Displaying publications 121 - 140 of 161 in total

Abstract:
Sort:
  1. Chin VK, Atika Aziz NA, Hudu SA, Harmal NS, Syahrilnizam A, Jalilian FA, et al.
    J Virol Methods, 2016 10;236:117-125.
    PMID: 27432115 DOI: 10.1016/j.jviromet.2016.07.012
    Human respiratory syncytial virus (RSV) is the leading cause of severe lower respiratory tract infection in infants and young children globally and is a significant pathogen of the elderly and immunocompromised. The M2-2 protein of respiratory syncytial virus (RSV) is particularly important in regulation of viral RNA transcription and replication that could be a potential anti-viral candidate against RSV infection. In this study, we designed and validated siRNAs that specifically target the RSV M2-2 gene. Four siRNAs targeting different regions of the M2-2 gene were designed using web tool. In-vitro evaluation of silencing effect was performed by using RSV infected Vero cell line. Viral M2-2 linked GFP recombinant plasmid was co-transfected with non-targeted siRNA, Pooled siRNA, siRNA 1, siRNA 2, siRNA 3 and siRNA 4 using synthetic cationic polymer. The silencing effect of M2-2 gene at the protein level was measured both qualitatively and quantitatively by using fluorescence microscopy and flow cytometry. Meanwhile, the silencing effect at the mRNA level was assessed by using RT-qPCR. This study showed that all four designed siRNAs can effectively and efficiently silence M2-2 gene. siRNA 2 showed the highest (98%) silencing effect on protein level and siRNA 4 with 83.1% at the mRNA level. The viral assay showed no significant cytopathic effects observed after 6days post-infection with siRNAs. In conclusion, this study showed the effectiveness of siRNA in silencing M2-2 gene both at the protein and mRNA level which could potentially be used as a novel therapeutic agent in the treatment of RSV infection. However, further study is warranted to investigate the silencing effect of M2-2 protein and inhibition of RSV infection.
    Matched MeSH terms: Virus Replication/drug effects*
  2. Ansari AW, Schmidt RE, Shankar EM, Kamarulzaman A
    J Transl Med, 2014;12:341.
    PMID: 25528160 DOI: 10.1186/s12967-014-0341-8
    Even in the era of successful combination antiretroviral therapy (cART), co-infection of Hepatitis C virus (HCV) remains one of the leading causes of non-AIDS-related mortality and morbidity among HIV-positive individuals as a consequence of accelerated liver fibrosis and end-stage liver disease (ESLD). The perturbed liver microenvironment and induction of host pro-inflammatory mediators in response to HIV and HCV infections, play a pivotal role in orchestrating the disease pathogenesis and clinical outcomes. How these viruses communicate each other via chemokine CCL2 and exploit the liver specific cellular environment to exacerbate liver fibrosis in HIV/HCV co-infection setting is a topic of intense discussion. Herein, we provide recent views and insights on potential mechanisms of CCL2 mediated immuno-pathogenesis, and HIV-HCV cross-talk in driving liver inflammation. We believe CCL2 may potentially serve an attractive target of anti-fibrotic intervention against HIV/HCV co-infection associated co-morbidities.
    Matched MeSH terms: Virus Replication
  3. Yaiw KC, Hyatt A, Vandriel R, Crameri SG, Eaton B, Wong MH, et al.
    Arch Virol, 2008;153(5):865-75.
    PMID: 18330496 DOI: 10.1007/s00705-008-0059-0
    Tioman virus (TioPV) and Menangle virus (MenPV) are two antigenically and genetically related paramyxoviruses (genus: Rubulavirus, family: Paramyxoviridae) isolated from Peninsular Malaysia (2001) and Australia (1997), respectively. Both viruses are potential zoonotic agents. In the present study, the infectivity, growth kinetics, morphology and morphogenesis of these two paramyxoviruses in a human neuronal cell (SK-N-SH) line were investigated. Sub-confluent SK-N-SH cells were infected with TioPV and MenPV at similar multiplicity of infection. These cells were examined by conventional and immunoelectron microscopy, and virus titres in the supernatants were assayed. Syncytia were observed for both infections in SK-N-SH cells and were more pronounced during the early stages of TioPV infection. The TioPV titre increased consistently (10(1)) every 12 h after infection. In MenPV-infected cells, cellular material was frequently observed within budding virions, and microfilaments and microtubules were abundant. Viral budding was common, and extracellular MenPVs tended to be more pleomorphic compared to TioPVs, which appeared to be more spherical in appearance. The MenPV cytoplasmic viral inclusion appeared to be comparatively smaller, loose and interspersed with randomly scattered circle-like particles, whereas huge tubule-like cytoplasmic inclusions were observed in TioPV-infected cells. Both viruses also displayed different cellular pathology in the SK-N-SH cells. The intracellular ultrastructural characteristics of these two viruses in infected neuronal cells may allow them to be differentiated by electron microscopy.
    Matched MeSH terms: Virus Replication
  4. Diederich S, Maisner A
    Ann N Y Acad Sci, 2007 Apr;1102:39-50.
    PMID: 17470910
    Nipah virus (NiV) is a highly pathogenic paramyxovirus, which emerged in 1998 from fruit bats in Malaysia and caused an outbreak of severe respiratory disease in pigs and fatal encephalitis in humans with high mortality rates. In contrast to most paramyxoviruses, NiV can infect a large variety of mammalian species. Due to this broad host range, its zoonotic potential, its high pathogenicity for humans, and the lack of effective vaccines or therapeutics, NiV was classified as a biosafety level 4 pathogen. This article provides an overview of the molecular characteristics of NiV focusing on the structure, functions, and unique biological properties of the two NiV surface glycoproteins, the receptor-binding G protein, and the fusion protein F. Since viral glycoproteins are major determinants for cell tropism and virus spread, a detailed knowledge of these proteins can help to understand the molecular basis of viral pathogenicity.
    Matched MeSH terms: Virus Replication
  5. Wong HV, Chan YF, Sam IC, Sulaiman WY, Vythilingam I
    Methods Mol Biol, 2016;1426:119-28.
    PMID: 27233266 DOI: 10.1007/978-1-4939-3618-2_11
    In vivo infection of mosquitoes is an important method to study and characterize arthropod-borne viruses. Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that is transmitted primarily by Aedes mosquitoes. In this chapter, we describe a protocol for infection of CHIKV in two species of Aedes mosquitoes, Aedes aegypti and Aedes albopictus, together with the isolation of CHIKV in different parts of the infected mosquito such as midgut, legs, wings, salivary gland, head, and saliva. This allows the study of viral infection, replication and dissemination within the mosquito vector.
    Matched MeSH terms: Virus Replication
  6. Merican I, Guan R, Amarapuka D, Alexander MJ, Chutaputti A, Chien RN, et al.
    J Gastroenterol Hepatol, 2000 Dec;15(12):1356-61.
    PMID: 11197043
    Of the estimated 50 million new cases of hepatitis B virus (HBV) infection diagnosed annually, 5-10% of adults and up to 90% of infants will become chronically infected, 75% of these in Asia where hepatitis B is the leading cause of chronic hepatitis, cirrhosis and hepatocellular carcinoma (HCC). In Indonesia, 4.6% of the population was positive for HBsAg in 1994 and of these, 21% were positive for HBeAg and 73% for anti-HBe; 44% and 45% of Indonesian patients with cirrhosis and HCC, respectively, were HBsAg positive. In the Philippines, there appear to be two types of age-specific HBsAg prevalence, suggesting different modes of transmission. In Thailand, 8-10% of males and 6-8% of females are HBsAg positive, with HBsAg also found in 30% of patients with cirrhosis and 50-75% of those with HCC. In Taiwan, 75-80% of patients with chronic liver disease are HBsAg positive, and HBsAg is found in 34% and 72% of patients with cirrhosis and HCC, respectively. In China, 73% of patients with chronic hepatitis and 78% and 71% of those with cirrhosis and HCC, respectively, are HBsAg positive. In Singapore, the prevalence of HBsAg has dropped since the introduction of HBV vaccination and the HBsAg seroprevalence of unvaccinated individuals over 5 years of age is 4.5%. In Malaysia, 5.24% of healthy volunteers, with a mean age of 34 years, were positive for HBsAg in 1997. In the highly endemic countries in Asia, the majority of infections are contracted postnatally or perinatally. Three phases of chronic HBV infection are recognized: phase 1 patients are HBeAg positive with high levels of virus in the serum and minimal hepatic inflammation; phase 2 patients have intermittent or continuous hepatitis of varying degrees of severity; phase 3 is the inactive phase during which viral concentrations are low and there is minimal inflammatory activity in the liver. In general, patients who clear HBeAg have a better prognosis than patients who remain HBeAg-positive for prolonged periods of time. The outcome after anti-HBe seroconversion depends on the degree of pre-existing liver damage and any subsequent HBV reactivation. Without pre-existing cirrhosis, there may be only slight fibrosis or mild chronic hepatitis, but with pre-existing cirrhosis, further complications may ensue. HBsAg-negative chronic hepatitis B is a phase of chronic HBV infection during which a mutation arises resulting in the inability of the virus to produce HBeAg. Such patients tend to have more severe liver disease and run a more rapidly progressive course. The annual probability of developing cirrhosis varies from 0.1 to 1.0% depending on the duration of HBV replication, the severity of disease and the presence of concomitant infections or drugs. The annual incidence of hepatic decompensation in HBV-related cirrhosis varies from 2 to 10% and in these patients the 5-year survival rate drops dramatically to 14-35%. The annual risk of developing HCC in patients with cirrhosis varies between 1 and 6%; the overall reported annual detection rate of HCC in surveillance studies, which included individuals with chronic hepatitis B and cirrhosis, is 0.8-4.1%. Chronic hepatitis B is not a static disease and the natural history of the disease is affected by both viral and host factors. The prognosis is poor with decompensated cirrhosis and effective treatment options are limited. Prevention of HBV infection thorough vaccination is still, therefore, the best strategy for decreasing the incidence of hepatitis B-associated cirrhosis and HCC.
    Matched MeSH terms: Virus Replication
  7. Li Y, Yu P, Qu C, Li P, Li Y, Ma Z, et al.
    Antiviral Res, 2020 04;176:104743.
    PMID: 32057771 DOI: 10.1016/j.antiviral.2020.104743
    Enteric viruses including hepatitis E virus (HEV), human norovirus (HuNV), and rotavirus are causing global health issues. The host interferon (IFN) response constitutes the first-line defense against viral infections. Melanoma Differentiation-Associated protein 5 (MDA5) is an important cytoplasmic receptor sensing viral infection to trigger IFN production, and on the other hand it is also an IFN-stimulated gene (ISG). In this study, we investigated the effects and mode-of-action of MDA5 on the infection of enteric viruses. We found that MDA5 potently inhibited HEV, HuNV and rotavirus replication in multiple cell models. Overexpression of MDA5 induced transcription of important antiviral ISGs through IFN-like response, without triggering of functional IFN production. Interestingly, MDA5 activates the expression and phosphorylation of STAT1, which is a central component of the JAK-STAT cascade and a hallmark of antiviral IFN response. However, genetic silencing of STAT1 or pharmacological inhibition of the JAK-STAT cascade only partially attenuated the induction of ISG transcription and the antiviral function of MDA5. Thus, we have demonstrated that MDA5 effectively inhibits HEV, HuNV and rotavirus replication through provoking a non-canonical IFN-like response, which is partially dependent on JAK-STAT cascade.
    Matched MeSH terms: Virus Replication
  8. Goldsmith CS, Whistler T, Rollin PE, Ksiazek TG, Rota PA, Bellini WJ, et al.
    Virus Res, 2003 Mar;92(1):89-98.
    PMID: 12606080
    Nipah virus, which was first recognized during an outbreak of encephalitis with high mortality in Peninsular Malaysia during 1998-1999, is most closely related to Hendra virus, another emergent paramyxovirus first recognized in Australia in 1994. We have studied the morphologic features of Nipah virus in infected Vero E6 cells and human brain by using standard and immunogold electron microscopy and ultrastructural in situ hybridization. Nipah virions are enveloped particles composed of a tangle of filamentous nucleocapsids and measured as large as 1900 nm in diameter. The nucleocapsids measured up to 1.67 microm in length and had the herringbone structure characteristic for paramyxoviruses. Cellular infection was associated with multinucleation, intracytoplasmic nucleocapsid inclusions (NCIs), and long cytoplasmic tubules. Previously undescribed for other members of the family Paramyxoviridae, infected cells also contained an inclusion formed of reticular structures. Ultrastructural ISH studies suggest these inclusions play an important role in the transcription process.
    Matched MeSH terms: Virus Replication
  9. Teow SY, Mualif SA, Omar TC, Wei CY, Yusoff NM, Ali SA
    BMC Biotechnol, 2013;13:107.
    PMID: 24304876 DOI: 10.1186/1472-6750-13-107
    HIV genome is packaged and organized in a conical capsid, which is made up of ~1,500 copies of the viral capsid protein p24 (CA). Being a primary structural component and due to its critical roles in both late and early stages of the HIV replication cycle, CA has attracted increased interest as a drug discovery target in recent years. Drug discovery studies require large amounts of highly pure and biologically active protein. It is therefore desirable to establish a simple and reproducible process for efficient production of HIV-1 CA.
    Matched MeSH terms: Virus Replication
  10. Phyu WK, Ong KC, Kong CK, Alizan AK, Ramanujam TM, Wong KT
    Sci Rep, 2017 03 21;7:45069.
    PMID: 28322333 DOI: 10.1038/srep45069
    Hand-foot-and-mouth disease is a self-limiting paediatric infectious disease commonly caused by Enterovirus A71 (Genus: Enterovirus, Family: Picornaviridae). Typical lesions in and around the hands, feet, oral cavity and other places may rarely be complicated by acute flaccid paralysis and acute encephalomyelitis. Although virus is readily cultured from skin vesicles and oral secretions, the cellular target/s of Enterovirus A71 in human skin and oral mucosa are unknown. In Enterovirus A71-infected human skin and oral mucosa organotypic cultures derived from the prepuce and lip biopsies, focal viral antigens and viral RNA were localized to cytoplasm of epidermal and mucosal squamous cells as early as 2 days post-infection. Viral antigens/RNA were associated with cytoplasmic vacuolation and cellular necrosis. Infected primary prepuce epidermal keratinocyte cultures showed cytopathic effects with concomitant detection of viral antigens from 2 days post-infection. Supernatant and/or tissue homogenates from prepuce skin organotypic cultures and primary prepuce keratinocyte cultures showed viral titres consistent with active viral replication. Our data strongly support Enterovirus A71 squamous epitheliotropism in the human epidermis and oral mucosa, and suggest that these organs are important primary and/or secondary viral replication sites that contribute significantly to oral and cutaneous viral shedding resulting in person-to-person transmission, and viraemia, which could lead to neuroinvasion.
    Matched MeSH terms: Virus Replication
  11. Yun SI, Song BH, Frank JC, Julander JG, Olsen AL, Polejaeva IA, et al.
    Viruses, 2018 08 11;10(8).
    PMID: 30103523 DOI: 10.3390/v10080422
    Zika virus (ZIKV) causes no-to-mild symptoms or severe neurological disorders. To investigate the importance of viral and host genetic variations in determining ZIKV infection outcomes, we created three full-length infectious cDNA clones as bacterial artificial chromosomes for each of three spatiotemporally distinct and genetically divergent ZIKVs: MR-766 (Uganda, 1947), P6-740 (Malaysia, 1966), and PRVABC-59 (Puerto Rico, 2015). Using the three molecularly cloned ZIKVs, together with 13 ZIKV region-specific polyclonal antibodies covering nearly the entire viral protein-coding region, we made three conceptual advances: (i) We created a comprehensive genome-wide portrait of ZIKV gene products and their related species, with several previously undescribed gene products identified in the case of all three molecularly cloned ZIKVs. (ii) We found that ZIKV has a broad cell tropism in vitro, being capable of establishing productive infection in 16 of 17 animal cell lines from 12 different species, although its growth kinetics varied depending on both the specific virus strain and host cell line. More importantly, we identified one ZIKV-non-susceptible bovine cell line that has a block in viral entry but fully supports the subsequent post-entry steps. (iii) We showed that in mice, the three molecularly cloned ZIKVs differ in their neuropathogenicity, depending on the particular combination of viral and host genetic backgrounds, as well as in the presence or absence of type I/II interferon signaling. Overall, our findings demonstrate the impact of viral and host genetic variations on the replication kinetics and neuropathogenicity of ZIKV and provide multiple avenues for developing and testing medical countermeasures against ZIKV.
    Matched MeSH terms: Virus Replication
  12. Malik YA
    Malays J Pathol, 2020 Apr;42(1):3-11.
    PMID: 32342926
    were identified beginning with the discovery of SARS-CoV in 2002. With the recent detection of SARS-CoV-2, there are now seven human coronaviruses. Those that cause mild diseases are the 229E, OC43, NL63 and HKU1, and the pathogenic species are SARS-CoV, MERS-CoV and SARS-CoV-2 Coronaviruses (order Nidovirales, family Coronaviridae, and subfamily Orthocoronavirinae) are spherical (125nm diameter), and enveloped with club-shaped spikes on the surface giving the appearance of a solar corona. Within the helically symmetrical nucleocapsid is the large positive sense, single stranded RNA. Of the four coronavirus genera (α,β,γ,δ), human coronaviruses (HCoVs) are classified under α-CoV (HCoV-229E and NL63) and β-CoV (MERS-CoV, SARS-CoV, HCoVOC43 and HCoV-HKU1). SARS-CoV-2 is a β-CoV and shows fairly close relatedness with two bat-derived CoV-like coronaviruses, bat-SL-CoVZC45 and bat-SL-CoVZXC21. Even so, its genome is similar to that of the typical CoVs. SARS-CoV and MERS-CoV originated in bats, and it appears to be so for SARS-CoV-2 as well. The possibility of an intermediate host facilitating the emergence of the virus in humans has already been shown with civet cats acting as intermediate hosts for SARS-CoVs, and dromedary camels for MERS-CoV. Human-to-human transmission is primarily achieved through close contact of respiratory droplets, direct contact with the infected individuals, or by contact with contaminated objects and surfaces. The coronaviral genome contains four major structural proteins: the spike (S), membrane (M), envelope (E) and the nucleocapsid (N) protein, all of which are encoded within the 3' end of the genome. The S protein mediates attachment of the virus to the host cell surface receptors resulting in fusion and subsequent viral entry. The M protein is the most abundant protein and defines the shape of the viral envelope. The E protein is the smallest of the major structural proteins and participates in viral assembly and budding. The N protein is the only one that binds to the RNA genome and is also involved in viral assembly and budding. Replication of coronaviruses begin with attachment and entry. Attachment of the virus to the host cell is initiated by interactions between the S protein and its specific receptor. Following receptor binding, the virus enters host cell cytosol via cleavage of S protein by a protease enzyme, followed by fusion of the viral and cellular membranes. The next step is the translation of the replicase gene from the virion genomic RNA and then translation and assembly of the viral replicase complexes. Following replication and subgenomic RNA synthesis, encapsidation occurs resulting in the formation of the mature virus. Following assembly, virions are transported to the cell surface in vesicles and released by exocytosis.
    Matched MeSH terms: Virus Replication
  13. Yoneda M, Guillaume V, Ikeda F, Sakuma Y, Sato H, Wild TF, et al.
    Proc Natl Acad Sci U S A, 2006 Oct 31;103(44):16508-13.
    PMID: 17053073
    Nipah virus (NiV), a paramyxovirus, was first discovered in Malaysia in 1998 in an outbreak of infection in pigs and humans and incurred a high fatality rate in humans. Fruit bats, living in vast areas extending from India to the western Pacific, were identified as the natural reservoir of the virus. However, the mechanisms that resulted in severe pathogenicity in humans (up to 70% mortality) and that enabled crossing the species barrier were not known. In this study, we established a system that enabled the rescue of replicating NiVs from a cloned DNA by cotransfection of a constructed full-length cDNA clone and supporting plasmids coding virus nucleoprotein, phosphoprotein, and polymerase with the infection of the recombinant vaccinia virus, MVAGKT7, expressing T7 RNA polymerase. The rescued NiV (rNiV), by using the newly developed reverse genetics system, showed properties in vitro that were similar to the parent virus and retained the severe pathogenicity in a previously established animal model by experimental infection. A recombinant NiV was also developed, expressing enhanced green fluorescent protein (rNiV-EGFP). Using the virus, permissibility of NiV was compared with the presence of a known cellular receptor, ephrin B2, in a number of cell lines of different origins. Interestingly, two cell lines expressing ephrin B2 were not susceptible for rNiV-EGFP, indicating that additional factors are clearly required for full NiV replication. The reverse genetics for NiV will provide a powerful tool for the analysis of the molecular mechanisms of pathogenicity and cross-species infection.
    Matched MeSH terms: Virus Replication
  14. Lau KA, Wang B, Miranda-Saksena M, Boadle R, Kamarulzaman A, Ng KP, et al.
    Curr HIV Res, 2010 Apr;8(3):259-71.
    PMID: 20214658
    In Malaysia, co-circulation of CRF01_AE and subtype B has resulted in the emergence of the second generation derivative; CRF33_01B in approximately 20% of its HIV-1 infected individuals. Our objective was to identify possible biological advantages that CRF33_01B possesses over its progenitors. Biological and molecular comparisons of CRF33_01B against its parental subtypes clearly show that CRF33_01B replicated better in activated whole peripheral blood mononuclear cells (PBMCs) and CD4+ T-lymphocytes, but not monocyte-derived macrophages (MDMs). Also, its acquired fitness was greater than CRF01_AE but not subtype B. Moreover, CRF33_01B has higher rate of apoptotic cell death and syncytia induction compared to subtype B. These adaptive and survival abilities could have been acquired by CRF33_01B due to the incorporation of subtype B fragments into the gag-RT region of its full-length genome. Our studies confirm the previously held belief that HIV-1 strains may harbor enhanced biological fitness upon recombination. We therefore estimate a possible gradual replacement of the current predominance of CRF01_AE, as well as wider dissemination of CRF33_01B, together with the identification of other new CRF01_AE/B inter-subtype recombinants in Malaysia.
    Matched MeSH terms: Virus Replication
  15. Clayton BA, Middleton D, Arkinstall R, Frazer L, Wang LF, Marsh GA
    PLoS Negl Trop Dis, 2016 06;10(6):e0004775.
    PMID: 27341030 DOI: 10.1371/journal.pntd.0004775
    Person-to-person transmission is a key feature of human Nipah virus outbreaks in Bangladesh. In contrast, in an outbreak of Nipah virus in Malaysia, people acquired infections from pigs. It is not known whether this important epidemiological difference is driven primarily by differences between NiV Bangladesh (NiV-BD) and Malaysia (NiV-MY) at a virus level, or by environmental or host factors. In a time course study, ferrets were oronasally exposed to equivalent doses of NiV-BD or NiV-MY. More rapid onset of productive infection and higher levels of virus replication in respiratory tract tissues were seen for NiV-BD compared to NiV-MY, corroborating our previous report of increased oral shedding of NiV-BD in ferrets and suggesting a contributory mechanism for increased NiV-BD transmission between people compared to NiV-MY. However, we recognize that transmission occurs within a social and environmental framework that may have an important and differentiating role in NiV transmission rates. With this in mind, ferret-to-ferret transmission of NiV-BD and NiV-MY was assessed under differing viral exposure conditions. Transmission was not identified for either virus when naïve ferrets were cohoused with experimentally-infected animals. In contrast, all naïve ferrets developed acute infection following assisted and direct exposure to oronasal fluid from animals that were shedding either NiV-BD or NiV-MY. Our findings for ferrets indicate that, although NiV-BD may be shed at higher levels than NiV-MY, transmission risk may be equivalently low under exposure conditions provided by cohabitation alone. In contrast, active transfer of infected bodily fluids consistently results in transmission, regardless of the virus strain. These observations suggest that the risk of NiV transmission is underpinned by social and environmental factors, and will have practical implications for managing transmission risk during outbreaks of human disease.
    Matched MeSH terms: Virus Replication
  16. Dietzel E, Kolesnikova L, Sawatsky B, Heiner A, Weis M, Kobinger GP, et al.
    J Virol, 2016 Mar;90(5):2514-22.
    PMID: 26676785 DOI: 10.1128/JVI.02920-15
    Nipah virus (NiV) causes fatal encephalitic infections in humans. To characterize the role of the matrix (M) protein in the viral life cycle, we generated a reverse genetics system based on NiV strain Malaysia. Using an enhanced green fluorescent protein (eGFP)-expressing M protein-deleted NiV, we observed a slightly increased cell-cell fusion, slow replication kinetics, and significantly reduced peak titers compared to the parental virus. While increased amounts of viral proteins were found in the supernatant of cells infected with M-deleted NiV, the infectivity-to-particle ratio was more than 100-fold reduced, and the particles were less thermostable and of more irregular morphology. Taken together, our data demonstrate that the M protein is not absolutely required for the production of cell-free NiV but is necessary for proper assembly and release of stable infectious NiV particles.
    Matched MeSH terms: Virus Replication
  17. Chong YL, Kim O, Poss M
    Virology, 2014 Aug;462-463:309-17.
    PMID: 25010480 DOI: 10.1016/j.virol.2014.06.007
    Genotype VI-paramyxovirus (GVI-PMV1) is a major cause of epidemic Newcastle-like disease in Columbiformes. This genotype of avian paramyxovirus type 1 has diversified rapidly since its introduction into the US in 1982 resulting in two extant lineages, which have different population growth properties. Although some GVI-PMV1s replicate poorly in chickens, it is possible that variants with different replicative or pathogenic potential in chickens exist among the genetically-diverse GVI-PMV1s strains. To determine if variants of Columbiform GVI-PMV1 with different phylogenetic affiliations have distinct phenotypic properties in chickens, we investigated the replicative properties of 10 naturally circulating pigeon-derived isolates representing four subgroups of GVI-PMV1 in primary chicken lung epithelial cells and in chicken embryos. Our data demonstrate that GVI-PMV1 variants have different infection phenotypes in their chicken source host and that properties reflect subgroup affiliation. These subgroup replicative properties are consistent with observed dynamics of viral population growth.
    Matched MeSH terms: Virus Replication
  18. Prow NA, Setoh YX, Biron RM, Sester DP, Kim KS, Hobson-Peters J, et al.
    J Virol, 2014 Sep 1;88(17):9947-62.
    PMID: 24942584 DOI: 10.1128/JVI.01304-14
    The mosquito-borne West Nile virus (WNV) is responsible for outbreaks of viral encephalitis in humans, horses, and birds, with particularly virulent strains causing recent outbreaks of disease in eastern Europe, the Middle East, North America, and Australia. Previous studies have phylogenetically separated WNV strains into two main genetic lineages (I and II) containing virulent strains associated with neurological disease. Several WNV-like strains clustering outside these lineages have been identified and form an additional five proposed lineages. However, little is known about whether these strains have the potential to induce disease. In a comparative analysis with the highly virulent lineage I American strain (WNVNY99), the low-pathogenicity lineage II strain (B956), a benign Australian strain, Kunjin (WNVKUN), the African WNV-like Koutango virus (WNVKOU), and a WNV-like isolate from Sarawak, Malaysia (WNVSarawak), were assessed for neuroinvasive properties in a murine model and for their replication kinetics in vitro. While WNVNY99 replicated to the highest levels in vitro, in vivo mouse challenge revealed that WNVKOU was more virulent, with a shorter time to onset of neurological disease and higher morbidity. Histological analysis of WNVKOU- and WNVNY99-infected brain and spinal cords demonstrated more prominent meningoencephalitis and the presence of viral antigen in WNVKOU-infected mice. Enhanced virulence of WNVKOU also was associated with poor viral clearance in the periphery (sera and spleen), a skewed innate immune response, and poor neutralizing antibody development. These data demonstrate, for the first time, potent neuroinvasive and neurovirulent properties of a WNV-like virus outside lineages I and II.
    Matched MeSH terms: Virus Replication
  19. Petz LN, Turell MJ, Padilla S, Long LS, Reinbold-Wasson DD, Smith DR, et al.
    Am J Trop Med Hyg, 2014 Oct;91(4):666-71.
    PMID: 25114013 DOI: 10.4269/ajtmh.13-0218
    Tembusu virus (TMUV) is an important emerging arthropod-borne virus that may cause encephalitis in humans and has been isolated in regions of southeast Asia, including Malaysia, Thailand, and China. Currently, detection and identification of TMUV are limited to research laboratories, because quantitative rapid diagnostic assays for the virus do not exist. We describe the development of sensitive and specific conventional and real-time quantitative reverse transcription polymerase chain reaction assays for detecting TMUV RNA in infected cell culture supernatant and Culex tarsalis mosquitoes. We used this assay to document the replication of TMUV in Cx. tarsalis, where titers increased 1,000-fold 5 days after inoculation. These assays resulted in the detection of virus-specific RNA in the presence of copurified mosquito nucleic acids. The use of these rapid diagnostic assays may have future applications for field pathogen surveillance and may assist in early detection, diagnosis, and control of the associated arthropod-borne pathogens.
    Matched MeSH terms: Virus Replication
  20. Yoneda M
    Uirusu, 2014;64(1):105-12.
    PMID: 25765986 DOI: 10.2222/jsv.64.105
    Nipah virus (NiV), a paramyxovirus, was first discovered in Malaysia in 1998 in an outbreak of infection in pigs and humans, and incurred a high fatality rate in humans. We established a system that enabled the rescue of replicating NiVs from a cloned DNA. Using the system, we analyzed the functions of accessory proteins in infected cells and the implications in in vivo pathogenicity. Further, we have developed a recombinant measles virus (rMV) vaccine expressing NiV envelope glycoproteins, which appeared to be an appropriate to NiV vaccine candidate for use in humans.
    Matched MeSH terms: Virus Replication
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links