Displaying publications 121 - 140 of 2094 in total

Abstract:
Sort:
  1. Yehya AHS, Asif M, Kaur G, Hassan LEA, Al-Suede FSR, Abdul Majid AMS, et al.
    J Adv Res, 2019 Jan;15:59-68.
    PMID: 30581613 DOI: 10.1016/j.jare.2018.05.006
    Pancreatic cancer has the highest mortality rate among cancers due to its aggressive biology and lack of effective treatment. Gemcitabine, the first line anticancer drug has reduced efficacy due to acquired resistance. The current study evaluates the toxicological effects of Orthosiphon stamineus (O.s) and its marker compound (rosmarinic acid) in combination with gemcitabine. O.s (200 or 400 mg/kg/day) and rosmarinic acid (32 mg/kg/day) were administered orally and gemcitabine (10 mg/kg/3 days) intraperitoneally either alone or in combination treatment for fourteen days. Parameters including blood serum biochemistry, hematology, myeloid-erythroid ratio, incident of lethality, and histopathological analysis of liver, kidney, and spleen tissues were studied. Neither, individual drugs/extract nor chemo-herbal combinations at tested doses induced any toxicity and damage to organs in nude mice when compared to control group. Toxicological data obtained from this study will help to select the best doses of chemo-herbal combination for future pancreatic xenograft tumor studies.
    Matched MeSH terms: Mice, Nude; Mice
  2. Kadum Yakob H, Manaf Uyub A, Fariza Sulaiman S
    J Ethnopharmacol, 2012 Aug 1;142(3):663-8.
    PMID: 22705121 DOI: 10.1016/j.jep.2012.05.035
    Ludwigia octovalvis (Jacq.) P. H. Raven (Family: Onagraceae), as a traditional Malay herbal medicine,has been used to treat gastrointestinal complaints such as diarrhea and dysentery.
    Matched MeSH terms: Mice, Inbred BALB C; Mice
  3. Lim JCW, Sagineedu SR, Yong ACH, Sidik SM, Wong WSF, Stanslas J
    Naunyn Schmiedebergs Arch Pharmacol, 2021 Jan;394(1):95-105.
    PMID: 32840650 DOI: 10.1007/s00210-020-01966-3
    SRS27, an andrographolide analogue, had been proven to have therapeutic properties at a dose of 3 mg/kg in both in vitro and in vivo asthma models of our previous study. The present study focuses on the pharmacokinetic and toxicity profile of this compound to provide further evidence for the development of this compound as an anti-asthma agent. A simple pharmacokinetic study was performed in female BALB/c mice to measure blood plasma concentration of the compound at therapeutic dose. At a single dose of 3 mg/kg, SRS27 had a relatively short half-life but was able to achieve a concentration range of 13-19 μM that is related to its in vitro bioactivities. With regard to toxicity profile, SRS27 appears to be safe, as no histopathological changes were observed in the liver, kidneys and ovaries of SRS27-treated female BALB/c mice. In addition, there was no significant change in the mean body weight and organ weight of the animals in the SRS27-treated groups compared with the vehicle-treated control group at the end of the treatment. This fully supports the absence of any significant changes in peripheral blood leukocyte counts of SRS27-treated mice. Rewardingly, this acute toxicity study also revealed that SRS27 has a wide therapeutic window as no toxicity symptoms were detected with a dose up to 60 mg/kg daily when tested for 14 days. These results provide strong justification for further investigation of SRS27 as a potential new anti-asthma agent.
    Matched MeSH terms: Mice, Inbred BALB C; Mice
  4. Latha LY, Darah I, Jain K, Sasidharan S
    Pharm Biol, 2010 Jan;48(1):101-4.
    PMID: 20645763 DOI: 10.3109/13880200903046203
    The methanol extract of Vernonia cinerea Less (Asteraceae), which exhibited antimicrobial activity, was tested for toxicity. In an acute toxicity study using mice, the median lethal dose (LD(50)) of the extract was greater than 2000 mg/kg, and we found no pathological changes in macroscopic examination by necropsy of mice treated with extract. As well as the oral acute toxicity study, the brine shrimp lethality test was also done. Brine shrimp test LC(50) values were 3.87 mg/mL (6 h) and 2.72 mg/mL (24 h), exhibiting no significant toxicity result. In conclusion, the methanol extract of V. cinerea did not produce toxic effects in mice and brine shrimp.
    Matched MeSH terms: Mice
  5. Kamilla, L., Ramanathan, S., Sasidharan, S., Mansor, S.M.
    MyJurnal
    The Clitoria ternatea (Fabaceae) root, seed, and leaf are commonly used in Ayurvedic medicine in Malaysia and Indonesia. The methanol leaf extracts of C. ternatea was tested for toxicity by means of brine shrimp lethality test and acute oral toxicity assay. In the brine shrimp lethality test, the leaf extract were non-toxic or showed weak lethality (LC50 > 1 mg/ml) at the 6 h, 12 h and 24 h incubation period. Nevertheless, at the 48 h incubation time, the leaf extract exhibited moderate toxicity activity with LC50 values of 0.49 mg/ml. In the acute toxicity study using mice, the median lethal dose (LD50) of the extract was found greater than 2000 mg/kg, and we found no pathological changes by means of macroscopic examination of tissues of mice treated with the extract. We conclude that the C. ternatea leaf extract is not toxic in mice and brine shrimp.
    Matched MeSH terms: Mice
  6. Ng SF, Anuwi NA, Tengku-Ahmad TN
    AAPS PharmSciTech, 2015 Jun;16(3):656-63.
    PMID: 25511806 DOI: 10.1208/s12249-014-0248-y
    Hydrocortisone cream intended for atopic eczema often produces unwanted side effects after long-term use. These side effects are essentially due to repeated percutaneous administration of the medication for skin dermatitis, as atopic eczema is a relapsing disorder. Hence, there is a need to develop a new hydrocortisone formulation that will deliver the drug more effectively and require a reduced dosing frequency; therefore, the side effects could be minimized. In this study, a hydroxypropyl methylcellulose (HPMC) lyogel system based on 80% organic and 20% aqueous solvents containing 1% hydrocortisone was formulated. The hydrocortisone lyogel physicochemical characteristics, rheological properties, stability profile, and in vitro Franz cell drug release properties, as well as the in vivo therapeutic efficacies and dermal irritancy in Balb/c mice were investigated. The HPMC lyogel appeared clear and soft and was easy to rub on the skin. The lyogel also showed a higher drug release profile compared with commercial hydrocortisone cream. Similar to the cream, HPMC lyogels exhibited pseudoplastic behavior. From the mouse model, the hydrocortisone lyogel showed higher inflammatory suppressive effects than the cream. However, it did not reduce the transepidermal water loss as effectively as the control did. The dermal irritancy testing revealed that the hydrocortisone lyogel caused minimal irritation. In conclusion, HPMC lyogel is a promising vehicle to deliver hydrocortisone topically, as it showed a higher drug release in vitro as well as enhanced therapeutic efficacy in resolving eczematous inflammatory reaction compared with commercial cream.
    Matched MeSH terms: Mice, Inbred BALB C; Mice
  7. Haw TJ, Starkey MR, Pavlidis S, Fricker M, Arthurs AL, Nair PM, et al.
    Am. J. Physiol. Lung Cell Mol. Physiol., 2018 02 01;314(2):L298-L317.
    PMID: 29025711 DOI: 10.1152/ajplung.00154.2017
    Chronic obstructive pulmonary disease (COPD) is the third leading cause of morbidity and death and imposes major socioeconomic burdens globally. It is a progressive and disabling condition that severely impairs breathing and lung function. There is a lack of effective treatments for COPD, which is a direct consequence of the poor understanding of the underlying mechanisms involved in driving the pathogenesis of the disease. Toll-like receptor (TLR)2 and TLR4 are implicated in chronic respiratory diseases, including COPD, asthma and pulmonary fibrosis. However, their roles in the pathogenesis of COPD are controversial and conflicting evidence exists. In the current study, we investigated the role of TLR2 and TLR4 using a model of cigarette smoke (CS)-induced experimental COPD that recapitulates the hallmark features of human disease. TLR2, TLR4, and associated coreceptor mRNA expression was increased in the airways in both experimental and human COPD. Compared with wild-type (WT) mice, CS-induced pulmonary inflammation was unaltered in TLR2-deficient ( Tlr2-/-) and TLR4-deficient ( Tlr4-/-) mice. CS-induced airway fibrosis, characterized by increased collagen deposition around small airways, was not altered in Tlr2-/- mice but was attenuated in Tlr4-/- mice compared with CS-exposed WT controls. However, Tlr2-/- mice had increased CS-induced emphysema-like alveolar enlargement, apoptosis, and impaired lung function, while these features were reduced in Tlr4-/- mice compared with CS-exposed WT controls. Taken together, these data highlight the complex roles of TLRs in the pathogenesis of COPD and suggest that activation of TLR2 and/or inhibition of TLR4 may be novel therapeutic strategies for the treatment of COPD.
    Matched MeSH terms: Mice, Inbred BALB C; Mice, Knockout; Mice
  8. Yam ML, Abdul Hafid SR, Cheng HM, Nesaretnam K
    Lipids, 2009 Sep;44(9):787-97.
    PMID: 19655189 DOI: 10.1007/s11745-009-3326-2
    Tocotrienols are powerful chain breaking antioxidant. Moreover, they are now known to exhibit various non-antioxidant properties such as anti-cancer, neuroprotective and hypocholesterolemic functions. This study was undertaken to investigate the anti-inflammatory effects of tocotrienol-rich fraction (TRF) and individual tocotrienol isoforms namely delta-, gamma-, and alpha-tocotrienol on lipopolysaccharide-stimulated RAW264.7 macrophages. The widely studied vitamin E form, alpha-tocopherol, was used as comparison. Stimulation of RAW264.7 with lipopolysaccharide induced the release of various inflammatory markers. 10 mcirog/ml of TRF and all tocotrienol isoforms significantly inhibited the production of interleukin-6 and nitric oxide. However, only alpha-tocotrienol demonstrated a significant effect in lowering tumor necrosis factor-alpha production. Besides, TRF and all tocotrienol isoforms except gamma-tocotrienol reduced prostaglandin E(2) release. It was accompanied by the down-regulation of cyclooxygenase-2 gene expression by all vitamin E forms except alpha-tocopherol. Collectively, the data suggested that tocotrienols are better anti-inflammatory agents than alpha-tocopherol and the most effective form is delta-tocotrienol.
    Matched MeSH terms: Mice
  9. Nesaretnam K, Dorasamy S, Darbre PD
    Int J Food Sci Nutr, 2000;51 Suppl:S95-103.
    PMID: 11271861
    The vitamin E component of palm oil provides a rich source of tocotrienols which have been shown previously to be growth inhibitory to two human breast cancer cell lines: responsive MCF7 cells and unresponsive MDA-MB-231 cells. Data presented here shows that the tocotrienol-rich fraction (TRF) of palm oil and individual fractions (alpha, gamma and delta) can also inhibit the growth of another responsive human breast cancer cell line, ZR-75-1. At low concentrations in the absence of oestrogen tocotrienols stimulated growth of the ZR-75-1 cells, but at higher concentrations in the presence as well as in the absence of oestradiol, tocotrienols inhibited cell growth strongly. As for MCF7 cells, alpha-tocopherol had no effect on growth of the ZR-75-1 cells in either the absence or presence of oestradiol. In studying the effects of tocotrienols in combination with antioestrogens, it was found that TRF could further inhibit growth of ZR-75-1 cells in the presence of tamoxifen (10(-7) M and 10(-8) M). Individual tocotrienol fractions (alpha, gamma, delta) could inhibit growth of ZR-75-1 cells in the presence of 10(-8) M oestradiol and 10(-8) M pure antioestrogen ICI 164,384. The immature mouse uterine weight bioassay confirmed that TRF could not exert oestrogen antagonist action in vivo. These results provide evidence of wider growth-inhibitory effects of tocotrienols beyond MCF7 and MDA-MB-231 cells, and with an oestrogen-independent mechanism of action, suggest a possible clinical advantage in combining administration of tocotrienols with antioestrogen therapy.
    Matched MeSH terms: Mice
  10. Hafid SR, Radhakrishnan AK, Nesaretnam K
    BMC Cancer, 2010;10:5.
    PMID: 20051142 DOI: 10.1186/1471-2407-10-5
    Dendritic cells (DCs) have the potential for cancer immunotherapy due to their ability to process and present antigens to T-cells and also in stimulating immune responses. However, DC-based vaccines have only exhibited minimal effectiveness against established tumours in mice and humans. The use of appropriate adjuvant enhances the efficacy of DC based cancer vaccines in treating tumours.
    Matched MeSH terms: Mice, Inbred BALB C; Mice
  11. Atia A, Alrawaiq NS, Abdullah A
    Curr Pharm Biotechnol, 2021;22(8):1085-1098.
    PMID: 32988349 DOI: 10.2174/1389201021666200928095950
    BACKGROUND: The most common preparation of tocotrienols is the Tocotrienol-Rich Fraction (TRF). This study aimed to investigate whether TRF induced liver Nrf2 nuclear translocation and influenced the expression of Nrf2-regulated genes.

    METHODS: In the Nrf2 induction study, mice were divided into control, 2000 mg/kg TRF and diethyl maleate treated groups. After acute treatment, mice were sacrificed at specific time points. Liver nuclear extracts were prepared and Nrf2 nuclear translocation was detected through Western blotting. To determine the effect of increasing doses of TRF on the extent of liver nuclear Nrf2 translocation and its implication on the expression levels of several Nrf2-regulated genes, mice were divided into 5 groups (control, 200, 500 and 1000 mg/kg TRF, and butylated hydroxyanisole-treated groups). After 14 days, mice were sacrificed and liver RNA was extracted for qPCR assay.

    RESULTS: 2000 mg/kg TRF administration initiated Nrf2 nuclear translocation within 30 min, reached a maximum level of around 1 h and dropped to half-maximal levels by 24 h. Incremental doses of TRF resulted in dose-dependent increases in liver Nrf2 nuclear levels, along with concomitant dosedependent increases in the expressions of Nrf2-regulated genes.

    CONCLUSION: TRF activated the liver Nrf2 pathway resulting in increased expression of Nrf2-regulated cytoprotective genes.

    Matched MeSH terms: Mice
  12. Nesaretnam K, Ambra R, Selvaduray KR, Radhakrishnan A, Reimann K, Razak G, et al.
    Lipids, 2004 May;39(5):459-67.
    PMID: 15506241
    It has recently been shown that tocotrienols are the components of vitamin E responsible for inhibiting the growth of human breast cancer cells in vitro, through an estrogen-independent mechanism. Although tocotrienols act on cell proliferation in a dose-dependent manner and can induce programmed cell death, no specific gene regulation has yet been identified. To investigate the molecular basis of the effect of tocotrienols, we injected MCF-7 breast cancer cells into athymic nude mice. Mice were fed orally with 1 mg/d of tocotrienol-rich fraction (TRF) for 20 wk. At end of the 20 wk, there was a significant delay in the onset, incidence, and size of the tumors in nude mice supplemented with TRF compared with the controls. At autopsy, the tumor tissue was excised and analyzed for gene expression by means of a cDNA array technique. Thirty out of 1176 genes were significantly affected. Ten genes were downregulated and 20 genes up-regulated with respect to untreated animals, and some genes in particular were involved in regulating the immune system and its function. The expression of the interferon-inducible transmembrane protein-1 gene was significantly up-regulated in tumors excised from TRF-treated animals compared with control mice. Within the group of genes related to the immune system, we also found that the CD59 glycoprotein precursor gene was up-regulated. Among the functional class of intracellular transducers/effectors/modulators, the c-myc gene was significantly down-regulated in tumors by TRF treatment. Our observations indicate that TRF supplementation significantly and specifically affects MCF-7 cell response after tumor formation in vivo and therefore the host immune function. The observed effect on gene expression is possibly exerted independently from the antioxidant activity typical of this family of molecules.
    Matched MeSH terms: Mice, Nude; Mice
  13. Abdul Hafid SR, Chakravarthi S, Nesaretnam K, Radhakrishnan AK
    PLoS One, 2013;8(9):e74753.
    PMID: 24069344 DOI: 10.1371/journal.pone.0074753
    Tocotrienol-rich fraction (TRF) from palm oil is reported to possess anti-cancer and immune-enhancing effects. In this study, TRF supplementation was used as an adjuvant to enhance the anti-cancer effects of dendritic cells (DC)-based cancer vaccine in a syngeneic mouse model of breast cancer. Female BALB/c mice were inoculated with 4T1 cells in mammary pad to induce tumor. When the tumor was palpable, the mice in the experimental groups were injected subcutaneously with DC-pulsed with tumor lysate (TL) from 4T1 cells (DC+TL) once a week for three weeks and fed daily with 1 mg TRF or vehicle. Control mice received unpulsed DC and were fed with vehicle. The combined therapy of using DC+TL injections and TRF supplementation (DC+TL+TRF) inhibited (p<0.05) tumor growth and metastasis. Splenocytes from the DC+TL+TRF group cultured with mitomycin-C (MMC)-treated 4T1 cells produced higher (p<0.05) levels of IFN-γ and IL-12. The cytotoxic T-lymphocyte (CTL) assay also showed enhanced tumor-specific killing (p<0.05) by CD8(+) T-lymphocytes isolated from mice in the DC+TL+TRF group. This study shows that TRF has the potential to be used as an adjuvant to enhance effectiveness of DC-based vaccines.
    Matched MeSH terms: Mice
  14. Durani LW, Hamezah HS, Ibrahim NF, Yanagisawa D, Nasaruddin ML, Mori M, et al.
    J Alzheimers Dis, 2018;64(1):249-267.
    PMID: 29889072 DOI: 10.3233/JAD-170880
    We have recently shown that the tocotrienol-rich fraction (TRF) of palm oil, a mixture of vitamin E analogs, improves amyloid pathology in vitro and in vivo. However, precise mechanisms remain unknown. In this study, we examined the effects of long-term (10 months) TRF treatment on behavioral impairments and brain metabolites in (15 months old) AβPP/PS1 double transgenic (Tg) Alzheimer's disease (AD) mice. The open field test, Morris water maze, and novel object recognition tasks revealed improved exploratory activity, spatial learning, and recognition memory, respectively, in TRF-treated Tg mice. Brain metabolite profiling of wild-type and Tg mice treated with and without TRF was performed using ultrahigh performance liquid chromatography (UHPLC) coupled to high-resolution accurate mass (HRAM)-orbitrap tandem mass spectrometry (MS/MS). Metabolic pathway analysis found perturbed metabolic pathways that linked to AD. TRF treatment partly ameliorated metabolic perturbations in Tg mouse hippocampus. The mechanism of this pre-emptive activity may occur via modulation of metabolic pathways dependent on Aβ interaction or independent of Aβ interaction.
    Matched MeSH terms: Mice, Inbred C57BL; Mice, Transgenic; Mice
  15. Ibrahim NF, Yanagisawa D, Durani LW, Hamezah HS, Damanhuri HA, Wan Ngah WZ, et al.
    J Alzheimers Dis, 2017;55(2):597-612.
    PMID: 27716672
    Alzheimer's disease (AD) is the most common cause of dementia. The cardinal neuropathological characteristic of AD is the accumulation of amyloid-β (Aβ) into extracellular plaques that ultimately disrupt neuronal function and lead to neurodegeneration. One possible therapeutic strategy therefore is to prevent Aβ aggregation. Previous studies have suggested that vitamin E analogs slow AD progression in humans. In the present study, we investigated the effects of the tocotrienol-rich fraction (TRF), a mixture of vitamin E analogs from palm oil, on amyloid pathology in vitro and in vivo. TRF treatment dose-dependently inhibited the formation of Aβ fibrils and Aβ oligomers in vitro. Moreover, daily TRF supplementation to AβPPswe/PS1dE9 double transgenic mice for 10 months attenuated Aβ immunoreactive depositions and thioflavin-S-positive fibrillar type plaques in the brain, and eventually improved cognitive function in the novel object recognition test compared with control AβPPswe/PS1dE9 mice. The present result indicates that TRF reduced amyloid pathology and improved cognitive functions, and suggests that TRF is a potential therapeutic agent for AD.
    Matched MeSH terms: Mice, Inbred C57BL; Mice, Transgenic; Mice
  16. Wan Nasri WN, Makpol S, Mazlan M, Tooyama I, Wan Ngah WZ, Damanhuri HA
    J Alzheimers Dis, 2019;70(s1):S239-S254.
    PMID: 30507571 DOI: 10.3233/JAD-180496
    Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by loss of memory and other cognitive abilities. AD is associated with aggregation of amyloid-β (Aβ) deposited in the hippocampal brain region. Our previous work has shown that tocotrienol rich fraction (TRF) supplementation was able to attenuate the blood oxidative status, improve behavior, and reduce fibrillary-type Aβ deposition in the hippocampus of an AD mouse model. In the present study, we investigate the effect of 6 months of TRF supplementation on transcriptome profile in the hippocampus of APPswe/PS1dE9 double transgenic mice. TRF supplementation can alleviate AD conditions by modulating several important genes in AD. Moreover, TRF supplementation attenuated the affected biological process and pathways that were upregulated in the AD mouse model. Our findings indicate that TRF supplementation can modulate hippocampal gene expression as well as biological processes that can potentially delay the progression of AD.
    Matched MeSH terms: Mice, Transgenic; Mice
  17. Razali MH, Ismail NA, Mat Amin KA
    Int J Biol Macromol, 2020 Jun 15;153:1117-1135.
    PMID: 31751725 DOI: 10.1016/j.ijbiomac.2019.10.242
    The synthesized titanium dioxide nanotubes (TiO2-NTs) were emerged as wound healing enhancer as well as exhibited significant wound healing activity on Sprague Dawley rats. In our present study, the blends of GG and TiO2-NTs bio-nanocomposite film was characterised by fourier transform infrared (FTIR), x-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis, atomic force microscopy (AFM). The morphology of TiO2-NTs was investigated using transmission electron microscopy (TEM). The mechanical properties study shows that the GG + TiO2-NTs (20 w/w %) bio-nanocomposite film possessed the highest tensile strength and young modulus which are (4.56 ± 0.15) MPa and (68 ± 1.63) MPa, respectively. GG + TiO2-NTs (20 w/w %) also displays the highest antibacterial activity with (16 ± 0.06) mm, (16 ± 0.06) mm, (14 ± 0.06) mm, and (12 ± 0.25) mm inhibition zone were recorded against Staphylococcus aureus, Streptococcus, Escherichia coli, and Pseudomonas aeruginosa. The prepared bio-nanocomposite films have good biocompatibility against 3T3 mouse fibroblast cells and caused accelerated healing of open excision type wounds on Sprague Dawley rat model. The synergistic effects of bio-nanocomposite film like good swelling and WVTR properties, excellent hydrophilic nature, biocompatibility, wound appearance and wound closure rate through in vivo test makes it a suitable candidate for wound healing applications.
    Matched MeSH terms: Mice
  18. Samuel MS, Rath N, Masre SF, Boyle ST, Greenhalgh DA, Kochetkova M, et al.
    Genesis, 2016 Dec;54(12):636-646.
    PMID: 27775859 DOI: 10.1002/dvg.22988
    The serine/threonine kinases ROCK1 and ROCK2 are central mediators of actomyosin contractile force generation that act downstream of the RhoA small GTP-binding protein. As a result, they have key roles in regulating cell morphology and proliferation, and have been implicated in numerous pathological conditions and diseases including hypertension and cancer. Here we describe the generation of a gene-targeted mouse line that enables CRE-inducible expression of a conditionally-active fusion between the ROCK2 kinase domain and the hormone-binding domain of a mutated estrogen receptor (ROCK2:ER). This two-stage system of regulation allows for tissue-selective expression of the ROCK2:ER fusion protein, which then requires administration of estrogen analogues such as tamoxifen or 4-hydroxytamoxifen to elicit kinase activity. This conditional gain-of-function system was validated in multiple tissues by crossing with mice expressing CRE recombinase under the transcriptional control of cytokeratin14 (K14), murine mammary tumor virus (MMTV) or cytochrome P450 Cyp1A1 (Ah) promoters, driving appropriate expression in the epidermis, mammary or intestinal epithelia respectively. Given the interest in ROCK signaling in normal physiology and disease, this mouse line will facilitate research into the consequences of ROCK activation that could be used to complement conditional knockout models. Birth Defects Research (Part A) 106:636-646, 2016. © 2016 Wiley Periodicals, Inc.
    Matched MeSH terms: Mice
  19. Busra MF, Chowdhury SR, bin Ismail F, bin Saim A, Idrus RB
    Adv Skin Wound Care, 2016 Mar;29(3):120-9.
    PMID: 26866868 DOI: 10.1097/01.ASW.0000480556.78111.e4
    OBJECTIVE: When given in conjunction with surgery for treating cancer, radiation therapy may result in impaired wound healing, which, in turn, could cause skin ulcers. In this study, bilayer and monolayer autologous skin substitutes were used to treat an irradiated wound.

    MATERIALS AND METHODS: A single dose of 30 Gy of linear electron beam radiation was applied to the hind limb of nude mice before creating the skin lesion (area of 78.6 mm). Monolayer tissue-engineered skin substitutes (MTESSs) were prepared by entrapping cultured keratinocytes in fibrin matrix, and bilayer tissue-engineered skin substitutes (BTESSs) were prepared by entrapping keratinocytes and fibroblasts in separate layers. Bilayer tissue-engineered skin substitute and MTESS were implanted to the wound area. Gross appearance and wound area were analyzed to evaluate wound healing efficiency. Skin regeneration and morphological appearance were observed via histological and electron microscopy. Protein expressions of transforming growth factor β1 (TGF-β1), platelet-derived growth factor BB (PDGF-BB), and vascular endothelial growth factor (VEGF) in skin regeneration were evaluated by immunohistochemistry (IHC).

    RESULTS: Macroscopic observation revealed that at day 13, treatments with BTESS completely healed the irradiated wound, whereas wound sizes of 1.1 ± 0.05 and 6.8 ± 0.14 mm were measured in the MTESS-treated and untreated control groups, respectively. Hematoxylin-eosin (H&E) analysis showed formation of compact and organized epidermal and dermal layers in the BTESS-treated group, as compared with MTESS-treated and untreated control groups. Ultrastructural analysis indicates maturation of skin in BTESS-treated wound evidenced by formation of intermediate filament bundles in the dermal layer and low intercellular space in the epidermal layer. Expressions of TGF-β1, PDGF-BB, and VEGF were also higher in BTESS-treated wounds, compared with MTESS-treated wounds.

    CONCLUSIONS: These results indicate that BTESS is the preferred treatment for irradiated wound ulcers.

    Matched MeSH terms: Mice
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links