Displaying publications 121 - 140 of 511 in total

Abstract:
Sort:
  1. Choo GH
    EuroIntervention, 2011 May;7 Suppl K:K112-8.
    PMID: 22027720 DOI: 10.4244/EIJV7SKA19
    The drug-eluting balloon (DEB) is an exciting new technology that holds much promise. As an evolving technology undergoing intensive research, the device is being constantly refined and its numerous potential applications studied. Though initially created to fulfil specific needs in the coronary vasculature, there is great potential for its use in other vascular territories and structures including the management of valvular, congenital heart and neuro-interventional pathologies. In addition, the application of this device in conjunction with other existing technologies may enhance the clinical results.
    Matched MeSH terms: Drug Delivery Systems/instrumentation*; Drug Delivery Systems/trends
  2. Pandey M, Mohamad N, Amin MC
    Mol Pharm, 2014 Oct 6;11(10):3596-608.
    PMID: 25157890 DOI: 10.1021/mp500337r
    The objective of this study is to synthesize and evaluate acute toxicity of the bacterial cellulose (BC)/acrylamide (Am) hydrogels as noncytotoxic and biocompatible oral drug delivery vehicles. A novel series of solubilized BC/Am hydrogels were synthesized using a microwave irradiation method. The hydrogels were characterized by Fourier transform infrared spectroscopy (FTIR), swelling ratio, porosity, drug release, and in vitro and in vivo biocompatibility experiments. FTIR spectra revealed that the BC crystallinity and gel fraction decreased as the NaOH concentration increased from 2% to 10% w/v, whereas the optical transparency, pH sensitivity, and porosity were enhanced with increasing alkali concentration. Theophylline was used as a model drug for drug loading and release studies. The percentage of drug released was higher at pH 7.4 compared to pH 1.5. In vitro cytotoxicity and hemolytic tests indicated that the BC/Am hydrogel is noncytotoxic and hemocompatible. Results of acute oral toxicity tests on ICR mice suggested that the hydrogels are nontoxic up to 2000 mg/kg when administered orally, as no toxic response or histopathological changes were observed in comparison to control mice. The results of this study demonstrated that the pH-sensitive smart hydrogel makes it a possible safe carrier for oral drug delivery.
    Matched MeSH terms: Drug Delivery Systems/adverse effects; Drug Delivery Systems/methods*
  3. Sabri AH, Ogilvie J, Abdulhamid K, Shpadaruk V, McKenna J, Segal J, et al.
    Eur J Pharm Biopharm, 2019 Jul;140:121-140.
    PMID: 31059780 DOI: 10.1016/j.ejpb.2019.05.001
    Since the first patent for microneedles was filed in the 1970s, research on utilising microneedles as a drug delivery system has progressed significantly. In addition to the extensive research on microneedles for improving transdermal drug delivery, there is a growing interest in using these devices to manage dermatological conditions. This review aims to provide the background on microneedles, the clinical benefits, and challenges of the device along with the potential dermatological conditions that may benefit from the application of such a drug delivery system. The first part of the review provides an outline on benefits and challenges of translating microneedle-based drug delivery systems into clinical practice. The second part of the review covers the application of microneedles in treating dermatological conditions. The efficacy of microneedles along with the limitations of such a strategy to treat diseased skin shall be addressed.
    Matched MeSH terms: Drug Delivery Systems/instrumentation*; Drug Delivery Systems/methods
  4. Fung WY, Yuen KH, Liong MT
    J Agric Food Chem, 2011 Aug 10;59(15):8140-7.
    PMID: 21711050 DOI: 10.1021/jf2009342
    This study explored the potential of soluble dietary fiber (SDF) from agrowastes, okara (soybean solid waste), oil palm trunk (OPT), and oil palm frond (OPF) obtained via alkali treatment, in the nanoencapsulation of Lactobacillus acidophilus . SDF solutions were amended with 8% poly(vinyl alcohol) to produce nanofibers using electrospinning technology. The spinning solution made from okara had a higher pH value at 5.39 ± 0.01 and a higher viscosity at 578.00 ± 11.02 mPa·s (P < 0.05), which resulted in finer fibers. FTIR spectra of nanofibers showed the presence of hemicellulose material in the SDF. Thermal behavior of nanofibers suggested possible thermal protection of probiotics in heat-processed foods. L. acidophilus was incorporated into the spinning solution to produce nanofiber-encapsulated probiotic, measuring 229-703 nm, visible under fluorescence microscopy. Viability studies showed good bacterial survivability of 78.6-90% under electrospinning conditions and retained viability at refrigeration temperature during the 21 day storage study.
    Matched MeSH terms: Drug Delivery Systems/instrumentation*; Drug Delivery Systems/methods
  5. Khan NR, Harun MS, Nawaz A, Harjoh N, Wong TW
    Curr Pharm Des, 2015;21(20):2848-66.
    PMID: 25925113
    Transdermal drug delivery is impeded by the natural barrier of epidermis namely stratum corneum. This limits the route to transport of drugs with a log octanol-water partition coefficient of 1 to 3, molecular weight of less than 500 Da and melting point of less than 200°C. Nanotechnology has received widespread investigation as nanocarriers are deemed to be able to fluidize the stratum corneum as a function of size, shape, surface charges, and hydrophilicity-hydrophobicity balance, while delivering drugs across the skin barrier. This review provides an overview and update on the latest designs of liposomes, ethosomes, transfersomes, niosomes, magnetosomes, oilin- water nanoemulsions, water-in-oil nanoemulsions, bicontinuous nanoemulsions, covalently crosslinked polysaccharide nanoparticles, ionically crosslinked polysaccharide nanoparticles, polyelectrolyte coacervated nanoparticles and hydrophobically modified polysaccharide nanoparticles with respect to their ability to fuse or fluidize lipid/protein/tight junction regimes of skin, and effect changes in skin permeability and drug flux. Universal relationships of nanocarrier size, zeta potential and chemical composition on transdermal permeation characteristics of drugs will be developed and discussed.
    Matched MeSH terms: Drug Delivery Systems/instrumentation; Drug Delivery Systems/methods
  6. Thent ZC, Das S, Zaidun NH
    Curr Drug Deliv, 2018;15(4):453-460.
    PMID: 28545355 DOI: 10.2174/1567201814666170525122224
    BACKGROUND: The incidence of diabetes mellitus has increased drastically over the past few decades. This oxidant-antioxidant imbalance resulting in complication of diabetes mellitus includes macro- and microvascular complications. Resistance to conventional treatment and patient compliance has paved the way to the usage of effective natural products and supplements. Momordica charantia (bitter gourd) is widely consumed in many parts of Malaysia as a vegetable. Momordica charantia (MC) is mainly used in the management of diabetes mellitus.

    OBJECTIVE: The present review discusses the literature concerning the antidiabetic and antioxidant properties of MC focusing on the complication of diabetes mellitus along with its mode of delivery. We found that among the whole part of MC, its fruit extract has been widely studied, therapeutically. The evidence based analysis of the beneficiary effects of MC on the different organs involved in diabetes complication is also highlighted. This review elucidated an essential understanding of MC based drug delivery system in both clinical and experimental studies and appraised the great potential of the protein based MC extract against diabetes mellitus.

    CONCLUSION: The review paper is believed to assist the researchers and medical personnel in treating diabetic associated complications.

    Matched MeSH terms: Drug Delivery Systems/methods*; Drug Delivery Systems/trends
  7. Jeevanandam J, Chan YS, Danquah MK
    Biochimie, 2016 Sep-Oct;128-129:99-112.
    PMID: 27436182 DOI: 10.1016/j.biochi.2016.07.008
    Nano-formulations of medicinal drugs have attracted the interest of many researchers for drug delivery applications. These nano-formulations enhance the properties of conventional drugs and are specific to the targeted delivery site. Dendrimers, polymeric nanoparticles, liposomes, nano-emulsions and micelles are some of the nano-formulations that are gaining prominence in pharmaceutical industry for enhanced drug formulation. Wide varieties of synthesis methods are available for the preparation of nano-formulations to deliver drugs in biological system. The choice of synthesis methods depend on the size and shape of particulate formulation, biochemical properties of drug, and the targeted site. This article discusses recent developments in nano-formulation and the progressive impact on pharmaceutical research and industries. Additionally, process challenges relating to consistent generation of nano-formulations for drug delivery are discussed.
    Matched MeSH terms: Drug Delivery Systems/methods*; Drug Delivery Systems/trends
  8. Pandey M, Choudhury H, Yi CX, Mun CW, Phing GK, Rou GX, et al.
    Curr Drug Targets, 2018;19(15):1782-1800.
    PMID: 29792143 DOI: 10.2174/1389450119666180523092100
    Diabetes mellitus, a metabolic disorder of glucose metabolism, is mainly associated with insulin resistance to the body cells, or impaired production of insulin by the pancreatic β-cells. Insulin is mainly required to regulate glucose metabolism in type 1 diabetes mellitus patients; however, many patients with type 2 diabetes mellitus also require insulin, especially when their condition cannot be controlled solely by oral hypoglycemic agents. Hence, major research is ongoing attempting to improve the delivery of insulin in order to make it more convenient to patients who experience side effects from the conventional treatment procedure or non-adherence to insulin regimen due to multiple comorbid conditions. Conventionally, insulin is administered via subcutaneous route which is also one of the sole reasons of patient's non-compliance due to the invasiveness of this method. Several attempts have been done to improve patient compliance, reduce side effects, improve delivery adherence, and to enhance the pharmaceutical performance of the insulin therapy. Despite facing substantial challenges in developing efficient delivery systems for insulin, vast research studies have been carried out for the development of smart delivery systems to deliver insulin via ocular, buccal, pulmonary, oral, transdermal, as well as rectal routes. Therefore, the present review was aimed to overview the challenges encountered with the current insulin delivery systems and to summarize recent advancements in technology of various novel insulin delivery systems being discovered and introduced in the current market.
    Matched MeSH terms: Drug Delivery Systems/instrumentation; Drug Delivery Systems/methods*
  9. Ruttala HB, Ramasamy T, Madeshwaran T, Hiep TT, Kandasamy U, Oh KT, et al.
    Arch Pharm Res, 2018 Feb;41(2):111-129.
    PMID: 29214601 DOI: 10.1007/s12272-017-0995-x
    The development of novel drug delivery systems based on well-defined polymer therapeutics has led to significant improvements in the treatment of multiple disorders. Advances in material chemistry, nanotechnology, and nanomedicine have revolutionized the practices of drug delivery. Stimulus-responsive material-based nanosized drug delivery systems have remarkable properties that allow them to circumvent biological barriers and achieve targeted intracellular drug delivery. Specifically, the development of novel nanocarrier-based therapeutics is the need of the hour in managing complex diseases. In this review, we have briefly described the fundamentals of drug targeting to diseased tissues, physiological barriers in the human body, and the mechanisms/modes of drug-loaded carrier systems. To that end, this review serves as a comprehensive overview of the recent developments in stimulus-responsive drug delivery systems, with focus on their potential applications and impact on the future of drug delivery.
    Matched MeSH terms: Drug Delivery Systems/methods; Drug Delivery Systems/trends*
  10. Vyas T, Rapalli VK, Chellappan DK, Dua K, Dubey SK, Singhvi G
    Life Sci, 2021 Dec 15;287:120148.
    PMID: 34785190 DOI: 10.1016/j.lfs.2021.120148
    BACKGROUND: Biofilms are microcolonies of microbes that form communities with a variety of microbes, exhibit the same gene composition but differ in gene expression. Biofilm-associated infections have been in existence for a long, however, biofilm-associated skin disorders have not been investigated much.

    OBJECTIVES: Biofilms, which are made mostly of the matrix can be thought of as communities of microbes that are more virulent and more difficult to eradicate as compared to their planktonic counterparts. Currently, several formulations are available in the market which have the potential to treat biofilm-assisted skin disorders. However, the existing pharmacotherapies are not competent enough to cure them effectively and entirely, in several cases.

    KEY FINDINGS: Especially with the rising resistance towards antibiotics, it has become particularly challenging to ameliorate these disorders completely. The new approaches are being used to combat biofilm-associated skin disorders, some of them being photodynamic therapy, nanotherapies, and the use of novel drug delivery systems. The focus of attention, however, is nanotherapy. Micelles, solid lipid nanoparticles, quatsomes, and many others are being considered to find a better solution for the biofilm-associated skin disorders.

    SIGNIFICANCE: This review is an attempt to give a perspective on these new approaches for treating bacterial biofilms associated with skin disorders.

    Matched MeSH terms: Drug Delivery Systems/methods*; Drug Delivery Systems/trends
  11. Shao M, Hussain Z, Thu HE, Khan S, de Matas M, Silkstone V, et al.
    Crit Rev Ther Drug Carrier Syst, 2017;34(5):387-452.
    PMID: 29256838 DOI: 10.1615/CritRevTherDrugCarrierSyst.2017016957
    Chronic wounds which include diabetic foot ulcer (DFU), pressure ulcer, and arterial or venous ulcers compel a significant burden to the patients, healthcare providers, and the healthcare system. Chronic wounds are characterized by an excessive persistent inflammatory phase, prolonged infection, and the failure of defense cells to respond to environmental stimuli. Unlike acute wounds, chronic nonhealing wounds pose a substantial challenge to conventional wound dressings, and the development of novel and advanced wound healing modalities is needed. Toward this end, numerous conventional wound-healing modalities have been evaluated in the management of nonhealing wounds, but a multifaceted approach is lacking. Therefore, this review aims to compile and explore the wide therapeutic algorithm of current and advanced wound healing approaches to the treatment of chronic wounds. The algorithm of chronic wound healing techniques includes conventional wound dressings; approaches based on autografts, allografts, and cultured epithelial autografts; and recent modalities based on natural, modified or synthetic polymers and biomaterials, processed mutually in the form of hydrogels, films, hydrocolloids, and foams. Moreover, this review also explores the promising potential of advanced drug delivery systems for the sustained delivery of growth factors, curcumin, aloe vera, hyaluronic acid, and other bioactive substances as well as stem cell therapy. The current review summarizes the convincing evidence for the clinical dominance of polymer-based chronic wound healing modalities as well as the latest and innovative therapeutic strategies for the treatment of chronic wounds.
    Matched MeSH terms: Drug Delivery Systems/methods*; Drug Delivery Systems/trends
  12. Akter N, Radiman S, Mohamed F, Rahman IA, Reza MI
    Sci Rep, 2011;1:71.
    PMID: 22355590 DOI: 10.1038/srep00071
    The phase behaviour of a system composed of amino acid-based surfactant (sodium N-lauroylsarcosinate hydrate), 1-decanol and deionised water was investigated for vesicle formation. Changing the molar ratio of the amphiphiles, two important aggregate structures were observed in the aqueous corner of the phase diagram. Two different sizes of microemulsions were found at two amphiphile-water boundaries. A stable single vesicle lobe was found for 1∶2 molar ratios in 92 wt% water with vesicles approximately 100 nm in size and with high zeta potential value. Structural variation arises due to the reduction of electrostatic repulsions among the ionic headgroups of the surfactants and the hydration forces due to adsorbed water onto monolayer's. The balance of these two forces determines the aggregate structures. Analysis was followed by the molecular geometrical structure. These findings may have implications for the development of drug delivery systems for cancer treatments, as well as cosmetic and food formulations.
    Matched MeSH terms: Drug Delivery Systems
  13. Meka VS, Songa AS, Nali SR, Battu JR, Kukati L, Kolapalli VR
    Invest Clin, 2012 Sep;53(3):223-36.
    PMID: 23248967
    The aim of the present investigation was to formulate thermally sintered floating tablets of propranolol HCl, and to study the effect of sintering conditions on drug release, as well as their in vitro buoyancy properties. A hydrophilic polymer, polyethylene oxide, was selected as a sintered polymer to retard the drug release. The formulations were prepared by a direct compression method and were evaluated by in vitro dissolution studies. The results showed that sintering temperature and time of exposure greatly influenced the buoyancy, as well as the dissolution properties. As the sintering temperature and time of exposure increased, floating lag time was found to be decreased, total floating time was increased and drug release was retarded. An optimized sintered formulation (sintering temperature 50 degrees C and time of exposure 4 h) was selected, based on their drug retarding properties. The optimized formulation was characterized with FTIR and DSC studies and no interaction was found between the drug and the polymer used.
    Matched MeSH terms: Drug Delivery Systems
  14. Che Rose L, Bear JC, McNaughter PD, Southern P, Piggott RB, Parkin IP, et al.
    Sci Rep, 2016;6:20271.
    PMID: 26842884 DOI: 10.1038/srep20271
    An orally-administered system for targeted, on-demand drug delivery to the gastrointestinal (GI) tract is highly desirable due to the high instances of diseases of that organ system and harsh mechanical and physical conditions any such system has to endure. To that end, we present an iron oxide nanoparticle/wax composite capsule coating using magnetic hyperthermia as a release trigger. The coating is synthesised using a simple dip-coating process from pharmaceutically approved materials using a gelatin drug capsule as a template. We show that the coating is impervious to chemical conditions within the GI tract and is completely melted within two minutes when exposed to an RF magnetic field under biologically-relevant conditions. The overall simplicity of action, durability and non-toxic and inexpensive nature of our system demonstrated herein are key for successful drug delivery systems.
    Matched MeSH terms: Drug Delivery Systems
  15. Bhaskaran M, Devegowda VG, Gupta VK, Shivachar A, Bhosale RR, Arunachalam M, et al.
    ACS Chem Neurosci, 2020 10 07;11(19):2962-2977.
    PMID: 32945654 DOI: 10.1021/acschemneuro.0c00555
    Glioblastoma multiforme (GBM), a standout among the most dangerous class of central nervous system (CNS) cancer, is most common and is an aggressive malignant brain tumor in adults. In spite of developments in modality therapy, it remains mostly incurable. Consequently, the need for novel systems, strategies, or therapeutic approaches for enhancing the assortment of active agents meant for GBM becomes an important criterion. Currently, cancer research focuses mainly on improving the treatment of GBM via diverse novel drug delivery systems. The treatment options at diagnosis are multimodal and include radiation therapy. Moreover, significant advances in understanding the molecular pathology of GBM and associated cell signaling pathways have opened opportunities for new therapies. Innovative treatment such as immunotherapy also gives hope for enhanced survival. The objective of this work was to collect and report the recent research findings to manage GBM. The present review includes existing novel drug delivery systems and therapies intended for managing GBM. Reported novel drug delivery systems and diverse therapies seem to be precise, secure, and relatively effective, which could lead to a new track for the obliteration of GBM.
    Matched MeSH terms: Drug Delivery Systems
  16. Sim S, Wong NK
    Biomed Rep, 2021 May;14(5):42.
    PMID: 33728048 DOI: 10.3892/br.2021.1418
    Nanotechnology is the exploitation of the unique properties of materials at the nanoscale. Nanotechnology has gained popularity in several industries, as it offers better built and smarter products. The application of nanotechnology in medicine and healthcare is referred to as nanomedicine, and it has been used to combat some of the most common diseases, including cardiovascular diseases and cancer. The present review provides an overview of the recent advances of nanotechnology in the aspects of imaging and drug delivery.
    Matched MeSH terms: Drug Delivery Systems
  17. Setapa A, Ahmad N, Mohd Mahali S, Mohd Amin MCI
    Polymers (Basel), 2020 Dec 05;12(12).
    PMID: 33291495 DOI: 10.3390/polym12122921
    Various swelling drug delivery devices are promising materials for control drug delivery because of their ability to swell and release entrapped therapeutics, in response to physiological stimuli. Previously, many mathematical models have been developed to predict the mechanism of drug release from a swelling device. However, some of these models do not consider the changes in diffusion behaviour as the device swells. Therefore, we used a two-phase approach to simplify the mathematical model considering the effect of swelling on the diffusion coefficient. We began by defining a moving boundary problem to consider the swelling process. Landau transformation was used for mitigating the moving boundary problem. The transformed problem was analytically solved using the separation of variables method. Further, the analytical solution was extended to include the drug release in two phases where each phase has distinct diffusion coefficient and continuity condition was applied. The newly developed model was validated by the experimental data of bacterial cellulose hydrogels using the LSQCURVEFIT function in MATLAB. The numerical test showed that the new model exhibited notable improvement in curve fitting, and it was observed that the initial effective diffusion coefficient of the swelling device was lower than the later effective diffusion coefficient.
    Matched MeSH terms: Drug Delivery Systems
  18. Ansari MT, Ramlan TA, Jamaluddin NN, Zamri N, Salfi R, Khan A, et al.
    Curr Pharm Des, 2020;26(34):4272-4276.
    PMID: 32693760 DOI: 10.2174/1381612826666200720235752
    Cancer and tumor have been major reasons for numerous deaths in this century across the world. Many strategies have been designed to treat, diagnose, or prevent cancer. The success of chemotherapy largely depends on drug targeting. The advent of nanotechnology has vastly improved drug delivery for targeting and diagnosis. Nevertheless, the accuracy of drug targeting with polymeric nanoparticles has always been questionable. The polymeric nanoparticles synthesized from varieties of lipid-based compounds or combined with vectors, such as liposomes, ethosomes, and transfersomes, may allow the drug to overcome the issue of resistance to drug absorption in biological membranes. The combined effects of lipid-based nanocarriers are known to improve the efficacy and accuracy of polymeric nanoparticles. The present review explores the application of lipid based nanocarriers in the treatment and diagnosis of cancer A special focus is given to the use of lipid-based nanocarriers in the treatment, diagnosis, and mitigation of cancer located in blood, brain, lung, and colon. The treatment of these cancers has always been questionable as the chances of relapse are very high. The review encompasses the use of lipid-based nanocarriers in targeting tissue-specific cancer cells.
    Matched MeSH terms: Drug Delivery Systems
  19. Ramanunny AK, Wadhwa S, Gulati M, Singh SK, Kapoor B, Dureja H, et al.
    Eur J Pharmacol, 2021 Jan 05;890:173691.
    PMID: 33129787 DOI: 10.1016/j.ejphar.2020.173691
    Skin diseases are the fourth leading non-fatal skin conditions that act as a burden and affect the world economy globally. This condition affects the quality of a patient's life and has a pronounced impact on both their physical and mental state. Treatment of these skin conditions with conventional approaches shows a lack of efficacy, long treatment duration, recurrence of conditions, systemic side effects, etc., due to improper drug delivery. However, these pitfalls can be overcome with the applications of nanomedicine-based approaches that provide efficient site-specific drug delivery at the target site. These nanomedicine-based strategies are evolved as potential treatment opportunities in the form of nanocarriers such as polymeric and lipidic nanocarriers, nanoemulsions along with emerging others viz. carbon nanotubes for dermatological treatment. The current review focuses on challenges faced by the existing conventional treatments along with the topical therapeutic perspective of nanocarriers in treating various skin diseases. A total of 213 articles have been reviewed and the application of different nanocarriers in treating various skin diseases has been explained in detail through case studies of previously published research works. The toxicity related aspects of nanocarriers are also discussed.
    Matched MeSH terms: Drug Delivery Systems
  20. Gokada MR, Pasupuleti VR, Bollikolla HB
    Mini Rev Med Chem, 2021;21(10):1173-1181.
    PMID: 33397236 DOI: 10.2174/1389557521666210104165733
    The novel Coronavirus disease (COVID-19) is an epidemic disease that appeared at the end of the year 2019 with a sudden increase in number and came to be considered as a pandemic disease caused by a viral infection which has threatened most countries for an emergency search for new anti-SARS-COV drugs /vaccines. At present, the number of clinical trials is ongoing worldwide on different drugs i.e. Hydroxychloroquine, Remedisvir, Favipiravir that utilize various mechanisms of action. A few countries are currently processing clinical trials, which may result in a positive outcome. Favipiravir (FPV) represents one of the feasible treatment options for COVID-19, if the result of the trials turns out positive. Favipiravir will be one of the developed possibly authoritative drugs to warrant benefits to mankind with large-scale production to meet the demands of the current pandemic Covid-19 outbreak and future epidemic outbreaks. In this review, the authors tried to explore key molecules, which will be supportive for devising COVID-19 research.
    Matched MeSH terms: Drug Delivery Systems
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links