747 DOI: 10.7717/peerj.3460
    Natural medicinal products possess diverse chemical structures and have been an essential source for drug discovery. Therefore, in this study, α-mangostin (AM) is a plant-derived compound was investigated for the apoptotic effect on human cervical cancer cells (HeLa). The cytotoxic effects of AM on the viability of HeLa and human normal ovarian cell line (SV40) were evaluated by using MTT assay. Results showed that AM inhibited HeLa cells viability at concentration- and time-dependent manner with IC50 value of 24.53 ± 1.48 µM at 24 h. The apoptogenic effects of AM on HeLa were assessed using fluorescence microscopy analysis. The effect of AM on cell proliferation was also studied through clonogenic assay. ROS production evaluation, flow cytometry (cell cycle) analysis, caspases 3/7, 8, and 9 assessment and multiple cytotoxicity assays were conducted to determine the mechanism of cell apoptosis. This was associated with G2/M phase cell cycle arrest and elevation in ROS production. AM induced mitochondrial apoptosis which was confirmed based on the significant increase in the levels of caspases 3/7 and 9 in a dose-dependent manner. Furthermore, the MMP disruption and increased cell permeability, concurrent with cytochrome c release from the mitochondria to the cytosol provided evidence that AM can induce apoptosis via mitochondrial-dependent pathway. AM exerted a remarkable antitumor effect and induced characteristic apoptogenic morphological changes on HeLa cells, which indicates the occurrence of cell death. This study reveals that AM could be a potential antitumor compound on cervical cancer in vitro and can be considered for further cervical cancer preclinical and in vivo testing.
  13. Oon YL, Ong SA, Ho LN, Wong YS, Dahalan FA, Oon YS, et al.
    Bioresour Technol, 2018 Oct;266:97-108.
    PMID: 29957296 DOI: 10.1016/j.biortech.2018.06.035
    This study explored the influence of azo dye concentration, salinity (with and without aeration) and nitrate concentration on bioelectricity generation and treatment performance in the up-flow constructed wetland-microbial fuel cell (UFCW-MFC) system. The decolourisation efficiencies were up to 91% for 500 mg/L of Acid Red 18 (AR18). However, the power density declined with the increment in azo dye concentration. The results suggest that the combination of salinity and aeration at an optimum level improved the power performance. The highest power density achieved was 8.67 mW/m2. The increase of nitrate by 3-fold led to decrease in decolourisation and power density of the system. The findings revealed that the electron acceptors (AR18, nitrate and anode) competed at the anodic region for electrons and the electron transfer pathways would directly influence the treatment and power performance of UFCW-MFC. The planted UFCW-MFC significantly outweighed the plant-free control in power performance.
  14. Oon YL, Ong SA, Ho LN, Wong YS, Dahalan FA, Oon YS, et al.
    Bioresour Technol, 2017 Jan;224:265-275.
    PMID: 27864130 DOI: 10.1016/j.biortech.2016.10.079
    This study investigates the role of plant (Elodea nuttallii) and effect of supplementary aeration on wastewater treatment and bioelectricity generation in an up-flow constructed wetland-microbial fuel cell (UFCW-MFC). Aeration rates were varied from 1900 to 0mL/min and a control reactor was operated without supplementary aeration. 600mL/min was the optimum aeration flow rate to achieve highest energy recovery as the oxygen was sufficient to use as terminal electron acceptor for electrical current generation. The maximum voltage output, power density, normalized energy recovery and Coulombic efficiency were 545.77±25mV, 184.75±7.50mW/m3, 204.49W/kg COD, 1.29W/m3 and 10.28%, respectively. The variation of aeration flow rates influenced the NO3- and NH4+ removal differently as nitrification and denitrification involved conflicting requirement. In terms of wastewater treatment performance, at 60mL/min aeration rate, UFCW-MFC achieved 50 and 81% of NO3- and NH4+ removal, respectively. E. nuttallii enhanced nitrification by 17% and significantly contributed to bioelectricity generation.
  15. Hamid AA, Joharry MK, Mun-Fun H, Hamzah SN, Rejali Z, Yazid MN, et al.
    Reprod Biol, 2017 Mar;17(1):9-18.
    PMID: 28262444 DOI: 10.1016/j.repbio.2017.02.001
    Amniotic fluid (AF) is now known to harbor highly potent stem cells, making it an excellent source for cell therapy. However, most of the stem cells isolated are from AF of mid-term pregnancies in which the collection procedure involves an invasive technique termed amniocentesis. This has limited the access in getting the fluid as the technique imposes certain level of risks to the mother as well as to the fetus. Alternatively, getting AF from full-term pregnancies or during deliveries would be a better resolution. Unfortunately, very few studies have isolated stem cells from AF at this stage of gestation, the fluid that is merely discarded. The question remains whether full-term AF harbors stem cells of similar potency as of the stem cells of mid-term AF. Here, we aim to review the prospect of having this type of stem cells by first looking at the origin and contents of AF particularly during different gestation period. We will then discuss the possibility that the AF, at full term, contains a population of highly potent stem cells. These stem cells are distinct from, and probably more potent than the AF mesenchymal stem cells (AF-MSCs) isolated from full-term AF. By comparing the studies on stem cells isolated from mid-term versus full-term AF from various species, we intend to address the prospect of having highly potent amniotic fluid stem cells from AF of full-term pregnancies in human and animals.
  16. Eliseus A, Bilad MR, Nordin NAHM, Khan AL, Putra ZA, Wirzal MDH, et al.
    J Environ Manage, 2018 Dec 15;228:529-537.
    PMID: 30273771 DOI: 10.1016/j.jenvman.2018.09.029
    Membrane fouling is a major challenge in membrane bioreactors (MBRs) and its effective handling is the key to improve their competitiveness. Tilting panel system offers significant improvements for fouling control but is strictly limited to one-sided panel. In this study, we assess a two-way switch tilting panel system that enables two-sided membranes and project its implications on performance and energy footprint. Results show that tilting a panel improves permeance by up to 20% to reach a plateau flux thanks to better contacts between air bubbles and the membrane surface to scour-off the foulant. A plateau permeance could be achieved at aeration rate of as low as 0.90 l min-1, a condition untenable by vertical panel even at twice of the aeration rate. Switching at short periods (<5min) can maintain the hydraulic performance as in no-switch (static system), enables application of a two-sided switching panel. A comparison of vertical panel under 1.80 l min-1 aeration rate with a switching panel at a half of the rate, switched at 1 min period shows ≈10% higher permeance of the later. Since periodic switching consumes a very low energy (0.55% of the total of 0.276 kWh m-3), with reduction of aeration by 50%, the switching tilted panel offers 41% more energy efficient than a referenced full-scale MBR (0.390 kWh m-3). Overall results are very compelling and highly attractive for significant improvements of MBR technologies.
  17. Lee SL, Ho LN, Ong SA, Wong YS, Voon CH, Khalik WF, et al.
    Chemosphere, 2018 Oct;209:935-943.
    PMID: 30114743 DOI: 10.1016/j.chemosphere.2018.06.157
    Reactive green 19, acid orange 7 and methylene blue are employed as the organic pollutants in this work. A photocatalytic fuel cell is constructed based on the idea of immobilizing zinc oxide onto zinc photoanode and platinum loaded carbon cathode, both evaluated under sunlight and ultraviolet irradiation, respectively. Influence of light and dye structures on the performance of photocatalytic fuel cell are examined. With reactive green 19, 93% and 86% of color removal are achieved after 8 h of photocatalytic fuel cell treatment under sunlight and ultraviolet irradiation, respectively. The decolorization rate of diazo reactive green 19 is higher than acid orange 7 (monoazo dye) when both dyes are treated by photocatalytic fuel cell under sunlight and ultraviolet irradiation, as the electron releasing groups (-NH-triazine) allow reactive green 19 easier to be oxidized. Comparatively, acid orange 7 is less favorable to be oxidized. The degradation of methylene blue is enhanced under sunlight irradiation due to the occurrence of self-sensitized photodegradation. When methylene blue is employed in the photocatalytic fuel cell under sunlight irradiation, the short circuit current (0.0129 mA cm-2) and maximum power density (0.0032 mW cm-2) of photocatalytic fuel cell greatly improved.
  18. Mohamad NE, Yeap SK, Abu N, Lim KL, Zamberi NR, Nordin N, et al.
    Food Nutr Res, 2019;63.
    PMID: 30814922 DOI: 10.29219/fnr.v63.1616
    Background: Coconut water and vinegars have been reported to possess potential anti-tumour and immunostimulatory effects. However, the anti-tumour, anti-inflammatory and immunostimulatory effects of coconut water vinegar have yet to be tested.

    Objective: This study investigated the in vitro and in vivo anti-tumour effects of coconut water vinegar on 4T1 breast cancer cells.

    Methods: The 4T1 cells were treated with freeze-dried coconut water vinegar and subjected to MTT cell viability, BrdU, annexin V/PI apoptosis, cell cycle and wound healing assays for the in vitro analysis. For the in vivo chemopreventive evaluation, mice challenged with 4T1 cells were treated with 0.08or 2.00 mL/kg body weight of fresh coconut water vinegar for 28 days. Tumour weight, apoptosis of tumour cells, metastasis and immunity of untreated mice and coconut water vinegar-treated 4T1 challenged mice were compared.

    Results: Freeze-dried coconut water vinegar reduced the cell viability, induced apoptosis and delayed the wound healing effect of 4T1 cells in vitro. In vivo, coconut water vinegar delayed 4T1 breast cancer progression in mice by inducing apoptosis and delaying the metastasis. Furthermore, coconut water vinegar also promoted immune cell cytotoxicity and production of anticancer cytokines. The results indicate that coconut water vinegar delays breast cancer progression by inducing apoptosis in breast cancer cells, suppressing metastasis and activating anti-tumour immunity.

    Conclusion: Coconut water vinegar is a potential health food ingredient with a chemopreventive effect.

  19. Nordin N, Yeap SK, Rahman HS, Zamberi NR, Abu N, Mohamad NE, et al.
    Sci Rep, 2019 02 07;9(1):1614.
    PMID: 30733560 DOI: 10.1038/s41598-018-38214-x
    Very recently, we postulated that the incorporation of citral into nanostructured lipid carrier (NLC-Citral) improves solubility and delivery of the citral without toxic effects in vivo. Thus, the objective of this study is to evaluate anti-cancer effects of NLC-Citral in MDA MB-231 cells in vitro through the Annexin V, cell cycle, JC-1 and fluorometric assays. Additionally, this study is aimed to effects of NLC-Citral in reducing the tumor weight and size in 4T1 induced murine breast cancer model. Results showed that NLC-Citral induced apoptosis and G2/M arrest in MDA MB-231 cells. Furthermore, a prominent anti-metastatic ability of NLC-Citral was demonstrated in vitro using scratch, migration and invasion assays. A significant reduction of migrated and invaded cells was observed in the NLC-Citral treated MDA MB-231 cells. To further evaluate the apoptotic and anti-metastatic mechanism of NLC-Citral at the molecular level, microarray-based gene expression and proteomic profiling were conducted. Based on the result obtained, NLC-Citral was found to regulate several important signaling pathways related to cancer development such as apoptosis, cell cycle, and metastasis signaling pathways. Additionally, gene expression analysis was validated through the targeted RNA sequencing and real-time polymerase chain reaction. In conclusion, the NLC-Citral inhibited the proliferation of breast cancer cells in vitro, majorly through the induction of apoptosis, anti-metastasis, anti-angiogenesis potentials, and reducing the tumor weight and size without altering the therapeutic effects of citral.
  20. Lee KW, Ching SM, Hoo FK, Ramachandran V, Chong SC, Tusimin M, et al.
    Qual Life Res, 2020 Oct;29(10):2725-2736.
    PMID: 32430781 DOI: 10.1007/s11136-020-02532-3
    PURPOSE: This study aimed to identify factors associated with poor-to-moderate quality of life (QOL) among women with gestational diabetes mellitus (GDM) in two tertiary hospitals in Malaysia.

    METHODS: A cross-sectional study was conducted among 526 pregnant women with GDM in two tertiary hospitals in Malaysia. Diabetes-related QOL was assessed using the Asian Diabetes Quality of Life Scale (AsianDQoL). Socio-demographic characteristics, glucose monitoring treatments for GDM, past obstetric history, concurrent medical problems and a family history of diseases were captured from patient records. A multiple logistic regression was used for analysis.

    RESULTS: A total of 526 respondents with GDM entered the analysis. The median age of the respondents was 32 (interquartile range = 7) while 82.3% were Malay women. More than half of the respondents (69.5%) received an oral hypoglycaemic agent (OHA), and/or diet modification in controlling their GDM. The study reported that 23.2% of the respondents had poor-to-moderate QOL. Those with a family history of depression and/or anxiety (adjusted Odds ratio [AOR] 6.934, 95% confidence interval [CI] 2.280-21.081), and a family history of GDM (AOR 1.814, 95% CI 1.185-2.778) were at higher odds of suffering from poor-to-moderate QOL compared to those without a family history. Similarly, those who received insulin, with or without OHA, and/or are on diet modification (AOR 1.955, 95% CI 1.243-3.074) were at higher odds of suffering from poor-to-moderate QOL compared to those receiving OHA and/or diet modification.

    CONCLUSION: Nearly one-quarter of Malaysian women with GDM have poor-to-moderate QOL. GDM women with a family history of depression and/or anxiety, family history of GDM, and those who received insulin, with or without OHA, and/or are on diet modification were associated with poor-to-moderate QOL.

    TRIAL REGISTRATION: NMRR-17-2264-37814.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links