Displaying publications 121 - 140 of 430 in total

Abstract:
Sort:
  1. Liew KB, Koh EV, Kong XE, Ismail NA, Abu Bakar RA, Kee PE, et al.
    Pharm Nanotechnol, 2025;13(2):271-286.
    PMID: 39323341 DOI: 10.2174/0122117385324246240826042254
    Nanoparticles have found applications across diverse sectors, including agriculture, food, cosmetics, chemicals, mechanical engineering, automotive, and oil and gas industries. In the medical field, nanoparticles have garnered considerable attention due to their great surface area, high solubility, rapid dissolution, and enhanced bioavailability. Nanopharmaceuticals are specifically designed to precisely deliver drug substances to targeted tissues and cells, aiming to optimize therapeutic efficacy while minimizing potential adverse effects. Furthermore, nanopharmaceuticals offer advantages, such as expedited therapeutic onset, reduced dosages, minimized variability between fed and fasted states, and enhanced patient compliance. The increasing interest in nanopharmaceuticals research among scientists and industry stakeholders highlights their potential for various medical applications from disease management to cancer treatment. This review examines the distinctive characteristics of ideal nanoparticles for efficient drug delivery, explores the current types of nanoparticles utilized in medicine, and delves into the applications of nanopharmaceuticals, including drug and gene delivery, as well as transdermal drug administration. This review provides insights into the nanopharmaceuticals field, contributing to the development of novel drug delivery systems and enhancing the potential of nanotechnology in healthcare.
    Matched MeSH terms: Pharmaceutical Preparations/administration & dosage; Pharmaceutical Preparations/chemistry
  2. Yellepeddi VK, Sheshala R, McMillan H, Gujral C, Jones D, Raghu Raj Singh T
    Drug Discov Today, 2015 Jul;20(7):884-9.
    PMID: 25668579 DOI: 10.1016/j.drudis.2015.01.013
    Punctal plugs (PPs) are miniature medical implants that were initially developed for the treatment of dry eyes. Since their introduction in 1975, many PPs made from different materials and designs have been developed. PPs, albeit generally successful, suffer from drawbacks such as epiphora and suppurative canaliculitis. To overcome these issues intelligent designs of PPs were proposed (e.g. SmartPLUG™ and Form Fit™). PPs are also gaining interest among pharmaceutical scientists for sustaining drug delivery to the eye. This review aims to provide an overview of PPs for dry eye treatment and drug delivery to treat a range of ocular diseases. It also discusses current challenges in using PPs for ocular diseases.
    Matched MeSH terms: Pharmaceutical Preparations/administration & dosage*; Pharmaceutical Preparations/chemistry
  3. Wong TW
    Recent Pat Drug Deliv Formul, 2011 Sep;5(3):227-43.
    PMID: 21834774
    Design of oral fast-release solid dispersion of poorly water-soluble drugs has been a great challenge over past decades on issues of drug recrystallization, drug polymorphism, formulation limited to low drug-to-carrier ratio and drug particle aggregation in matrix. The complexity in solid dispersion design is envisaged to be resolvable by the use of nanoparticulate system as solid dosage form. This manuscript reviews several patented processing approaches of nanoparticulate solid dispersion that have been reported recently. Through drug nanoencapsulation, a higher content of drug may be delivered with less aggregation via placing the same drug mass in a greater number of tinier carriers. Nanoencapsulation, by its own process of formation, brings about submicron particles. Keeping drug in these nanoparticles, a remarkable rise in specific surface area of drug is realized for dissolution. The augmentation of drug dissolution can be sufficiently high to the extent that the influences of polymorphism and crystallization phenomenon on drug dissolution in a solid dispersion may be negligible.
    Matched MeSH terms: Pharmaceutical Preparations/administration & dosage*; Pharmaceutical Preparations/chemistry
  4. Khan NR, Harun MS, Nawaz A, Harjoh N, Wong TW
    Curr Pharm Des, 2015;21(20):2848-66.
    PMID: 25925113
    Transdermal drug delivery is impeded by the natural barrier of epidermis namely stratum corneum. This limits the route to transport of drugs with a log octanol-water partition coefficient of 1 to 3, molecular weight of less than 500 Da and melting point of less than 200°C. Nanotechnology has received widespread investigation as nanocarriers are deemed to be able to fluidize the stratum corneum as a function of size, shape, surface charges, and hydrophilicity-hydrophobicity balance, while delivering drugs across the skin barrier. This review provides an overview and update on the latest designs of liposomes, ethosomes, transfersomes, niosomes, magnetosomes, oilin- water nanoemulsions, water-in-oil nanoemulsions, bicontinuous nanoemulsions, covalently crosslinked polysaccharide nanoparticles, ionically crosslinked polysaccharide nanoparticles, polyelectrolyte coacervated nanoparticles and hydrophobically modified polysaccharide nanoparticles with respect to their ability to fuse or fluidize lipid/protein/tight junction regimes of skin, and effect changes in skin permeability and drug flux. Universal relationships of nanocarrier size, zeta potential and chemical composition on transdermal permeation characteristics of drugs will be developed and discussed.
    Matched MeSH terms: Pharmaceutical Preparations/administration & dosage*; Pharmaceutical Preparations/metabolism
  5. Al-Shaibani MM, Radin Mohamed RMS, Zin NM, Al-Gheethi A, Al-Sahari M, El Enshasy HA
    Molecules, 2021 Apr 25;26(9).
    PMID: 33923072 DOI: 10.3390/molecules26092510
    The present research aimed to enhance the pharmaceutically active compounds' (PhACs') productivity from Streptomyces SUK 25 in submerged fermentation using response surface methodology (RSM) as a tool for optimization. Besides, the characteristics and mechanism of PhACs against methicillin-resistant Staphylococcus aureus were determined. Further, the techno-economic analysis of PhACs production was estimated. The independent factors include the following: incubation time, pH, temperature, shaker rotation speed, the concentration of glucose, mannitol, and asparagine, although the responses were the dry weight of crude extracts, minimum inhibitory concentration, and inhibition zone and were determined by RSM. The PhACs were characterized using GC-MS and FTIR, while the mechanism of action was determined using gene ontology extracted from DNA microarray data. The results revealed that the best operating parameters for the dry mass crude extracts production were 8.20 mg/L, the minimum inhibitory concentrations (MIC) value was 8.00 µg/mL, and an inhibition zone of 17.60 mm was determined after 12 days, pH 7, temperature 28 °C, shaker rotation speed 120 rpm, 1 g glucose /L, 3 g mannitol/L, and 0.5 g asparagine/L with R2 coefficient value of 0.70. The GC-MS and FTIR spectra confirmed the presence of 21 PhACs, and several functional groups were detected. The gene ontology revealed that 485 genes were upregulated and nine genes were downregulated. The specific and annual operation cost of the production of PhACs was U.S. Dollar (U.S.D) 48.61 per 100 mg compared to U.S.D 164.3/100 mg of the market price, indicating that it is economically cheaper than that at the market price.
    Matched MeSH terms: Pharmaceutical Preparations/isolation & purification*; Pharmaceutical Preparations/chemistry
  6. Jeevanandam J, Chan YS, Danquah MK
    Biochimie, 2016 Sep-Oct;128-129:99-112.
    PMID: 27436182 DOI: 10.1016/j.biochi.2016.07.008
    Nano-formulations of medicinal drugs have attracted the interest of many researchers for drug delivery applications. These nano-formulations enhance the properties of conventional drugs and are specific to the targeted delivery site. Dendrimers, polymeric nanoparticles, liposomes, nano-emulsions and micelles are some of the nano-formulations that are gaining prominence in pharmaceutical industry for enhanced drug formulation. Wide varieties of synthesis methods are available for the preparation of nano-formulations to deliver drugs in biological system. The choice of synthesis methods depend on the size and shape of particulate formulation, biochemical properties of drug, and the targeted site. This article discusses recent developments in nano-formulation and the progressive impact on pharmaceutical research and industries. Additionally, process challenges relating to consistent generation of nano-formulations for drug delivery are discussed.
    Matched MeSH terms: Pharmaceutical Preparations/administration & dosage*; Pharmaceutical Preparations/chemistry
  7. Balan S, Hassali MA, Mak VSL
    Res Social Adm Pharm, 2017 May-Jun;13(3):653-655.
    PMID: 27493130 DOI: 10.1016/j.sapharm.2016.06.014
    The pediatric population is an enormously diverse segment of population varying both in size and age. The diversity caused pharmacists face various challenges primarily related to procuring, provision as well as use of drugs in this group of patients. Pediatric dose calculation is particularly a concern for pharmacists. Another challenge faced by pharmacists is unavailability of suitable formulations for pediatric use. This has also led many pharmacists to prepare extemporaneous liquid preparations, even though stability data on such preparations are scarce. Some extemporaneous preparations contain excipients which are potentially harmful in children. Besides that, inadequate labeling and drug information for pediatric drug use had not only challenged pharmacists in recommending and optimizing drug use in children, but also inadvertently caused many drugs used outside the approved terms of the product license (off-label use). Pharmacists are striving to stay connected to overcome the common and comparable challenges faced in their day to day duties and strive to maximize the safe and effective use of medicines for children.
    Matched MeSH terms: Pharmaceutical Preparations/administration & dosage*; Pharmaceutical Preparations/chemistry
  8. Lin XR, Kwon E, Hung C, Huang CW, Oh WD, Lin KA
    J Colloid Interface Sci, 2021 Feb 15;584:749-759.
    PMID: 33176929 DOI: 10.1016/j.jcis.2020.09.104
    As sulfosalicylic acid (SUA) is extensively used as a pharmaceutical product, discharge of SUA into the environment becomes an emerging environmental issue because of its low bio-degradability. Thus, SO4--based advanced oxidation processes have been proposed for degrading SUA because of many advantages of SO4-. As Oxone represents a dominant reagent for producing SO4-, and Co is the most capable metal for activating Oxone to generate SO4-, it is critical to develop an effective but easy-to-use Co-based catalysts for Oxone activation to degrade SUA. Herein, a 3D hierarchical catalyst is specially created by decorating Co3O4 nanocubes (NCs) on macroscale nitrogen-doped carbon form (NCF). This Co3O4-decorated NCF (CONCF) is free-standing, macroscale and even squeezable to exhibit interesting and versatile features. More importantly, CONCF consists of Co3O4 NCs evenly distributed on NCF without aggregation. The NCF not only serves as a support for Co3O4 NCs but also offers additional active sites to synergistically enhance catalytic activities towards Oxone activation. Therefore, CONCF exhibits a higher catalytic activity than the conventional Co3O4 nanoparticles for activating Oxone to fully eliminate SUA in 30 min with a rate constant of 0.142 min-1. CONCF exhibits a much lower Ea value of SUA degradation (35.2 kJ/mol) than reported values, and stable catalytic activities over multi-cyclic degradation of SUA. The mechanism of SUA degradation is also explored, and degradation intermediates of SUA degradation are identified to provide a possible pathway of SUA degradation. These features validate that CONCF is certainly a promising 3D hierarchical catalyst for enhanced Oxone activation to degrade SUA. The findings obtained here are also insightful to develop efficient heterogeneous Oxone-activating catalysts for eliminating emerging contaminants.
    Matched MeSH terms: Pharmaceutical Preparations
  9. Rizwan K, Khan SA, Ahmad I, Rasool N, Ibrahim M, Zubair M, et al.
    Molecules, 2019 Aug 29;24(17).
    PMID: 31470508 DOI: 10.3390/molecules24173138
    Viola betonicifolia (Violaceae) is commonly recognized as "Banafsha" and widely distributed throughout the globe. This plant is of great interest because of its traditional, pharmacological uses. This review mainly emphases on morphology, nutritional composition, and several therapeutic uses, along with pharmacological properties of different parts of this multipurpose plant. Different vegetative parts of this plant (roots, leaves, petioles, and flowers) contained a good profile of essential micro- and macronutrients and are rich source of fat, protein, carbohydrates, and vitamin C. The plant is well known for its pharmacological properties, e.g., antioxidant, antihelminthic, antidepressant, anti-inflammatory, analgesic, and has been reported in the treatment of various neurological diseases. This plant is of high economic value. The plant has potential role in cosmetic industry. This review suggests that V. betonicifolia is a promising source of pharmaceutical agents. This plant is also of significance as ornamental plant, however further studies needed to explore its phytoconstituents and their pharmacological potential. Furthermore, clinical studies are needed to use this plant for benefits of human beings.
    Matched MeSH terms: Pharmaceutical Preparations
  10. Supapaan T, Low BY, Wongpoowarak P, Moolasarn S, Anderson C
    Pharm Pract (Granada), 2019 08 21;17(3):1611.
    PMID: 31592299 DOI: 10.18549/PharmPract.2019.3.1611
    This review focuses on the studies and opinions around issues of transition from the BPharm to the PharmD degree in the U.S., Japan, South Korea, Pakistan and Thailand. The transition to the clinically orientated PharmD degree in many countries was seen to be a means of developing the profession. However, some countries have both clinically-oriented and pharmaceutical sciences-oriented PharmD programme that are designed to meet the needs of their countries. Each country created a different process to handle the transition to an all-PharmD programme, but mostly had the process of school accreditation mandated by the regulatory bodies. The main barrier to the transition in most of the countries was the issue of educational quality. A set of indicators is needed to measure and monitor the impact/outcome of the PharmD degree. Each country has different needs due to the different contexts of health care systems and the scope of pharmacy practice. In order to increase their chances of benefiting from the new programme, academic leaders should critically assess their countries' needs before deciding to adopt a PharmD programme.
    Matched MeSH terms: Pharmaceutical Preparations
  11. Nur Aisyah Zainordin, Fatimah Zaherah Mohd Shah, Rohana Abdul Ghani
    MyJurnal
    A 49-year old patient presented with symptoms of adrenal suppression following an attempt to
    withdraw Depo-Provera or Depot Medroxyprogesterone Acetate (DMPA) injection. She had
    been receiving DMPA injections for the past 16 years for contraception. She was initially
    prescribed DMPA by her gynaecologist but later on began obtaining the medication directly
    from a private pharmacy without prior consultation from her gynaecologist. Clinically, she had
    been experiencing significant weight gain and appeared cushingoid. Blood investigations
    confirmed partial adrenal suppression with presence of an adrenal incidentaloma. This case
    reports a known side effect of DMPA but occurring at a much lower dose than previously
    described. It also highlights the need to increase the awareness of the insidious side effect of
    DMPA and to avoid unsupervised use of the drug.
    Matched MeSH terms: Pharmaceutical Preparations
  12. Yong YV, Mahamad Dom SH, Ahmad Sa'ad N, Lajis R, Md Yusof FA, Abdul Rahaman JA
    MDM Policy Pract, 2021 03 30;6(1):2381468321994063.
    PMID: 33855190 DOI: 10.1177/2381468321994063
    Objectives. The current health technology assessment used to evaluate respiratory inhalers is associated with limitations that have necessitated the development of an explicit formulary decision-making framework to ensure balance between the accessibility, value, and affordability of medicines. This study aimed to develop a multiple-criteria decision analysis (MCDA) framework, apply the framework to potential and currently listed respiratory inhalers in the Ministry of Health Medicines Formulary (MOHMF), and analyze the impacts of applying the outputs, from the perspective of listing and delisting medicines in the formulary. Methods. The overall methodology of the framework development adhered to the recommendations of the ISPOR MCDA Emerging Good Practices Task Force. The MCDA framework was developed using Microsoft Excel 2010 and involved all relevant stakeholders. The framework was then applied to 27 medicines, based on data gathered from the highest levels of available published evidence, pharmaceutical companies, and professional opinions. The performance scores were analyzed using the additive model. The end values were then deliberated by an expert committee. Results. A total of eight main criteria and seven subcriteria were determined by the stakeholders. The economic criterion was weighted at 30%. Among the noneconomic criteria, "patient suitability" was weighted the highest. Based on the MCDA outputs, the expert committee recommended one potential medicine (out of three; 33%) be added to the MOHMF and one existing medicine (out of 24; 4%) be removed/delisted from the MOHMF. The other existing medicines remained unchanged. Conclusions. Although this framework was useful for deciding to add new medicines to the formulary, it appears to be less functional and impactful for the removal/delisting existing medicines from the MOHMF. The generalizability of this conclusion to other formulations remains to be confirmed.
    Matched MeSH terms: Pharmaceutical Preparations
  13. Akyuz E, Paudel YN, Polat AK, Dundar HE, Angelopoulou E
    Epilepsy Behav, 2021 Feb;115:107701.
    PMID: 33412369 DOI: 10.1016/j.yebeh.2020.107701
    Epilepsy is a devastating neurological disorder characterized by the repeated occurrence of epileptic seizures. Epilepsy stands as a global health concern affecting around 70 million people worldwide. The mainstream antiepileptic drugs (AEDs) only exert symptomatic relief and drug-resistant epilepsy occurs in up to 33 percent of patients. Hence, the investigation of novel therapeutic strategies against epileptic seizures that could exert disease modifying effects is of paramount importance. In this context, compounds of natural origin with potential antiepileptic properties have recently gained increasing attention. Quercetin is a plant-derived flavonoid with several pharmacological activities. Emerging evidence has demonstrated the antiepileptic potential of quercetin as well. Herein, based on the available evidence, we discuss the neuroprotective effects of quercetin against epileptic seizures and further analyze the plausible underlying molecular mechanisms. Our review suggests that quercetin might be a potential therapeutic candidate against epilepsy that deserves further investigation, and paves the way for the development of plant-derived antiepileptic treatment approaches.
    Matched MeSH terms: Pharmaceutical Preparations
  14. Kamal Kenny, Madhavan, Priya
    MyJurnal
    Over the years, the rights of pharmacists as health care professionals have been a controversial topic in the medical field. Pharmacists worldwide have always been independent in being able to practice medicine in their own way and have been given exclusive dispensing rights to distribute drugs and medicines to patients. In Malaysia, however, this is not the case. The overwhelming opinion has been that pharmacists are losing their dispensing rights because doctors are earning more. The current study was carried out in view of recent debates regarding the implementation of a dispensary separation policy in Malaysia. The main objective of this study was to gain an understanding of the views of and challenges experienced by the public in regards to the implementation of this type of policy. The overall results of this study show that dispensing rights are still viewed with mixed feelings. Study subjects reported believing that pharmacists were capable of dispensing medication but that they lack the confidence to make changes within the existing system. When their conditions were not severe, respondents indicated that they preferred the old system where doctors prescribe them with medicine and they subsequently visit the pharmacy. In conclusion, the majority of interview participants were of the opinion that maintaining the current system would benefit them holistically. In this study, input from a total of 929 respondents was gathered via a structured survey conducted throughout Malaysia. The study findings were also supported by data obtained during interviews carried out with 350 informants regarding their views of the implementation of dispensary separation in Malaysia
    Matched MeSH terms: Pharmaceutical Preparations
  15. Yeoh SC, Goh CF
    Drug Deliv Transl Res, 2021 Apr 28.
    PMID: 33907986 DOI: 10.1007/s13346-021-00988-5
    Salicylates have a long history of use for pain relief. Salicylic acid and methyl salicylate are among the widely used topical salicylates namely for keratolytic and anti-inflammatory actions, respectively. The current review summarises both passive and active strategies, including emerging technologies employed to enhance skin permeation of these two salicylate compounds. The formulation design of topical salicylic acid targets the drug retention in and on the skin based on the different indications including keratolytic, antibacterial and photoprotective actions, while the investigations of topical delivery strategies for methyl salicylate are limited. The pharmacokinetics and metabolisms of both salicylate compounds are discussed. The current overview and future perspectives of the topical delivery strategies are also highlighted for translational considerations of formulation designs.
    Matched MeSH terms: Pharmaceutical Preparations
  16. Wang Y, Lim YY, He Z, Wong WT, Lai WF
    PMID: 33559482 DOI: 10.1080/10408398.2021.1882381
    The last decide has witnessed a growing research interest in the role of dietary phytochemicals in influencing the gut microbiota. On the other hand, recent evidence reveals that dietary phytochemicals exhibit properties of preventing and tackling symptoms of Alzheimer's disease, which is a neurodegenerative disease that has also been linked with the status of the gut microbiota over the last decade. Till now, little serious discussions, however, have been made to link recent understanding of Alzheimer's disease, dietary phytochemicals and the gut microbiota together and to review the roles played by phytochemicals in gut dysbiosis induced pathologies of Alzheimer's disease. Deciphering these connections can provide insights into the development and future use of dietary phytochemicals as anti-Alzheimer drug candidates. This review aims at presenting latest evidence in the modulating role of phytochemicals in the gut microbiota and its relevance to Alzheimer's disease and summarizing the mechanisms behind the modulative activities. Limitations of current research in this field and potential directions will also be discussed for future research on dietary phytochemicals as anti-Alzheimer agents.
    Matched MeSH terms: Pharmaceutical Preparations
  17. Rama R, Meenakshi S, Pandian K, Gopinath SCB
    Crit Rev Anal Chem, 2021 Feb 23.
    PMID: 33622098 DOI: 10.1080/10408347.2021.1882834
    Paracetamol (PAR) is an effective antipyretic and analgesic drug utilized worldwide, safer at therapeutic levels but over-dosing and the chronic usage of PAR results in accumulation of toxic metabolites, which leads to kidney and liver damages. Hence, a simple, rapid, cost-effective, and sensitive analytical technique is needed for the accurate determination of PAR in pharmaceutical and biological samples. Though numerous techniques have been reported for PAR detection, electrochemical methods are being receiving more interest due to their advantages. Moreover, in the past few decades, room temperature ionic liquids (RTILs) have been utilized in electrochemical sensors due to their attractive properties. In this present review, authors gathered research findings available for the determination of PAR using RTIL-based electrochemical sensors and discussed. The advantages and limitations in these systems as well as the future research directions are summarized.
    Matched MeSH terms: Pharmaceutical Preparations
  18. Paudel YN, Semple BD, Jones NC, Othman I, Shaikh MF
    J Neurochem, 2019 12;151(5):542-557.
    PMID: 30644560 DOI: 10.1111/jnc.14663
    Epilepsy is a serious neurological condition exhibiting complex pathology and deserving of more serious attention. More than 30% of people with epilepsy are not responsive to more than 20 anti-epileptic drugs currently available, reflecting an unmet clinical need for novel therapeutic strategies. Not much is known about the pathogenesis of epilepsy, but evidence indicates that neuroinflammation might contribute to the onset and progression of epilepsy following acquired brain insults. However, the molecular mechanisms underlying these pathophysiological processes are yet to be fully understood. The emerging research suggests that high-mobility group box protein 1 (HMGB1), a DNA-binding protein that is both actively secreted by inflammatory cells and released by necrotic cells, might contribute to the pathogenesis of epilepsy. HMGB1 as an initiator and amplifier of neuroinflammation, and its activation is implicated in the propagation of seizures in animal models. The current review will highlight the potential role of HMGB1 in the pathogenesis of epilepsy, and implications of HMGB1-targeted therapies against epilepsy. HMGB1 in this context is an emerging concept deserving further exploration. Increased understanding of HMGB1 in seizures and epilepsy will pave the way in designing novel and innovative therapeutic strategies that could modify the disease course or prevent its development.
    Matched MeSH terms: Pharmaceutical Preparations
  19. Al-Nema MY, Gaurav A
    Curr Top Med Chem, 2020;20(26):2404-2421.
    PMID: 32533817 DOI: 10.2174/1568026620666200613202641
    Schizophrenia is a severe mental disorder that affects more than 1% of the population worldwide. Dopamine system dysfunction and alterations in glutamatergic neurotransmission are strongly implicated in the aetiology of schizophrenia. To date, antipsychotic drugs are the only available treatment for the symptoms of schizophrenia. These medications, which act as D2-receptor antagonist, adequately address the positive symptoms of the disease, but they fail to improve the negative symptoms and cognitive impairment. In schizophrenia, cognitive impairment is a core feature of the disorder. Therefore, the treatment of cognitive impairment and the other symptoms related to schizophrenia remains a significant unmet medical need. Currently, phosphodiesterases (PDEs) are considered the best drug target for the treatment of schizophrenia since many PDE subfamilies are abundant in the brain regions that are relevant to cognition. Thus, this review aims to illustrate the mechanism of PDEs in treating the symptoms of schizophrenia and summarises the encouraging results of PDE inhibitors as anti-schizophrenic drugs in preclinical and clinical studies.
    Matched MeSH terms: Pharmaceutical Preparations
  20. Ramanunny AK, Wadhwa S, Gulati M, Singh SK, Kapoor B, Dureja H, et al.
    Eur J Pharmacol, 2021 Jan 05;890:173691.
    PMID: 33129787 DOI: 10.1016/j.ejphar.2020.173691
    Skin diseases are the fourth leading non-fatal skin conditions that act as a burden and affect the world economy globally. This condition affects the quality of a patient's life and has a pronounced impact on both their physical and mental state. Treatment of these skin conditions with conventional approaches shows a lack of efficacy, long treatment duration, recurrence of conditions, systemic side effects, etc., due to improper drug delivery. However, these pitfalls can be overcome with the applications of nanomedicine-based approaches that provide efficient site-specific drug delivery at the target site. These nanomedicine-based strategies are evolved as potential treatment opportunities in the form of nanocarriers such as polymeric and lipidic nanocarriers, nanoemulsions along with emerging others viz. carbon nanotubes for dermatological treatment. The current review focuses on challenges faced by the existing conventional treatments along with the topical therapeutic perspective of nanocarriers in treating various skin diseases. A total of 213 articles have been reviewed and the application of different nanocarriers in treating various skin diseases has been explained in detail through case studies of previously published research works. The toxicity related aspects of nanocarriers are also discussed.
    Matched MeSH terms: Pharmaceutical Preparations
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links