Displaying publications 121 - 140 of 474 in total

Abstract:
Sort:
  1. Bagheri S, Muhd Julkapli N, Bee Abd Hamid S
    ScientificWorldJournal, 2014;2014:727496.
    PMID: 25383380 DOI: 10.1155/2014/727496
    The lack of stability is a challenge for most heterogeneous catalysts. During operations, the agglomeration of particles may block the active sites of the catalyst, which is believed to contribute to its instability. Recently, titanium oxide (TiO2) was introduced as an alternative support material for heterogeneous catalyst due to the effect of its high surface area stabilizing the catalysts in its mesoporous structure. TiO2 supported metal catalysts have attracted interest due to TiO2 nanoparticles high activity for various reduction and oxidation reactions at low pressures and temperatures. Furthermore, TiO2 was found to be a good metal oxide catalyst support due to the strong metal support interaction, chemical stability, and acid-base property. The aforementioned properties make heterogeneous TiO2 supported catalysts show a high potential in photocatalyst-related applications, electrodes for wet solar cells, synthesis of fine chemicals, and others. This review focuses on TiO2 as a support material for heterogeneous catalysts and its potential applications.
    Matched MeSH terms: Electrodes
  2. Rosmi MS, Yusop MZ, Kalita G, Yaakob Y, Takahashi C, Tanemura M
    Sci Rep, 2014;4:7563.
    PMID: 25523645 DOI: 10.1038/srep07563
    Control synthesis of high quality large-area graphene on transition metals (TMs) by chemical vapor deposition (CVD) is the most fascinating approach for practical device applications. Interaction of carbon atoms and TMs is quite critical to obtain graphene with precise layer number, crystal size and structure. Here, we reveal a solid phase reaction process to achieve Cu assisted graphene growth in nanoscale by in-situ transmission electron microscope (TEM). Significant structural transformation of amorphous carbon nanofiber (CNF) coated with Cu is observed with an applied potential in a two probe system. The coated Cu particle recrystallize and agglomerate toward the cathode with applied potential due to joule heating and large thermal gradient. Consequently, the amorphous carbon start crystallizing and forming sp(2) hybridized carbon to form graphene sheet from the tip of Cu surface. We observed structural deformation and breaking of the graphene nanoribbon with a higher applied potential, attributing to saturated current flow and induced Joule heating. The observed graphene formation in nanoscale by the in-situ TEM process can be significant to understand carbon atoms and Cu interaction.
    Matched MeSH terms: Electrodes
  3. Ng FL, Jaafar MM, Phang SM, Chan Z, Salleh NA, Azmi SZ, et al.
    Sci Rep, 2014;4:7562.
    PMID: 25531093 DOI: 10.1038/srep07562
    The search for renewable energy sources has become challenging in the current era, as conventional fuel sources are of finite origins. Recent research interest has focused on various biophotovoltaic (BPV) platforms utilizing algae, which are then used to harvest solar energy and generate electrical power. The majority of BPV platforms incorporate indium tin oxide (ITO) anodes for the purpose of charge transfer due to its inherent optical and electrical properties. However, other materials such as reduced graphene oxide (RGO) could provide higher efficiency due to their intrinsic electrical properties and biological compatibility. In this work, the performance of algae biofilms grown on RGO and ITO anodes were measured and discussed. Results indicate improved peak power of 0.1481 mWm(-2) using the RGO electrode and an increase in efficiency of 119%, illustrating the potential of RGO as an anode material for applications in biofilm derived devices and systems.
    Matched MeSH terms: Electrodes
  4. Lim SP, Pandikumar A, Lim YS, Huang NM, Lim HN
    Sci Rep, 2014;4:5305.
    PMID: 24930387 DOI: 10.1038/srep05305
    This paper reports a rapid and in-situ electrochemical polymerization method for the fabrication of polypyrrole nanoparticles incorporated reduced graphene oxide (rGO@PPy) nanocomposites on a ITO conducting glass and its application as a counter electrode for platinum-free dye-sensitized solar cell (DSSC). The scanning electron microscopic images show the uniform distribution of PPy nanoparticles with diameter ranges between 20 and 30 nm on the rGO sheets. The electrochemical studies reveal that the rGO@PPy has smaller charge transfer resistance and similar electrocatalytic activity as that of the standard Pt counter electrode for the I₃(-)/I(-) redox reaction. The overall solar to electrical energy conversion efficiency of the DSSC with the rGO@PPy counter electrode is 2.21%, which is merely equal to the efficiency of DSSC with sputtered Pt counter electrode (2.19%). The excellent photovoltaic performance, rapid and simple fabrication method and low-cost of the rGO@PPy can be potentially exploited as a alternative counter electrode to the expensive Pt in DSSCs.
    Matched MeSH terms: Electrodes
  5. Mohtar MN, Hoettges KF, Hughes MP
    Electrophoresis, 2014 Feb;35(2-3):345-51.
    PMID: 24132700 DOI: 10.1002/elps.201300420
    Alternating-current electro-osmosis, a phenomenon of fluid transport due to the interaction between an electrical double layer and a tangential electric field, has been used both for inducing fluid movement and for the concentration of particles suspended in the fluid. This offers many advantages over other phenomena used to trap particles, such as placing particles at an electrode centre rather than an edge; benefits of scale, where electrodes hundreds of micrometers across can trap particles from the molecules to cells at the same rate; and a trapping volume limited by the vortex height, a phenomenon thus far unstudied. In this paper, the collection of particles due to alternating-current electro-osmosis driven collection is examined for a range of particle concentrations, inter-electrode gap widths, chamber heights and media viscosity and density. A model of collection behaviour is described where particle collection over time is governed by two processes, one driven by the vortices and the other by sedimentation, allowing the determination of the maximum height of vortex-driven collection, but also indicates how trapping is limited by high particle concentrations and fluid velocities. The results also indicate that viscosity, rather than density, is a significant governing factor in determining the trapping behaviour of particles.
    Matched MeSH terms: Electrodes
  6. Basirun WJ, Sookhakian M, Baradaran S, Mahmoudian MR, Ebadi M
    Nanoscale Res Lett, 2013;8(1):397.
    PMID: 24059434 DOI: 10.1186/1556-276X-8-397
    Graphene oxide (GO) film was evaporated onto graphite and used as an electrode to produce electrochemically reduced graphene oxide (ERGO) films by electrochemical reduction in 6 M KOH solution through voltammetric cycling. Fourier transformed infrared and Raman spectroscopy confirmed the presence of ERGO. Electrochemical impedance spectroscopy characterization of ERGO and GO films in ferrocyanide/ferricyanide redox couple with 0.1 M KCl supporting electrolyte gave results that are in accordance with previous reports. Based on the EIS results, ERGO shows higher capacitance and lower charge transfer resistance compared to GO.
    Matched MeSH terms: Electrodes
  7. Isa IM, Ab Ghani S
    Talanta, 2007 Jan 15;71(1):452-5.
    PMID: 19071326 DOI: 10.1016/j.talanta.2006.04.034
    This paper describes the preparation of and experimentation undertaken by heterogeneous chitosan membrane as ion selective electrode for glutamate ion. The linearity response was obtained in the range of 1.0x10(-5) to 1.0x10(-1)M with a detection limit of 1.0x10(-6)M. The performance of the electrode was found in the pH range of 4.0-8.0 at temperature 25+/-3 degrees C. The response time was at 5-35s and was useful for a period of more than 4 months. The selectivity values towards some anions indicates good selectivity over a number of interfering anions. No significant improvement of membrane performance over additional of plasticizers such as 2-NPOE, BEHA and DOPP. The electrodes gave sufficient Nernstian responses with the exception of membrane with 2-NPOE.
    Matched MeSH terms: Ion-Selective Electrodes
  8. Naz MY, Ismail NI, Sulaiman SA, Shukrullah S
    Sci Rep, 2015;5:16583.
    PMID: 26561231 DOI: 10.1038/srep16583
    This study investigated the dry and aqueous erosion of mild steel using electrochemical and dry sand impact techniques. In dry sand impact experiments, mild steel was eroded with 45 μm and 150 μm sand particles. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and micro-hardness techniques were used to elaborate the surface morphology of the eroded samples. The results revealed significant change in morphology of the eroded samples. In-depth analysis showed that although the metal erosion due to larger particles was significantly higher, the fines also notably damaged the metal surface. The surface damages were appreciably reduced with decrease in impact angle of the accelerated particles. The maximum damages were observed at an impact angle of 90°. The hardness of the samples treated with 45 μm and 150 μm sand remained in the range of 88.34 to 102.31 VHN and 87.7 to 97.55 VHN, respectively. In electrochemical experiments, a triple electrode probe was added into the metal treatment process. The linear polarization resistance (LPR) measurements were performed in slurries having 5% (by weight) of sand particles. LPR of the samples treated with 45 μm and 150 μm sand slurries was calculated about 949 Ω.cm(2) and 809 Ω.cm(2), respectively.
    Matched MeSH terms: Electrodes
  9. Rusi, Majid SR
    Sci Rep, 2015;5:16195.
    PMID: 26537363 DOI: 10.1038/srep16195
    This paper presents the preparation of in situ electrodeposited rGO/MnO2 nanocomposite as a binder-free electrode for supercapacitor application. The work describes and evaluates the performance of prepared electrode via green and facile electrodeposition technique of in situ rGO/MnO2-glucose carbon nanocomposites. The carbon content in the composite electrode increased after GO and D (+) glucose solution has been added in the deposition electrolyte. This study found that a suitable concentration of D (+) glucose in the deposition electrolyte can slow down the nucleation process of MnO2 particles and lead to uniform and ultrathin nanoflakes structure. The optimize electrode exhibited low transfer resistance and resulted on excellent electrochemical performance in three electrolyte systems viz. Na2SO4, KOH and KOH/K3Fe(CN)6 redox electrolytes. The optimum energy density and power density were 1851 Whkg(-1) and 68 kWkg(-1) at current density of 20 Ag(-1) in mixed KOH/K3Fe(CN)6 electrolyte.
    Matched MeSH terms: Electrodes
  10. Hamsawahini K, Sathishkumar P, Ahamad R, Yusoff AR
    Talanta, 2015 Nov 1;144:969-76.
    PMID: 26452915 DOI: 10.1016/j.talanta.2015.07.049
    In this study, a sensitive and cost-effective electrochemically reduced graphene oxide (ErGO) on graphite reinforced carbon (GRC) was developed for the detection of lead (Pb(II)) ions present in the real-life samples. A film of graphene oxide (GO) was drop-casted on GRC and their electrochemical properties were investigated using cyclic voltammetry (CV), amperometry and square wave voltammetry (SWV). Factors influencing the detection of Pb(II) ions, such as grades of GRC, constant applied cathodic potential (CACP), concentration of hydrochloric acid and drop-casting drying time were optimised. GO is irreversibly reduced in the range of -0.7 V to -1.6 V vs Ag/AgCl (3 M) in acidic condition. The results showed that the reduction behaviour of GO contributed to the high sensitivity of Pb(II) ions detection even at nanomolar level. The ErGO-GRC showed the detection limit of 0.5 nM and linear range of 3-15 nM in HCl (1 M). The developed electrode has potential to be a good candidate for the determination of Pb(II) ions in different aqueous system. The proposed method gives a good recovery rate of Pb(II) ions in real-life water samples such as tap water and river water.
    Matched MeSH terms: Electrodes
  11. Nadarajah K, Khan AF, Rahim NA
    Recent Pat Nanotechnol, 2016;10(1):26-43.
    PMID: 27018271
    BACKGROUND: Germanium (Ge) nanostructures exhibit wide range of potential applications in the field of nanoscale devices due to their excellent optical and electrical properties and have gained significant interest due to the Bohr exciton radius. Bohr radius of Ge (24.3 nm) is larger than that of Si (4.9 nm), leading to quantum size effects and nanostructures with controllable bandgaps.

    METHODS: This article provides a comprehensive review on various electrolytes for electrodeposition procedures developed to obtain the Ge nanostructures of desired structure, diameter, and density. We discuss the growth mechanisms and influence of different parameters such as type of solution, concentration, and value of applied potential or current density.

    RESULTS: The ionic liquids can be used for the development of Ge nanostructures and provide extensive electrochemical windows for electrodeposition. The obtained SixGe1-x structures also exhibited strong color change (from red to blue) at room temperature during the electrodeposition, which is likely to be due to a quantum size effect.

    CONCLUSION: The main advantages of the ionic liquids are 'it does not decompose', easy to purify and dry. Moreover, it exhibits fairly extensive electrochemical windows greater than 5 V for electrodeposition. Electrodeposition of SixGe1-x nanostructures from ionic liquids is quite a favorable process. The 3DOM Ge electrode is a promising material for nextgeneration lithium ion battery because of its high irreversible specific capacity. Few relevant patents to the topic have been reviewed and cited.

    Matched MeSH terms: Electrodes
  12. Kouhnavard M, Ludin NA, Ghaffari BV, Sopian K, Ikeda S
    ChemSusChem, 2015 May 11;8(9):1510-33.
    PMID: 25925421 DOI: 10.1002/cssc.201500004
    Dye-sensitized solar cells (DSSCs) serve as low-costing alternatives to silicon solar cells because of their low material and fabrication costs. Usually, they utilize Pt as the counter electrode (CE) to catalyze the iodine redox couple and to complete the electric circuit. Given that Pt is a rare and expensive metal, various carbon materials have been intensively investigated because of their low costs, high surface areas, excellent electrochemical stabilities, reasonable electrochemical activities, and high corrosion resistances. In this feature article, we provide an overview of recent studies on the electrochemical properties and photovoltaic performances of carbon-based CEs (e.g., activated carbon, nanosized carbon, carbon black, graphene, graphite, carbon nanotubes, and composite carbon). We focus on scientific challenges associated with each material and highlight recent advances achieved in overcoming these obstacles. Finally, we discuss possible future directions for this field of research aimed at obtaining highly efficient DSSCs.
    Matched MeSH terms: Electrodes
  13. Saad B, Bee-Leng Y, Saleh MI, Rahman IA, Mansor SM
    J AOAC Int, 2001 8 15;84(4):1151-7.
    PMID: 11501917
    Potentiometric response characteristics were evaluated for quinine selective sensors based on a lipophilic ion-exchanger potassium tetrakis[3,5-bis(trifluoromethylphenyl)]borate (PTFB) immobilized together with plasticizing solvents in polyvinyl chloride membranes. The use of dioctyl phthalate (DOP), 2-nitrophenyl phenyl ether (NPPE), and bis(2-ethylhexyl)adipate (BEHA) plasticizers produced good quality quinine sensors that were sensitive and fast responding, and exhibited near Nernstian responses when used as batch-sensors. These membranes were further tested in a wall-jet flow-through potentiometric flow injection analysis (FIA) detector. Quinine sensors containing BEHA were the most suitable membrane, with no noticeable differences in sensitivity even after 5 h of continuous exposure to solutions. Interference by foreign species such as alkali, alkaline earth metal ions, sugars, and sodium benzoate was minimal in either the batch-mode (log selectivity coefficients
    Matched MeSH terms: Electrodes
  14. Vinoth S, Subramani K, Ong WJ, Sathish M, Pandikumar A
    J Colloid Interface Sci, 2021 Feb 15;584:204-215.
    PMID: 33069019 DOI: 10.1016/j.jcis.2020.09.071
    This work demonstrates a high-performance hybrid asymmetric supercapacitor (HASC) workable in very high current density of 30 A g-1 with in-situ pyrolytic processed sulfur-doped graphitic carbon nitride/cobalt disulfide (S-gC3N4/CoS2) materials and bio-derived carbon configuration and achievement of high electrochemical stability of 89% over 100,000 cycles with the coulombic efficiency of 99.6%. In the electrochemical studies, the S-gC3N4/CoS2-II electrode showed a high specific capacity of 180 C g-1 at 1 A g-1 current density in the half-cell configuration. The HASC cell was fabricated using S-gC3N4/CoS2-II material and orange peel derived activated carbon as a positive and negative electrode with a maximum operating cell potential of 1.6 V, respectively. The fabricated HASC delivered a high energy density of 26.7 Wh kg-1 and power density of 19.8 kW kg-1 in aqueous electrolyte. The prominent properties in specific capacity and cycling stability could be attributed to the CoS2 nanoparticles engulfed into the S-gC3N4 framework which provides short transport distance of the ions, strong interfacial interaction, and improving structural stability of the S-gC3N4/CoS2-II materials.
    Matched MeSH terms: Electrodes
  15. Yusoff NFM, Idris NH, Din MFM, Majid SR, Harun NA, Rahman MM
    Sci Rep, 2020 Jun 08;10(1):9207.
    PMID: 32513958 DOI: 10.1038/s41598-020-66148-w
    Currently, the development of the sodium-ion (Na-ion) batteries as an alternative to lithium-ion batteries has been accelerated to meet the energy demands of large-scale power applications. The difficulty of obtaining suitable electrode materials capable of storing large amount of Na-ion arises from the large radius of Na-ion that restricts its reversible capacity. Herein, Mn2O3 powders are synthesised through the thermal conversion of MnCO3 and reported for the first time as an anode for Na-ion batteries. The phase, morphology and charge/discharge characteristics of Mn2O3 obtained are evaluated systematically. The cubic-like Mn2O3 with particle sizes approximately 1.0-1.5 µm coupled with the formation of Mn2O3 sub-units on its surface create a positive effect on the insertion/deinsertion of Na-ion. Mn2O3 delivers a first discharge capacity of 544 mAh g-1 and retains its capacity by 85% after 200 cycles at 100 mA g-1, demonstrating the excellent cyclability of the Mn2O3 electrode. Therefore, this study provides a significant contribution towards exploring the potential of Mn2O3 as a promising anode in the development of Na-ion batteries.
    Matched MeSH terms: Electrodes
  16. Iqbal MZ, Khan A, Numan A, Haider SS, Iqbal J
    Ultrason Sonochem, 2019 Dec;59:104736.
    PMID: 31473424 DOI: 10.1016/j.ultsonch.2019.104736
    An upsurge in sustainable energy demands has ultimately made supercapattery one of the important choice for energy storage, owing to highly advantageous energy density and long life span. In this work, novel strontium based mixed phased nanostructures were synthesized by using probe sonicator with sonication power 500 W at frequency of 20 kHz. The synthesized material was subsequently calcined at different temperature ranging from 200 to 800 °C. Structural and morphological analysis of the synthesized materials reveals the formation of mixed particle and rod like nanostructures with multiple crystal phases of strontium oxides and carbonates. Crystallinity, grain size and morphology of grown nanomaterials significantly improved with the increase of calcination temperature due to sufficient particle growth and low agglomeration. The electrochemical performance analysis confirms the redox activeness of the Sr-based electrode materials. Material calcined at 600 °C show high specific capacitance of 350 F g-1 and specific capacity of 175 C g-1 at current density of 0.3 A g-1 due to less particle agglomeration, good charge transfer and more contribution of electrochemical active sites for redox reactions. In addition, the developed supercapattery of Sr-based nanomaterials//activated carbon demonstrated high performance with maximum energy density of 21.8 Wh kg-1 and an excellent power density of 2400 W kg-1 for the lower and higher current densities. Furthermore, the supercapattery retain 87% of its capacity after continuous 3000 charge/discharge cycles. The device characteristics were further investigated by analyzing the capacitive and diffusion controlled contributions. The versatile strategy of developing mixed phased nanomaterials pave the way to synthesize other transition metal based nanomaterials with superior electrochemical performance for hybrid energy storage devices.
    Matched MeSH terms: Electrodes
  17. Jamilan MA, Abdullah J, Alang Ahmad SA, Md Noh MF
    J Food Sci Technol, 2019 Aug;56(8):3846-3853.
    PMID: 31413410 DOI: 10.1007/s13197-019-03855-x
    In this work, voltammetric study based on cetyltrimethylammonium bromide (CTAB) as an ion-pairing agent for the determination of iodine level in iodized table salt has been explored. CTAB was used as an intermediate compound between iodide (I-) and the electrode due to its ability to dissociate to produce cetyltrimethylammonium ions ([CTA]+). The [CTA]+ with a long hydrophobic alkyl chain can be directly adsorbed onto the surface of the working electrode, and this in turns coated the electrode with cationic charge and enhance the electrode ability to bind to iodide (I-) and other molecular iodine ions. A mixture of iodide and CTAB ([CTA]+I-) was prepared and potential of 1.0 V for 60.0 s was applied to pre-concentrate the solution on the working electrode causing the [CTA]+I- to oxidize to iodine (I2). The produced I2 immediately react with chloride ion (Cl-) from the electrolyte of hydrochloric acid (HCl) to produce I2Cl- and form ion-pair with CTA+ as [CTA]+I2Cl-. The linear calibration curve of the developed method towards iodide was in the concentration range of 0.5-4.0 mg/L with sensitivity of - 1.383 µA mg/L-1 cm-2 (R2 = 0.9950), limit of detection (LOD) of 0.3 mg/L and limit of quantification (LOQ) of 1.0 mg/L, respectively. The proposed method indicates good agreement with the standard method for iodine determination with recovery range from 95.0 to 104.3%. The developed method provided potential application as a portable on-site iodine detector.
    Matched MeSH terms: Electrodes
  18. Al'Abri AM, Abdul Halim SN, Abu Bakar NK, Saharin SM, Sherino B, Rashidi Nodeh H, et al.
    J Environ Sci Health B, 2019;54(12):930-941.
    PMID: 31407615 DOI: 10.1080/03601234.2019.1652072
    This article demonstrates the first application of a copper-based porous coordination polymer (BTCA-P-Cu-CP) as a carbon paste electrode (CPE) modifier for the detection of malathion. The electrochemical behavior of BTCA-P-Cu-CP/CPE was explored using cyclic voltammetry (CV) while chrono-amperometry methods were applied for the analytical evaluation of the sensor performance. Under optimized conditions, the developed sensor exhibited high reproducibility, stability, and wide dynamic range (0.6-24 nM) with the limits of detection and sensitivity equal to 0.17 nM and 5.7 µAnMcm-1, respectively, based on inhibition signal measurement. Furthermore, the presence of common coexisting interfering species showed a minor change in signals (<4.4%). The developed sensor has been applied in the determination of malathion in spiked vegetable extracts. It exhibited promising results in term of fast and sensitive determination of malathion in real samples at trace level with recoveries of 91.0 to 104.4%. (RSDs < 5%, n = 3). A comparison of the two studied techniques showed that the HPLC technique is unable to detect malathion when the concentration is lower than 1.8 µM while 0.006 µM is detected with appropriate RSDs 0.2-5.2% (n = 3) by amperometric method. Due to the high sensitivity and selectivity, this new electrochemical sensor will be useful for monitoring trace malathion in real samples.
    Matched MeSH terms: Electrodes
  19. Md Fuad Bahari, Abdul Rahman Omar1, Darius Gnanaraj Solomon, Nor Hayati Saad, Isa Halim
    Scientific Research Journal, 2006;3(2):31-44.
    MyJurnal
    Occupational health is considered as a crucial element in almost every Small
    and Medium Industries (SMIs) and it is believed to be one of vital challenges
    that can influence productivity and competitiveness. It has been known that
    the metal stamping industry involved a lot of materials handling tasks such as
    carrying stamped parts from machine to packaging section, transferring moulds
    from tools store to machines, sorting the finished products and others.
    Appropriate materials handling equipments are not often provided in SMIs
    because of the limitation of capital and lack of ergonomics awareness. The
    workers have to handle the materials and goods manually. These practices
    may lead to occupational injuries particularly back pain and musculoskeletal
    injuries. The objectives of the research are to assess and analyze the muscles
    activity of workers in metal stamping industry. Three male workers who
    performed metal stamping process using manual technique were participated
    in the research. Ergonomic assessment associated with Surface
    Electromyography (SEMG) was used to capture and interpret the data related
    to muscles activity at before and after the ergonomic intervention. For the
    purpose of muscle activity assessment, SEMG electrodes were attached to eight
    critical muscles: deltoid muscle-medial part (left), deltoid muscle-medial part
    (right), trapezius muscle (left), trapezius muscle (right), erector spinae muscle
    (left), erector spinae muscle (right), gastrocnemius muscle (left) and
    Matched MeSH terms: Electrodes
  20. Sagadevan S, Marlinda AR, Johan MR, Umar A, Fouad H, Alothman OY, et al.
    J Colloid Interface Sci, 2020 Jan 15;558:68-77.
    PMID: 31585223 DOI: 10.1016/j.jcis.2019.09.081
    We demonstrate the preparation of nanostructures cobalt oxide/reduced graphene oxide (Co3O4/rGO) nanocomposites by a simple one-step cost-effective hydrothermal technique for possible electrode materials in supercapacitor application. The X-ray diffraction patterns were employed to confirm the nanocomposite crystal system of Co3O4/rGO by demonstrating the existence of normal cubic spinel structure of Co3O4 in the matrix of Co3O4/rGO nanocomposite. FTIR and FT-Raman studies manifested the structural behaviour and quality of prepared Co3O4/rGO nanocomposite. The optical properties of the nanocomposite Co3O4/rGO have been investigated by UV absorption spectra. The SEM/TEM images showed that the Co3O4 nanoparticles in the Co3O4/rGO nanocomposites were covered over the surface of the rGO sheets. The electrical properties were analyzed in terms of real and imaginary permittivity, dielectric loss and AC conductivity. The electrocatalytic activities of synthesized Co3O4/rGO nanocomposites were determined by cyclic voltammetry and charge-discharge cycle to evaluate the supercapacitive performance. The specific capacitance of 754 Fg-1 was recorded for Co3O4/rGO nanocomposite based electrode in three electrode cell system. The electrode material exhibited an acceptable capability and excellent long-term cyclic stability by maintaining 96% after 1000 continuous cycles. These results showed that the prepared sample could be an ideal candidate for high-energy application as electrode materials. The synthesized Co3O4/rGO nanocomposite is a versatile material and can be used in various application such as fuel cells, electrochemical sensors, gas sensors, solar cells, and photocatalysis.
    Matched MeSH terms: Electrodes
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links