Displaying publications 121 - 140 of 1133 in total

Abstract:
Sort:
  1. Azhar B, Saadun N, Prideaux M, Lindenmayer DB
    J Environ Manage, 2017 Dec 01;203(Pt 1):457-466.
    PMID: 28837912 DOI: 10.1016/j.jenvman.2017.08.021
    Most palm oil currently available in global markets is sourced from certified large-scale plantations. Comparatively little is sourced from (typically uncertified) smallholders. We argue that sourcing sustainable palm oil should not be determined by commercial certification alone and that the certification process should be revisited. There are so-far unrecognized benefits of sourcing palm oil from smallholders that should be considered if genuine biodiversity conservation is to be a foundation of 'environmentally sustainable' palm oil production. Despite a lack of certification, smallholder production is often more biodiversity-friendly than certified production from large-scale plantations. Sourcing palm oil from smallholders also alleviates poverty among rural farmers, promoting better conservation outcomes. Yet, certification schemes - the current measure of 'sustainability' - are financially accessible only for large-scale plantations that operate as profit-driven monocultures. Industrial palm oil is expanding rapidly in regions with weak environmental laws and enforcement. This warrants the development of an alternative certification scheme for smallholders. Greater attention should be directed to deforestation-free palm oil production in smallholdings, where production is less likely to cause large scale biodiversity loss. These small-scale farmlands in which palm oil is mixed with other crops should be considered by retailers and consumers who are interested in promoting sustainable palm oil production. Simultaneously, plantation companies should be required to make their existing production landscapes more compatible with enhanced biodiversity conservation.
    Matched MeSH terms: Plant Oils*
  2. R NFN, Nur Hanani ZA
    Carbohydr Polym, 2017 Feb 10;157:1479-1487.
    PMID: 27987859 DOI: 10.1016/j.carbpol.2016.11.026
    This study investigated the effects of different types of plant oil (olive oil, corn oil, soybean oil and sunflower oil) on the physical and mechanical properties of kappa-carrageenan films from Euchema cottoni species. The incorporation of plant oils increased the film thickness significantly (P<0.05). However, the moisture content, solubility and tensile strength of films decreased significantly (P<0.05) as plant oils were added. The incorporation of plant oils also contributed to a plasticizing effect, whereby the values for elongation at break increased significantly (P<0.05), from 22.3% to 108.8%. Higher oil content also led to carrageenan films with lower opacity, which contradicted with previous studies. In conclusion, the plant oils used in this research significantly improved film properties, thus demonstrating the potential of these materials to be used as food packaging films and coatings.
    Matched MeSH terms: Plant Oils/chemistry*
  3. Sharifi-Rad M, Varoni EM, Salehi B, Sharifi-Rad J, Matthews KR, Ayatollahi SA, et al.
    Molecules, 2017 Dec 04;22(12).
    PMID: 29207520 DOI: 10.3390/molecules22122145
    Plants of the genus Zingiber (Family Zingiberaceae) are widely used throughout the world as food and medicinal plants. They represent very popular herbal remedies in various traditional healing systems; in particular, rhizome of Zingiber spp. plants has a long history of ethnobotanical uses because of a plethora of curative properties. Antimicrobial activity of rhizome essential oil has been extensively confirmed in vitro and attributed to its chemical components, mainly consisting of monoterpene and sesquiterpene hydrocarbons such as α-zingiberene, ar-curcumene, β-bisabolene and β-sesquiphellandrene. In addition, gingerols have been identified as the major active components in the fresh rhizome, whereas shogaols, dehydrated gingerol derivatives, are the predominant pungent constituents in dried rhizome. Zingiber spp. may thus represent a promising and innovative source of natural alternatives to chemical food preservatives. This approach would meet the increasing concern of consumers aware of the potential health risks associated with the conventional antimicrobial agents in food. This narrative review aims at providing a literature overview on Zingiber spp. plants, their cultivation, traditional uses, phytochemical constituents and biological activities.
    Matched MeSH terms: Oils, Volatile/chemistry
  4. Khatoon S, Kalam N, Balasubramaniam VR, Shaikh MF, Ansari MT
    Anticancer Agents Med Chem, 2022;22(20):3325-3342.
    PMID: 35578854 DOI: 10.2174/1871520622666220516142839
    Ocimum sanctum is a sacred herb of India and is commonly known as 'Tulsi' or 'Holy Basil' in regional languages of the country. Various parts of O. sanctum are recognised to have remarkable therapeutic efficacy, and are therefore used in Indian traditional medicine system, Ayurveda. Scientific studies have shown that O. sanctum has a range of pharmacological activities. The presence of a substantial amount of polyphenols in O. sanctum could be the reason for its excellent bioactivity. Polyphenols are used to prevent or treat oncologic diseases due to their anti-cancer effects, which are related to activation of apoptotic signaling, cell cycle arrest, binding ability with membrane receptors, and potential effects on immunomodulation and epigenetic mechanisms. The poor bioavailability of polyphenols restricts their clinical use. The application of nanonization has been implemented to improve their bioavailability, penetrability, and prolong their anticancer action. The present review analyses the recent preclinical studies related to the chemo-preventive and therapeutic potential of polyphenols present in O. sanctum. Moreover, the current article also examines in-depth the biochemical and molecular mechanisms involved in the antineoplastic actions of the considered polyphenols.
    Matched MeSH terms: Oils, Volatile*
  5. Hor CJ, Tan YH, Mubarak NM, Tan IS, Ibrahim ML, Yek PNY, et al.
    Environ Res, 2023 Mar 01;220:115169.
    PMID: 36587722 DOI: 10.1016/j.envres.2022.115169
    To date, the development of renewable fuels has become a normal phenomenon to solve the problem of diesel fuel emissions and the scarcity of fossil fuels. Biodiesel production has some limitations, such as two-step processes requiring high free fatty acids (FFAs), oil feedstocks and gum formation. Hydrotreated vegetable oil (HVO) is a newly developed international renewable diesel that uses renewable feedstocks via the hydrotreatment process. Unlike FAME, FFAs percentage doesn't affect the HVO production and sustains a higher yield. The improved characteristics of HVO, such as a higher cetane value, better cold flow properties, lower emissions and excellent oxidation stability for storage, stand out from FAME biodiesel. Moreover, HVO is a hydrocarbon without oxygen content, but FAME is an ester with 11% oxygen content which makes it differ in oxidation stability. Waste sludge palm oil (SPO), an abundant non-edible industrial waste, was reused and selected as the feedstock for HVO production. Techno-economical and energy analyses were conducted for HVO production using Aspen HYSYS with a plant capacity of 25,000 kg/h. Alternatively, hydrogen has been recycled to reduce the hydrogen feed. With a capital investment of RM 65.86 million and an annual production cost of RM 332.56 million, the base case of the SPO-HVO production process was more desirable after consideration of all economic indicators and HVO purity. The base case of SPO-HVO production could achieve a return on investment (ROI) of 89.03% with a payback period (PBP) of 1.68 years. The SPO-HVO production in this study has observed a reduction in the primary greenhouse gas, carbon dioxide (CO2) emission by up to 90% and the total annual production cost by nearly RM 450 million. Therefore, SPO-HVO production is a potential and alternative process to produce biobased diesel fuels with waste oil.
    Matched MeSH terms: Plant Oils*
  6. Rupani PF, Embrandiri A, Ibrahim MH, Shahadat M, Hansen SB, Ismail SA, et al.
    Environ Sci Pollut Res Int, 2017 May;24(14):12982-12990.
    PMID: 28378309 DOI: 10.1007/s11356-017-8938-0
    The present paper reports management of palm oil mill effluent (POME) mixed with palm-pressed fibre (PPF) POME-PPF mixture using eco-friendly, cost-effective vermicomposting technology. Vermicomposting of POME-PPF was performed to examine the optimal POME-PPF ratio with respect to the criteria of earthworm biomass and to evaluate the decomposition of carbon and nitrogen in different percentages of POME-PPF mixtures. Chemical parameters such as TOC, N, P and K contents were determined to achieve optimal decomposition of POME-PPF. On this basis, the obtained data of 50% POME-PPF mixture demonstrated more significant results throughout the experiment after addition of the earthworms. However, 60 and 70% mixtures found significant only in the last stages of the vermicomposting process. The decomposition rate in terms of -ln (CNt/CNo) showed that the 50% mixture has higher decomposition rate as compared to the 60 and 70% (k50% = 0.0498 day(-1)). The vermicomposting extracts (50, 60 and 70%) of POME-PPF mixtures were also tested to examine the growth of mung bean (Vigna radiata). It was found that among different extract dilutions, 50% POME-PPF vermicompost extract provided longer root and shoot length of mung bean. The present study concluded that the 50% mixture of POME-PPF could be chosen as the optimal mixture for vermicomposting in terms of both decomposition rate and fertilizer value of the final compost. Graphical abstract ᅟ.
    Matched MeSH terms: Plant Oils/chemistry*
  7. Raketh M, Kana R, Kongjan P, Faua'ad Syed Muhammad SA, O-Thong S, Mamimin C, et al.
    J Environ Manage, 2023 Nov 15;346:119031.
    PMID: 37741194 DOI: 10.1016/j.jenvman.2023.119031
    This study aimed at investigating the biohydrogen and biomethane potential of co-digestion from palm oil mill effluent (POME) and concentrated latex wastewater (CLW) in a two-stage anaerobic digestion (AD) process under thermophilic (55 ± 3 °C) and at an ambient temperature (30 ± 3 °C) conditions, respectively. The batch experiments of POME:CLW mixing ratios of 100:0, 70:30, 50:50, 30:70, and 0:100 was investigated with the initial loadings at 10 g-VS/L. The highest hydrogen yield of 115.57 mLH2/g-VS was obtained from the POME: CLW mixing ratio of 100:0 with 29.0 of C/N ratio. While, the highest subsequent methane production yield of 558.01 mLCH4/g-VS was achieved from hydrogen effluent from POME:CLW mixing ratio of 70:30 0 with 21.8 of C/N ratio. This mixing ratio revealed the highest synergisms of about 9.21% and received maximum total energy of 19.70 kJ/g-VS. Additionally, continuous hydrogen and methane production were subsequently performed in a series of continuous stirred tank reactor (CSTR) and up-flow anaerobic sludge blanket reactor (UASB) to treat the co-substate. The results indicated that the highest hydrogen yield of POME:CLW mixing ratio at 70:30 of 95.45 mL-H2/g-VS was generated at 7-day HRT, while methane production was obtained from HRT 15 days with a yield of 204.52 mL-CH4/g-VS. Thus, the study indicated that biogas production yield of CLW could be enhanced by co-digesting with POME. In addition, the two-stage AD model under anaerobic digestion model no. 1 (ADM-1) framework was established, 9.10% and 2.43% of error fitting of hydrogen and methane gas between model simulation data and experimental data were found. Hence, this research work presents a novel approach for optimization and feasibility for co-digestion of POME with CLW to generate mixed gaseous biofuel potentially.
    Matched MeSH terms: Plant Oils*
  8. Mohammed NK, Tan CP, Manap YA, Muhialdin BJ, Hussin ASM
    Molecules, 2020 Aug 26;25(17).
    PMID: 32858785 DOI: 10.3390/molecules25173873
    The application of the spray drying technique in the food industry for the production of a broad range of ingredients has become highly desirable compared to other drying techniques. Recently, the spray drying technique has been applied extensively for the production of functional foods, pharmaceuticals and nutraceuticals. Encapsulation using spray drying is highly preferred due to economic advantages compared to other encapsulation methods. Encapsulation of oils using the spray drying technique is carried out in order to enhance the handling properties of the products and to improve oxidation stability by protecting the bioactive compounds. Encapsulation of oils involves several parameters-including inlet and outlet temperatures, total solids, and the type of wall materials-that significantly affect the quality of final product. Therefore, this review highlights the application and optimization of the spray drying process for the encapsulation of oils used as food ingredients.
    Matched MeSH terms: Plant Oils/chemistry*
  9. El-Seedi HR, Azeem M, Khalil NS, Sakr HH, Khalifa SAM, Awang K, et al.
    Exp Appl Acarol, 2017 Sep;73(1):139-157.
    PMID: 28864886 DOI: 10.1007/s10493-017-0165-3
    Due to the role of Ixodes ricinus (L.) (Acari: Ixodidae) in the transmission of many serious pathogens, personal protection against bites of this tick is essential. In the present study the essential oils from 11 aromatic Egyptian plants were isolated and their repellent activity against I. ricinus nymphs was evaluated Three oils (i.e. Conyza dioscoridis L., Artemisia herba-alba Asso and Calendula officinalis L.) elicited high repellent activity in vitro of 94, 84.2 and 82%, respectively. The most active essential oil (C. dioscoridis) was applied in the field at a concentration of 6.5 µg/cm2 and elicited a significant repellent activity against I. ricinus nymphs by 61.1%. The most repellent plants C. dioscoridis, C. officinalis and A. herba-alba yielded essential oils by 0.17, 0.11 and 0.14%, respectively. These oils were further investigated using gas chromatography-mass spectrometry analysis. α-Cadinol (10.7%) and hexadecanoic acid (10.5%) were the major components of C. dioscoridis whereas in C. officinalis, α-cadinol (21.2%) and carvone (18.2%) were major components. Artemisia herba-alba contained piperitone (26.5%), ethyl cinnamate (9.5%), camphor (7.7%) and hexadecanoic acid (6.9%). Essential oils of these three plants have a potential to be used for personal protection against tick bites.
    Matched MeSH terms: Oils, Volatile*
  10. Swathy KK, Sarath Chandran C, Mukundan M, Sreejith KR, Sourav K, Jafna MC, et al.
    Exp Parasitol, 2023 Aug;251:108550.
    PMID: 37230323 DOI: 10.1016/j.exppara.2023.108550
    The control of mosquito breeding is an essential step towards the reduction of vector-borne disease outbreaks. Synthetic larvicidal agents produce resistance in vectors and cause safety concerns in humans, animals and aquatic species. The drawback of synthetic larvicides opened a new avenue for natural larvicidal agents, but poor dosage accuracy, need for frequent applications, low stability and sustainability are the major challenges with them. Hence, this investigation aimed to overcome those drawbacks by developing bilayer tablets loaded with neem oil to prevent mosquito breeding in stagnant water. The optimised batch of neem oil-bilayer tablets (ONBT) had 65%w/w hydroxypropyl methylcellulose K100M and 80%w/w ethylcellulose in its composition. After the completion of 4th week, 91.98 ± 0.871% azadirachtin was released from the ONBT, which was followed by a subsequent drop in the in vitro release. ONBT reported long-term larvicidal efficacy (>75%) and a good deterrent effect which was better than neem oil-based marketed products. The acute toxicity study on a non-target fish model (Poecilia reticulata), OECD Test No.203 confirmed the safety of the ONBT on non-target aquatic species. The accelerated stability studies predicted a good stability profile for the ONBT. The neem oil-based bilayer tablets can be used as an effective tool for the control of vector-borne diseases in society. The product may be a safe, effective and eco-friendly replacement for the existing synthetic as well as natural products in the market.
    Matched MeSH terms: Oils, Volatile*
  11. Hazmi B, Beygisangchin M, Rashid U, Mokhtar WNAW, Tsubota T, Alsalme A, et al.
    Molecules, 2022 Oct 21;27(20).
    PMID: 36296735 DOI: 10.3390/molecules27207142
    The by-product of the previous transesterification, glycerol was utilised as an acid catalyst precursor for biodiesel production. The crude glycerol was treated through the sulfonation method with sulfuric acid and chlorosulfonic acid in a reflux batch reactor giving solid glycerol-SO3H and glycerol-ClSO3H, respectively. The synthesised acidic glycerol catalysts were characterised by various analytical techniques such as thermalgravimetric analyser (TGA), infrared spectroscopy, surface properties adsorption-desorption by nitrogen gas, ammonia-temperature programmed desorption (NH3-TPD), X-ray diffraction spectroscopy (XRD), elemental composition analysis by energy dispersive spectrometer (EDX) and surface micrographic morphologies by field emission electron microscope (FESEM). Both glycerol-SO3H and glycerol-ClSO3H samples exhibited mesoporous structures with a low surface area of 8.85 mm2/g and 4.71 mm2/g, respectively, supported by the microscopic image of blockage pores. However, the acidity strength for both catalysts was recorded at 3.43 mmol/g and 3.96 mmol/g, which is sufficient for catalysing PFAD biodiesel at the highest yield. The catalytic esterification was optimised at 96.7% and 98.2% with 3 wt.% of catalyst loading, 18:1 of methanol-PFAD molar ratio, 120 °C, and 4 h of reaction. Catalyst reusability was sustained up to 3 reaction cycles due to catalyst deactivation, and the insight investigation of spent catalysts was also performed.
    Matched MeSH terms: Plant Oils/chemistry
  12. Elouafy Y, El Yadini A, El Moudden H, Harhar H, Alshahrani MM, Awadh AAA, et al.
    Molecules, 2022 Nov 08;27(22).
    PMID: 36431782 DOI: 10.3390/molecules27227681
    The present study investigated and compared the quality and chemical composition of Moroccan walnut (Juglans regia L.) oil. This study used three extraction techniques: cold pressing (CP), soxhlet extraction (SE), and ultrasonic extraction (UE). The findings showed that soxhlet extraction gave a significantly higher oil yield compared to the other techniques used in this work (65.10% with p < 0.05), while cold pressing and ultrasonic extraction gave similar yields: 54.51% and 56.66%, respectively (p > 0.05). Chemical composition analysis was carried out by GC−MS and allowed 11 compounds to be identified, of which the major compound was linoleic acid (C18:2), with a similar percentage (between 57.08% and 57.84%) for the three extractions (p > 0.05). Regarding the carotenoid pigment, the extraction technique significantly affected its content (p < 0.05) with values between 10.11 mg/kg and 14.83 mg/kg. The chlorophyll pigment presented a similar content in both oils extracted by SE and UE (p > 0.05), 0.20 mg/kg and 0.16 mg/kg, respectively, while the lowest content was recorded in the cold-pressed oil with 0.13 mg/kg. Moreover, the analysis of phytosterols in walnut oil revealed significantly different contents (p < 0.05) for the three extraction techniques (between 1168.55 mg/kg and 1306.03 mg/kg). In addition, the analyses of tocopherol composition revealed that γ-tocopherol represented the main tocopherol isomer in all studied oils and the CP technique provided the highest content of total tocopherol with 857.65 mg/kg, followed by SE and UE with contents of 454.97 mg/kg and 146.31 mg/kg, respectively, which were significantly different (p < 0.05). This study presents essential information for producers of nutritional oils and, in particular, walnut oil; this information helps to select the appropriate method to produce walnut oil with the targeted quality properties and chemical compositions for the desired purpose. It also helps to form a scientific basis for further research on this plant in order to provide a vision for the possibility of exploiting these oils in the pharmaceutical, cosmetic, and food fields.
    Matched MeSH terms: Plant Oils/chemistry
  13. Adiiba SH, Chan ES, Lee YY, Amelia, Chang MY, Song CP
    J Sci Food Agric, 2022 Dec;102(15):6921-6929.
    PMID: 35662022 DOI: 10.1002/jsfa.12053
    BACKGROUND: Crude palm oil (CPO) is rich with phytonutrients such as carotenoids and tocols which possesses many health benefits. The aim of this research was to develop a methanol-free process to produce palm phytonutrients via enzymatic hydrolysis. In this work, triacylglycerol was hydrolyzed into free fatty acids (FFAs) using three different types of liquid lipases derived from Aspergillus oryzae (ET 2.0), Aspergillus niger (Habio) and Candida antartica (CALB).

    RESULTS: ET 2.0 was found to be the best enzyme for hydrolysis. Under the optimum condition, the FFA content achievable was 790 g kg-1 after 24 h of reaction with 1:1 water-to-oil mass ratio at 50 °C and stirring speed of 9 × g. Furthermore, with the addition of 2 g kg-1 ascorbic acid, it was found that 98% of carotenoids and 96% of tocols could be retained after hydrolysis.

    CONCLUSION: This work shows that enzymatic hydrolysis, which is inherently safer, cleaner and sustainable is feasible to replace the conventional methanolysis for the production of palm phytonutrients. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

    Matched MeSH terms: Plant Oils/chemistry
  14. Yap CJ, Lam SM, Sin JC, Zeng H, Li H, Huang L, et al.
    Environ Sci Pollut Res Int, 2023 Sep;30(42):96272-96289.
    PMID: 37566326 DOI: 10.1007/s11356-023-29165-6
    Attributable to the prosperous production growth of palm oil in Malaysia, the generated palm oil mill effluent (POME) poses a high threat owing to its highly polluted characteristic. Urged by the escalating concern of environmental conservation, POME pollution abatement and potential energy recovery from the effluent are flagged up as a research topic of interest. In this study, a cutting-edge photocatalytic fuel cell (PFC) system with employment of ZnO/Zn nanorod array (NRA) photoanode, CuO/Cu cathode, and persulfate (PS) oxidant was successfully designed to improve the treatment of POME and simultaneous energy production. The photoelectrodes were fabricated and characterized by field emission scanning electron microscopy with energy (FESEM), X-ray diffraction (XRD), energy-dispersive X-ray (EDX), and Brunauer, Emmett, and Teller analysis (BET). Owing to the properties of strong oxidant of PS, the proposed PFC/PS system has exhibited exceptional performance, attaining chemical oxygen demand (COD) removal efficiency of 96.2%, open circuit voltage (Voc) of 740.0 mV, short circuit current density (Jsc) of 146.7 μA cm-2, and power density (Pmax) of 35.6 μW cm-2. The pre-eminent PFC/PS system performance was yielded under optimal conditions of 2.5 mM of persulfate oxidant, POME dilution factor of 1:20, and natural solution pH of 8.51. Subsequently, the postulated photoelectrocatalytic POME treatment mechanism was elucidated by the radical scavenging study and Mott-Schottky (M-S) analysis. The following recycling test affirmed the stability and durability of the photoanode after four continuous repetition usages while the assessed electrical energy efficiency revealed the economic viability of PFC system serving as a post-treatment for abatement of POME. These findings contributed toward enhancing the sustainability criteria and economic viability of palm oil by adopting sustainable and efficient POME post-treatment technology.
    Matched MeSH terms: Plant Oils/chemistry
  15. Rosnani AI, Aini IN, Yazid AM, Dzulkifly MH
    Pak J Biol Sci, 2007 May 15;10(10):1691-6.
    PMID: 19086519
    Ice cream mixes containing 33.4% total solids including 10% fat, 11.1% milk solid-non fat (MSNF), 12% sugar, 0.35% commercial blend of emulsifier/ stabiliser and water were produced. The blending of PO with AMF were conducted at three different ratios 30: 70, 50: 50 and 70: 30, respectively. The experimental ice cream mixes were compared with a control ice cream mix prepared from AMF. The flow properties were measured after ageing at 0, 1, 1.5, 2 and 24 h and determined using a controlled stress rheometer (Haake RS 100). The Power Law and Casson equation was employed to estimate the yield stress of an ice cream mixes. The regression coefficients (r) was represented well by the Casson model (r > 0.99) for all the samples, indicating goodness of fit. The profiles of the consistency coefficients (K(c)) were quite similar for all experimental samples, which could be attributed to the fact that all the samples exhibited similar viscoelastic behaviour. The flow behaviour index (n) of an ice cream mix prepared from PO and their blends with AMF were less then 1.0 (range 0.04-0.08) indicating that they were psuedoplastic fluid. The eta(o) at shear rate 20(-1) indicated higher degree of viscosity in AMF.
    Matched MeSH terms: Plant Oils*
  16. Jadhav P, Krishnan S, Kamyab H, Khalid ZB, Bhuyar P, Zularism AW, et al.
    Chemosphere, 2024 Jan;346:140512.
    PMID: 37879373 DOI: 10.1016/j.chemosphere.2023.140512
    The augmentation of biogas production can be achieved by incorporating metallic nanoparticles as additives within anaerobic digestion. The objective of this current study is to examine the synthesis of Fe-Ni-Zn and Fe-Co-Zn trimetallic nanoparticles using the co-precipitation technique and assess its impact on anaerobic digestion using palm oil mill effluent (POME) as carbon source. The structural morphology and size of the synthesised trimetallic nanoparticles were analysed using a range of characterization techniques, such as X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), and Energy-dispersive X-ray spectroscopy (EDX) . The average size of Fe-Ni-Zn and Fe-Co-Zn were 19-25.5 nm and 19.1-30.5 nm respectively. Further, investigation focused on examining the diverse concentrations of trimetallic nanoparticles, ranging from 0 to 50 mgL-1. The biogas production increased by 55.55% and 60.11% with Fe-Ni-Zn and Fe-Co-Zn trimetallic nanoparticles at 40 mgL-1 and 20 mgL-1, respectively. Moreover, the lowest biogas of 11.11% and 38.11% were found with 10 mgL-1 of Fe-Ni-Zn and Fe-Co-Zn trimetallic nanoparticles. The findings of this study indicated that the trimetallic nanoparticles exhibited interactions with anaerobes, thereby enhancing the degradation process of palm oil mill effluent (POME) and biogas production. The study underscores the potential efficacy of trimetallic nanoparticles as a viable supplement for the promotion of sustainable biogas generation.
    Matched MeSH terms: Plant Oils*
  17. Fardi Z, Shahbeik H, Nosrati M, Motamedian E, Tabatabaei M, Aghbashlo M
    Environ Res, 2024 Feb 01;242:117614.
    PMID: 37996005 DOI: 10.1016/j.envres.2023.117614
    Waste-to-energy conversion presents a pivotal strategy for mitigating the energy crisis and curbing environmental pollution. Pyrolysis is a widely embraced thermochemical approach for transforming waste into valuable energy resources. This study delves into the co-pyrolysis of terrestrial biomass (potato peel) and marine biomass (Sargassum angastifolium) to optimize the quantity and quality of the resultant bio-oil and biochar. Initially, thermogravimetric analysis was conducted at varying heating rates (5, 20, and 50 °C/min) to elucidate the thermal degradation behavior of individual samples. Subsequently, comprehensive analyses employing FTIR, XRD, XRF, BET, FE-SEM, and GC-MS were employed to assess the composition and morphology of pyrolysis products. Results demonstrated an augmented bio-oil yield in mixed samples, with the highest yield of 27.1 wt% attained in a composition comprising 75% potato peel and 25% Sargassum angastifolium. As confirmed by GC-MS analysis, mixed samples exhibited reduced acidity, particularly evident in the bio-oil produced from a 75% Sargassum angastifolium blend, which exhibited approximately half the original acidity. FTIR analysis revealed key functional groups on the biochar surface, including O-H, CO, and C-O moieties. XRD and XRF analyses indicated the presence of alkali and alkaline earth metals in the biochar, while BET analysis showed a surface area ranging from 0.64 to 1.60 m2/g. The favorable characteristics of the products highlight the efficacy and cost-effectiveness of co-pyrolyzing terrestrial and marine biomass for the generation of biofuels and value-added commodities.
    Matched MeSH terms: Plant Oils*
  18. Xie P, Wang F, Zhou J, Lee YY, Zhang Y, Zou S, et al.
    Food Chem, 2025 Feb 28;466:142196.
    PMID: 39612838 DOI: 10.1016/j.foodchem.2024.142196
    Compared to lard-based shortenings, diacylglycerol (DAG)-based shortenings have demonstrated beneficial effects, such as lowering blood lipids, and reducing postprandial blood glucose levels. In this study, different chain-length DAG oils were blended with lower melting point peanut oil DAG oil (PO-DAG-oil). The blend ratios for the three types of DAG-based shortenings were determined based on the solid fat content (SFC) of lard. Subsequently, 1 % of various emulsifiers were added, and the crystallization properties, rheological and textural characteristics, polymorphism, microstructure, water-absorbing capacity, and plasticity of the four shortening systems were examined. The emulsifiers found to be suitable for lard shortening, long chain fatty acid DAG (LCD-shortening), medium chain fatty acid DAG (MCD-shortening), and medium and long chain fatty acid DAG (MLCD-shortening) were Span60, PGFE, PGFE, and MAG, respectively. Cakes baked using DAG-based shortenings exhibited superior textural properties compared to those made with lard-based shortenings, supporting the application of high-melting-point DAG oils in shortening formulations.
    Matched MeSH terms: Plant Oils/chemistry
  19. Ibrahim H, Sivasothy Y, Syamsir DR, Nagoor NH, Jamil N, Awang K
    ScientificWorldJournal, 2014;2014:430831.
    PMID: 24987733 DOI: 10.1155/2014/430831
    The essential oils obtained by hydrodistillation of the unripe and ripe fruits of Alpinia mutica Roxb. and Alpinia latilabris Ridl. were analysed by capillary GC and GC-MS. The oils were principally monoterpenic in nature. The unripe and ripe fruit oils of A. mutica were characterized by camphor (21.0% and 15.8%), camphene (16.6% and 10.2%), β-pinene (8.6% and 13.5%), and trans,trans-farnesol (8.0% and 11.2%), respectively. The oils of the unripe and ripe fruits were moderately active against Staphylococcus aureus, Bacillus subtilis, Trichophyton mentagrophytes, and Trichophyton rubrum. 1,8-Cineole (34.2% and 35.9%) and β-pinene (20.2% and 19.0%) were the two most abundant components in the unripe and ripe fruit oils of A. latilabris. The oil of the unripe fruits elicits moderate activity against Staphylococcus aureus and Trichophyton mentagrophytes while Candida glabrata was moderately sensitive to the oil of the ripe fruits.
    Matched MeSH terms: Oils, Volatile/isolation & purification; Oils, Volatile/pharmacology*; Oils, Volatile/chemistry*
  20. Hamidi H, Mohammadian E, Junin R, Rafati R, Manan M, Azdarpour A, et al.
    Ultrasonics, 2014 Feb;54(2):655-62.
    PMID: 24075416 DOI: 10.1016/j.ultras.2013.09.006
    Theoretically, Ultrasound method is an economical and environmentally friendly or "green" technology, which has been of interest for more than six decades for the purpose of enhancement of oil/heavy-oil production. However, in spite of many studies, questions about the effective mechanisms causing increase in oil recovery still existed. In addition, the majority of the mechanisms mentioned in the previous studies are theoretical or speculative. One of the changes that could be recognized in the fluid properties is viscosity reduction due to radiation of ultrasound waves. In this study, a technique was developed to investigate directly the effect of ultrasonic waves (different frequencies of 25, 40, 68 kHz and powers of 100, 250, 500 W) on viscosity changes of three types of oil (Paraffin oil, Synthetic oil, and Kerosene) and a Brine sample. The viscosity calculations in the smooth capillary tube were based on the mathematical models developed from the Poiseuille's equation. The experiments were carried out for uncontrolled and controlled temperature conditions. It was observed that the viscosity of all the liquids was decreased under ultrasound in all the experiments. This reduction was more significant for uncontrolled temperature condition cases. However, the reduction in viscosity under ultrasound was higher for lighter liquids compare to heavier ones. Pressure difference was diminished by decreasing in the fluid viscosity in all the cases which increases fluid flow ability, which in turn aids to higher oil recovery in enhanced oil recovery (EOR) operations. Higher ultrasound power showed higher liquid viscosity reduction in all the cases. Higher ultrasound frequency revealed higher and lower viscosity reduction for uncontrolled and controlled temperature condition experiments, respectively. In other words, the reduction in viscosity was inversely proportional to increasing the frequency in temperature controlled experiments. It was concluded that cavitation, heat generation, and viscosity reduction are three of the promising mechanisms causing increase in oil recovery under ultrasound.
    Matched MeSH terms: Oils/isolation & purification; Oils/radiation effects*; Oils/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links