Displaying publications 121 - 140 of 998 in total

Abstract:
Sort:
  1. Loo D
    Med J Malaya, 1965 Jun;19(4):259-62.
    PMID: 4220849
    Matched MeSH terms: Culture Media
  2. Himratul-Aznita, W.H.
    Ann Dent, 2001;8(1):-.
    MyJurnal
    Until today there are still a high percentage of oral microorganisms have not been identified due to inability to isolate using the cultural method. However, identification of uncultivable microorganisms associated with disease will permits clinicians for a more accurate diagnosis, treatment and preventive measures. Unculturable microorganisms are also involved in disease and may account for treatment failure since their susceptibility to antimicrobial agents would be unknown. Thus, the opportunity for a rational approach to the treatment of disease relies on the state of knowledge concerning its aetiology and pathogenesis. Recently developed molecular methods have made it possible to characterise mixed microflora in their entirety, including the substantial numbers of unculturable bacteria. The development of rapid molecular methods like PCR provides a reliable identification of unculturable microorganisms. This paper will review the current literature regarding the PCR techniques used to identify uncultivable oral microflora.
    Matched MeSH terms: Culture Techniques
  3. Nur Syafiqah Abdul Malik, Adekunle Qudus Adeleke
    MyJurnal
    This paper assessed the significant relationship between organizational culture and
    material risk among Kuantan Malaysian construction industries. Survey was
    conducted among 10 registered G7 contractors operating in Kuantan construction
    industry. Proportionate stratified random sampling was used out of which 10
    questionnaires were distributed for pilot study. Methodologically, this research is
    perhaps the first to assess the relationship between organizational culture and
    material risk among Malaysian construction industries with five point Likert scale
    categories of material risk from previous studies. Statistical analysis affirmed a
    significant positive relationship between organizational culture and material risk
    among Malaysian construction industries through Statistical Package for Social
    Sciences (SPSS).
    Matched MeSH terms: Organizational Culture
  4. Ng HS, Chai CXY, Chow YH, Loh WLC, Yim HS, Tan JS, et al.
    J Biosci Bioeng, 2018 May;125(5):585-589.
    PMID: 29339003 DOI: 10.1016/j.jbiosc.2017.12.010
    Xylanase enzyme degrades linear polysaccharide β-1,4 xylan and the hemicellulose of the plant cell wall. There is a growing demand in finding a cost-effective alternative for industrial scale production of xylanase with high purity for pharmaceutical applications. In this study, an alcohol/salt aqueous biphasic system (ABS) was adopted to recover xylanase from the Bacillus subtilis fermentation broth. The effects of several ABS parameters such as types and concentrations of alcohols and salts (i.e., sulphate, phosphate, and citrate), amount of crude loading and pH of the system on the recovery of xylanase were investigated. Partition coefficient of xylanase (KE), selectivity (S) and yield (YT) of xylanase in top phase of the ABS were measured. Highest KE (6.58 ± 0.05) and selectivity (4.84 ± 0.33) were recorded in an ABS of pH 8 composed of 26% (w/w) 1-propanol, 18% (w/w) ammonium sulphate. High YT of 71.88% ± 0.15 and a purification fold (PFT) of 5.74 ± 0.33 were recorded with this optimum recovery of xylanase using alcohol/salt ABS. The purity of xylanase recovered was then qualitatively verified with sodium dodecyl sulphate (SDS) gel electrophoresis. The SDS profile revealed the purified xylanase was successfully obtained in the top phase of the one-step 1-propanol/sulphate ABS with a distinct single band.
    Matched MeSH terms: Culture Media/chemistry*; Batch Cell Culture Techniques/methods
  5. Azhar MZ, Varma SL
    Singapore Med J, 1996 Feb;37(1):82-5.
    PMID: 8783920
    The families of 83 schizophrenic patients were studied to find out the level of expressed emotion in them leading to the relapse of these patients. The patients were having more than two episodes of schizophrenia (DSM-III-R). The most salient finding was the virtual absence of high level of expressed emotion as the cause of relapse. It was found that the majority of the families (72.3%) had low expressed emotion while only 25.3% had high expressed emotion and only 2.4% families were equivocal in this respect. This finding is in contrast with various other findings in this area. The most likely explanation for this disagreement is the cultural differences between Malaysian patients and Western patients.
    Matched MeSH terms: Culture
  6. Yuwono H, Eliyana A, Buchdadi AD, Hamidah, Jalil NIA
    PLoS One, 2023;18(2):e0281220.
    PMID: 36730275 DOI: 10.1371/journal.pone.0281220
    This study was conducted to determine the Organizational Citizenship Behavior (OCB) of correctional officers at the Super Maximum-Security Prison in Indonesia which is influenced by Transformational Leadership (TL) either directly or indirectly through Affective Organizational Commitment (AOC), Job Satisfaction (JS) and Job Self-Efficacy (JSE). This research was conducted on 224 prison officers as a sample size. Data was collected by means of a questionnaire distributed via Google Form. Robustness was built in two stages; the first stage was through a try out of research instruments and the second stage was through data collection which was done with the time lagged method. Furthermore, the data were analyzed using Structural Equation Modeling (SEM) with the help of AMOS 24 software. The results of this study indicate that triple mediation consisting of AOC, JS and JSE fully mediates the effect of TL on OCB. The novelty of this research lies in the role of triple mediation as the focuses of the study. Furthermore, the triple mediation has been proven to fully mediate the effect of TL on OCB thus may serve as empirical evidence that contribute to theoretical and practical developments in the fields of Human Resource Management and Organizational Behavior.
    Matched MeSH terms: Organizational Culture
  7. Chua P, Lim WK
    Cell Biol Int, 2023 Feb;47(2):367-373.
    PMID: 36423248 DOI: 10.1002/cbin.11966
    The culture of adherent mammalian cells involves adhesion to the tissue culture vessel. This requires attachment factors from serum and/or a suitable substrate on the vessel surface. Some cells require collagen or other substrates to promote neurite outgrowth, differentiation or growth. However, laboratories often lack guidance on the selection and/or optimisation of collagen. We model such selection/optimisation work in the PC12 neuronal cell line. PC12 (NS-1 variant) cells require a substrate for adherence. Comparing cell attachment against a series of substrates, we found collagen IV to be optimal. We show by comparison of morphology against a range of concentrations that 10 µg/ml is sufficient for supporting cell attachment, and also differentiation. PC12 cells from Riken Cell Bank do not require a substrate for routine culturing but only for differentiation. As all substrates supported attachment equally well, we used a novel serum-free approach and identified collagen IV as its preferred substrate. For these cells, Dulbecco's modified eagle's medium but not Roswell Park Memorial Institute (RPMI) media supports normal cell attachment. However, coating with collagen IV enabled the cells to grow equally well in RPMI. Hence the strategic use of collagen is essential in laboratories working with anchorage-dependent cell lines.
    Matched MeSH terms: Cell Culture Techniques
  8. Nasoha NZ, Luthfi AAI, Roslan MF, Hariz HB, Bukhari NA, Manaf SFA
    Sci Rep, 2023 Nov 07;13(1):19284.
    PMID: 37935748 DOI: 10.1038/s41598-023-46061-8
    This study explores utilizing pineapple peel (PP) hydrolysate as a promising carbon source for xylitol production, covering scopes from the pre-treatment to the fermentation process. The highest xylose concentration achieved was around 20 g/L via mild acid hydrolysis (5% nitric acid, 105 °C, 20-min residence time) with a solid loading of 10%. Two sets fermentability experiments were carried out of varying pH levels in synthetic media that includes acetic acid as the main inhibitors and hydrolysate supplemented with diverse nitrogen source. The results revealed that pH 7 exhibited the highest xylitol production, yielding 0.35 g/g. Furthermore, urea was found to be a highly promising and cost-effective substitute for yeast extract, as it yielded a comparable xylitol production of 0.31 g/g with marginal difference of only 0.01 g/g compared to yeast extract further highlights the viability of urea as the preferred option for reducing xylitol production cost. The absence of a significant difference between the synthetic media and hydrolysate, with only a marginal variance of 0.35 to 0.32 g/g, implies that acetic acid is indeed the primary constraint in xylitol production using PP hydrolysate. The study sheds light on PP biomass's potential for xylitol production, aligning economic benefits with environmental sustainability and waste management.
    Matched MeSH terms: Culture Media
  9. Liu G, Tiang MF, Ma S, Wei Z, Liang X, Sajab MS, et al.
    PeerJ, 2024;12:e16995.
    PMID: 38426145 DOI: 10.7717/peerj.16995
    BACKGROUND: Hermetia illucens (HI), commonly known as the black soldier fly, has been recognized for its prowess in resource utilization and environmental protection because of its ability to transform organic waste into animal feed for livestock, poultry, and aquaculture. However, the potential of the black soldier fly's high protein content for more than cheap feedstock is still largely unexplored.

    METHODS: This study innovatively explores the potential of H. illucens larvae (HIL) protein as a peptone substitute for microbial culture media. Four commercial proteases (alkaline protease, trypsin, trypsase, and papain) were explored to hydrolyze the defatted HIL, and the experimental conditions were optimized via response surface methodology experimental design. The hydrolysate of the defatted HIL was subsequently vacuum freeze-dried and deployed as a growth medium for three bacterial strains (Staphylococcus aureus, Bacillus subtilis, and Escherichia coli) to determine the growth kinetics between the HIL peptone and commercial peptone.

    RESULTS: The optimal conditions were 1.70% w/w complex enzyme (alkaline protease: trypsin at 1:1 ratio) at pH 7.0 and 54 °C for a duration of 4 h. Under these conditions, the hydrolysis of defatted HIL yielded 19.25% ±0.49%. A growth kinetic analysis showed no significant difference in growth parameters (μmax, Xmax, and λ) between the HIL peptone and commercial peptone, demonstrating that the HIL hydrolysate could serve as an effective, low-cost alternative to commercial peptone. This study introduces an innovative approach to HIL protein resource utilization, broadening its application beyond its current use in animal feed.

    Matched MeSH terms: Culture Media
  10. de Jong AW, Dieleman C, Carbia M, Mohd Tap R, Hagen F
    J Clin Microbiol, 2021 03 19;59(4).
    PMID: 33536293 DOI: 10.1128/JCM.03220-20
    Non-albicans Candida species are emerging in the nosocomial environment, with the multidrug-resistant (MDR) species Candida auris being the most notorious example. Consequently, rapid and accurate species identification has become essential. The objective of this study was to evaluate five commercially available chromogenic media for the presumptive identification of C. auris Two novel chromogenic formulations, CHROMagar Candida Plus (CHROMagar) and HiCrome C. auris MDR selective agar (HiMedia), and three reference media, CandiSelect (Bio-Rad), CHROMagar Candida (CHROMagar), and Chromatic Candida (Liofilchem), were inoculated with a collection of 9 genetically diverse C. auris strains and 35 strains from closely related comparator species. After 48 h of incubation, the media were evaluated for their ability to detect and identify C. auris All media had the same limitations in the differentiation of the more common species Candida dubliniensis and Candida glabrata Only on CHROMagar Candida Plus did C. auris colonies develop a species-specific coloration. Nevertheless, the closely related pathogenic species Candida pseudohaemulonii and Candida vulturna developed a similar appearance as C. auris on this medium. CHROMagar Candida Plus was shown to be superior in the detection and identification of C. auris, with 100% inclusivity for C. auris compared to 0% and 33% for the reference media and HiCrome C. auris MDR selective agar, respectively. Although C. vulturna and C. pseudohaemulonii can cause false positives, CHROMagar Candida Plus was shown to be a valuable addition to the plethora of mostly molecular methods for C. auris detection and identification.
    Matched MeSH terms: Culture Media
  11. Nieland S, Barig S, Salzmann J, Gehrau F, Zamani AI, Richter A, et al.
    Microb Biotechnol, 2021 Jul;14(4):1422-1432.
    PMID: 33421319 DOI: 10.1111/1751-7915.13739
    To set a benchmark in fungal growth rate, a differential analysis of prototrophic Aspergillus fumigatus AR04 with three ascomycetes applied in > 103 t year-1 scale was performed, i.e. Ashbya gosspyii (riboflavin), Aspergillus niger (citric acid) and Aspergillus oryzae (food-processing). While radial colony growth decreased 0.5-fold when A. gossypii was cultivated at 40°C instead of 28°C, A. fumigatus AR04 responded with 1.7-fold faster hyphal growth. A. niger and A. oryzae formed colonies at 40°C, but not at 43°C. Moreover, all A. fumigatus strains tested grew even at 49°C. In chemostat experiments, A. fumigatus AR04 reached steady state at a dilution rate of 0.7 h-1 at 40°C, 120% more than reported for A. gossypii at 28°C. To study mycelial growth rates under unlimited conditions, carbon dioxide increase rates were calculated from concentrations detected online in the exhaust of batch fermentations for 3 h only. All rates calculated suggest that A. fumigatus AR04 approximates Arrhenius' rule when comparing short cultivations at 30°C with those at 40°C. Linearization of the exponential phase and comparison of the slopes revealed an increase to 192% by the 10°C up-shift.
    Matched MeSH terms: Culture Media
  12. Tan LK, Ooi PT, Carniel E, Thong KL
    PLoS One, 2014;9(8):e106329.
    PMID: 25170941 DOI: 10.1371/journal.pone.0106329
    Y. enterocolitica and Y. pseudotuberculosis are important food borne pathogens. However, the presence of competitive microbiota makes the isolation of Y. enterocolitica and Y. pseudotuberculosis from naturally contaminated foods difficult. We attempted to evaluate the performance of a modified Cefsulodin-Irgasan-Novobiocin (CIN) agar in the differentiation of Y. enterocolitica from non-Yersinia species, particularly the natural intestinal microbiota. The modified CIN enabled the growth of Y. enterocolitica colonies with the same efficiency as CIN and Luria-Bertani agar. The detection limits of the modified CIN for Y. enterocolitica in culture medium (10 cfu/ml) and in artificially contaminated pork (10(4) cfu/ml) were also comparable to those of CIN. However, the modified CIN provided a better discrimination of Yersinia colonies from other bacteria exhibiting Yersinia-like colonies on CIN (H2S-producing Citrobacter freundii, C. braakii, Enterobacter cloacae, Aeromonas hydrophila, Providencia rettgeri, and Morganella morganii). The modified CIN exhibited a higher recovery rate of Y. enterocolitica from artificially prepared bacterial cultures and naturally contaminated samples compared with CIN. Our results thus demonstrated that the use of modified CIN may be a valuable means to increase the recovery rate of food borne Yersinia from natural samples, which are usually contaminated by multiple types of bacteria.
    Matched MeSH terms: Culture Media/pharmacology; Culture Media/chemistry*
  13. Abdul Khalil K, Mustafa S, Mohammad R, Bin Ariff A, Shaari Y, Abdul Manap Y, et al.
    Biomed Res Int, 2014;2014:787989.
    PMID: 24527457 DOI: 10.1155/2014/787989
    This study was undertaken to optimize skim milk and yeast extract concentration as a cultivation medium for optimal Bifidobacteria pseudocatenulatum G4 (G4) biomass and β -galactosidase production as well as lactose and free amino nitrogen (FAN) balance after cultivation period. Optimization process in this study involved four steps: screening for significant factors using 2(3) full factorial design, steepest ascent, optimization using FCCD-RSM, and verification. From screening steps, skim milk and yeast extract showed significant influence on the biomass production and, based on the steepest ascent step, middle points of skim milk (6% wt/vol) and yeast extract (1.89% wt/vol) were obtained. A polynomial regression model in FCCD-RSM revealed that both factors were found significant and the strongest influence was given by skim milk concentration. Optimum concentrations of skim milk and yeast extract for maximum biomass G4 and β -galactosidase production meanwhile low in lactose and FAN balance after cultivation period were 5.89% (wt/vol) and 2.31% (wt/vol), respectively. The validation experiments showed that the predicted and experimental values are not significantly different, indicating that the FCCD-RSM model developed is sufficient to describe the cultivation process of G4 using skim-milk-based medium with the addition of yeast extract.
    Matched MeSH terms: Culture Media/metabolism; Culture Media/chemistry*
  14. Mohamed MS, Tan JS, Mohamad R, Mokhtar MN, Ariff AB
    ScientificWorldJournal, 2013;2013:948940.
    PMID: 24109209 DOI: 10.1155/2013/948940
    Mixotrophic metabolism was evaluated as an option to augment the growth and lipid production of marine microalga Tetraselmis sp. FTC 209. In this study, a five-level three-factor central composite design (CCD) was implemented in order to enrich the W-30 algal growth medium. Response surface methodology (RSM) was employed to model the effect of three medium variables, that is, glucose (organic C source), NaNO3 (primary N source), and yeast extract (supplementary N, amino acids, and vitamins) on biomass concentration, X(max), and lipid yield, P(max)/X(max). RSM capability was also weighed against an artificial neural network (ANN) approach for predicting a composition that would result in maximum lipid productivity, Pr(lipid). A quadratic regression from RSM and a Levenberg-Marquardt trained ANN network composed of 10 hidden neurons eventually produced comparable results, albeit ANN formulation was observed to yield higher values of response outputs. Finalized glucose (24.05 g/L), NaNO3 (4.70 g/L), and yeast extract (0.93 g/L) concentration, affected an increase of X(max) to 12.38 g/L and lipid a accumulation of 195.77 mg/g dcw. This contributed to a lipid productivity of 173.11 mg/L per day in the course of two-week cultivation.
    Matched MeSH terms: Culture Media/chemistry; Cell Culture Techniques
  15. Gunawardena TNA, Rahman MT, Abdullah BJJ, Abu Kasim NH
    J Tissue Eng Regen Med, 2019 04;13(4):569-586.
    PMID: 30644175 DOI: 10.1002/term.2806
    Recent studies suggest that the main driving force behind the therapeutic activity observed in mesenchymal stem cells (MSCs) are the paracrine factors secreted by these cells. These biomolecules also trigger antiapoptotic events to prevent further degeneration of the diseased organ through paracrine signalling mechanisms. In comparison with the normal physiological conditions, an increased paracrine gradient is observed within the peripheral system of diseased organs that enhances the migration of tissue-specific MSCs towards the site of infection or injury to promote healing. Thus, upon administration of conditioned media derived from mesenchymal stem cell cultures (MSC-CM) could contribute in maintaining the increased paracrine factor gradient between the diseased organ and the stem cell niche in order to speed up the process of recovery. Based on the principle of the paracrine signalling mechanism, MSC-CM, also referred as the secretome of the MSCs, is a rich source of the paracrine factors and are being studied extensively for a wide range of regenerative therapies such as myocardial infarction, stroke, bone regeneration, hair growth, and wound healing. This article highlights the current technological applications and advances of MSC-CM with the aim to appraise its future potential as a regenerative therapeutic agent.
    Matched MeSH terms: Culture Media, Conditioned/pharmacokinetics; Culture Media, Conditioned/pharmacology*
  16. Norizan NABM, Halim M, Tan JS, Abbasiliasi S, Mat Sahri M, Othman F, et al.
    Molecules, 2020 Jul 31;25(15).
    PMID: 32752106 DOI: 10.3390/molecules25153516
    Palm kernel cake (PKC) has been largely produced in Malaysia as one of the cheap and abundant agro-waste by-products from the palm oil industry and it contains high fiber (mannan) content. The present study aimed to produce β-mannanase by Bacillus subtilis ATCC11774 via optimization of the medium composition using palm kernel cake as substrate in semi-solid fermentation. The fermentation nutrients such as PKC, peptone, yeast extract, sodium chloride, magnesium sulphate (MgSO2), initial culture pH and temperature were screened using a Plackett-Burman design. The three most significant factors identified, PKC, peptone and NaCl, were further optimized using central composite design (CCD), a response surface methodology (RSM) approach, where yeast extract and MgSO2 were fixed as a constant factor. The maximum β-mannanase activity predicted by CCD under the optimum medium composition of 16.50 g/L PKC, 19.59 g/L peptone, 3.00 g/L yeast extract, 2.72 g/L NaCl and 0.2 g/L MgSO2 was 799 U/mL. The validated β-mannanase activity was 805.12 U/mL, which was close to the predicted β-mannanas activity. As a comparison, commercial media such as nutrient broth, M9 and Luria bertani were used for the production of β-mannanase with activities achieved at 204.16 ± 9.21 U/mL, 50.32 U/mL and 88.90 U/mL, respectively. The optimized PKC fermentation medium was four times higher than nutrient broth. Hence, it could be a potential fermentation substrate for the production of β-mannanase activity by Bacillus subtilis ATCC11774.
    Matched MeSH terms: Culture Media/chemistry*; Batch Cell Culture Techniques
  17. Kabeir BM, Abd-Aziz S, Muhammad K, Shuhaimi M, Yazid AM
    Lett Appl Microbiol, 2005;41(2):125-31.
    PMID: 16033508
    To develop medida, a Sudanese fermented thin porridge as a probiotic dietary adjunct with high total solids.
    Matched MeSH terms: Culture Media/metabolism*; Culture Media/chemistry
  18. Yap NY, Ong TA, Morais C, Pailoor J, Gobe GC, Rajandram R
    Cell Biol Int, 2019 Jun;43(6):715-725.
    PMID: 31062478 DOI: 10.1002/cbin.11150
    Renal cell carcinoma (RCC) is one of the most lethal urogenital cancers and effective treatment of metastatic RCC remains an elusive target. Cell lines enable the in vitro investigation of molecular and genetic changes leading to renal carcinogenesis and are important for evaluating cellular drug response or toxicity. This study details a fast and easy protocol of establishing epithelial and fibroblast cell cultures or cell lines concurrently from renal cancer nephrectomy tissue. The protocol involves mechanical disaggregation, collagenase digestion and cell sieving for establishing epithelial cells while fibroblast cells were grown from explants. This protocol has been modified from previous published reports with additional antibiotics and washing steps added to eliminate microbial contamination from the surgical source. Cell characterisation was carried out using immunofluorescence and quantitative polymerase chain reaction. Eleven stable epithelial renal tumour cell lines of various subtypes, including rare subtypes, were established with a spontaneous immortalisation rate of 21.6% using this protocol. Eight fibroblast cell cultures grew successfully but did not achieve spontaneous immortalisation. Cells of epithelial origin expressed higher expressions of epithelial markers such as pan-cytokeratin, cytokeratin 8 and E-cadherin whereas fibroblast cells expressed high α-smooth muscle actin. Further mutational analysis is needed to evaluate the genetic or molecular characteristics of the cell lines.
    Matched MeSH terms: Cell Culture Techniques; Primary Cell Culture/methods*
  19. Teh AH, Lee SM, Dykes GA
    Curr Microbiol, 2016 Dec;73(6):859-866.
    PMID: 27623781
    Campylobacter jejuni is one of the most common causes of bacterial gastrointestinal food-borne infection worldwide. It has been suggested that biofilm formation may play a role in survival of these bacteria in the environment. In this study, the influence of prior modes of growth (planktonic or sessile), temperatures (37 and 42 °C), and nutrient conditions (nutrient broth and Mueller-Hinton broth) on biofilm formation by eight C. jejuni strains with different antibiotic resistance profiles was examined. The ability of these strains to form biofilm on different abiotic surfaces (stainless steel, glass, and polystyrene) as well as factors potentially associated with biofilm formation (bacterial surface hydrophobicity, auto-aggregation, and initial attachment) was also determined. The results showed that cells grown as sessile culture generally have a greater ability to form biofilm (P 
    Matched MeSH terms: Culture Media/metabolism*; Culture Media/chemistry
  20. Vasanthan P, Jayaraman P, Kunasekaran W, Lawrence A, Gnanasegaran N, Govindasamy V, et al.
    Naturwissenschaften, 2016 Aug;103(7-8):62.
    PMID: 27379400 DOI: 10.1007/s00114-016-1387-7
    Human deciduous periodontal ligament stem cells have been introduced for as an easily accessible source of stem cells from dental origin. Although recent studies have revealed the ability of these stem cells in multipotential attribute, their efficiency of hepatic lineage differentiation has not been addressed so far. The aim of this study is to investigate hepatic lineage fate competence of periodontal ligament stem cells through direct media induction. Differentiation of periodontal ligament stem cells into hepatocyte-like cells was conducted by the exposure of two phase media induction. First phase was performed in the presence of hepatocyte growth factors to induce a definitive endoderm formation. In the subsequent phase, the cells were treated with oncostatin M and dexamethosone followed by insulin and transferrin to generate hepatocyte-like cells. Hepatic-related characters of the generated hepatocyte-like cells were determined at both mRNA and protein level followed by functional assays. Foremost changes observed in the generation of hepatocyte-like cells were the morphological features in which these cells were transformed from fibroblastic shape to polygonal shape. Temporal expression of hepatic markers ranging from early endodermal up to late markers were detected in the hepatocyte-like cells. Crucial hepatic markers such as glycogen storage, albumin, and urea secretion were also shown. These findings exhibited the ability of periodontal ligament stem cells of dental origin to be directed into hepatic lineage fate. These cells can be regarded as an alternative autologous source in the usage of stem cell-based treatment for liver diseases.
    Matched MeSH terms: Culture Media/pharmacology*; Culture Media/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links