Displaying publications 1421 - 1440 of 2920 in total

Abstract:
Sort:
  1. Loganathan R, Tarmizi AHA, Vethakkan SR, Teng KT
    J Oleo Sci, 2020 Jul 02;69(7):671-676.
    PMID: 32522941 DOI: 10.5650/jos.ess19253
    The study was designed to evaluate the nutritive value, thermal stability and consumer acceptance of cupcakes baked with red palm olein compared to palm olein. Thermal stability was evaluated for acidity, peroxide, p-anisidine and total oxidation value (cumulative between peroxide and p-anisidine values), as well as fatty acid composition. The concentrations of phytonutrients including tocopherols and tocotrienols, alpha- and beta-carotene after baking were also determined. Acceptance of the cupcakes was assessed using a structured hedonic scale of five points by 29 panelists. As compared to initial test oil (red palm olein), acidity (red palm olein, 0.07±0.01% vs cupcakes containing red palm olein, 0.09±0.01%; P=0.0232), peroxide value (red palm olein, 0.33±0.05 meq O2 kg-1 vs cupcakes containing red palm olein 0.73±0.06 meq O2 kg-1; P=0.0011) and total oxidation value (red palm olein, 2.24±0.13 unit vs cupcakes containing red palm olein, 3.09±0.17 unit; P=0.0012) were found to be higher in cupcakes containing red palm olein, which is within the acceptable rancidity range (peroxide value < 7.5 meq O2 kg-1) for snack food category. No changes were found on oxidative parameters (acidity, peroxide, p-anisidine values and total oxidation value) in cupcakes containing palm olein. Cupcakes made with red palm olein retained nearly 100% of alpha- and beta-carotenes upon baking. Tocopherol homologues were stable in both comparisons, with 95% retention as compared to tocotrienol homologues (~85%). Cupcakes made from red palm olein received higher score (mean=3.29) in sensory evaluation as compared to cupcakes containing palm olein (mean=3.07). The study, therefore, encourages the inclusion of red palm olein in the formulation of bakery products.
    Matched MeSH terms: Hot Temperature*
  2. Diyana ZN, Jumaidin R, Selamat MZ, Suan MSM
    Int J Biol Macromol, 2021 Nov 01;190:224-232.
    PMID: 34481857 DOI: 10.1016/j.ijbiomac.2021.08.201
    Cassava starch has acquired many attentions owing to its ability to be developed as thermoplastic cassava starch (TPCS) where it can be obtained in low cost, making it to be one of alternatives to substitute petroleum-based plastic. An attempt was made to investigate the thermal, mechanical and moisture absorption properties of thermoplastic cassava starch blending with beeswax (TPCS-BW) fabricated using hot moulding compression method in the range of beeswax loading from 0, 2.5, 5 to 10 wt%. Addition of beeswax has significantly reduced tensile strength, elongation and flexural strength while improving tensile modulus and flexural modulus until 5 wt% beeswax. Incorporation of 10 wt% beeswax has successfully produced the lowest value of moisture absorption and water solubility among the bio-composite which might be attributed to the beeswax's hydrophobic properties in improving water barrier of the TPCS-BW bio-composite. Furthermore, the addition of beeswax resulted in the appearance of irregular and rough fractured surface. Meanwhile, fourier transform infrared (FT-IR) spectroscopy presented that incorporation of beeswax in the mixture has considerably improve hydrogen bonding of blends indicating good interaction between starch and beeswax. Hence, beeswax with an appropriate loading value able to improve the functional properties of TPCS-BW bio-composite.
    Matched MeSH terms: Temperature*
  3. Koh W, Chakravarthy M, Simon E, Rasiah R, Charuluxananan S, Kim TY, et al.
    BMC Anesthesiol, 2021 08 16;21(1):205.
    PMID: 34399681 DOI: 10.1186/s12871-021-01414-6
    BACKGROUND: Anesthesia leads to impairments in central and peripheral thermoregulatory responses. Inadvertent perioperative hypothermia is hence a common perioperative complication, and is associated with coagulopathy, increased surgical site infection, delayed drug metabolism, prolonged recovery, and shivering. However, surveys across the world have shown poor compliance to perioperative temperature management guidelines. Therefore, we evaluated the prevalent practices and attitudes to perioperative temperature management in the Asia-Pacific region, and determined the individual and institutional factors that lead to noncompliance.

    METHODS: A 40-question anonymous online questionnaire was distributed to anesthesiologists and anesthesia trainees in six countries in the Asia-Pacific (Singapore, Malaysia, Philippines, Thailand, India and South Korea). Participants were polled about their current practices in patient warming and temperature measurement across the preoperative, intraoperative and postoperative periods. Questions were also asked regarding various individual and environmental barriers to compliance.

    RESULTS: In total, 1154 valid survey responses were obtained and analyzed. 279 (24.2%) of respondents prewarm, 508 (44.0%) perform intraoperative active warming, and 486 (42.1%) perform postoperative active warming in the majority of patients. Additionally, 531 (46.0%) measure temperature preoperatively, 767 (67.5%) measure temperature intraoperatively during general anesthesia, and 953 (82.6%) measure temperature postoperatively in the majority of patients. The availability of active warming devices in the operating room (p 

    Matched MeSH terms: Body Temperature*
  4. Mehmood OU, Bibi S, Jamil DF, Uddin S, Roslan R, Akhir MKM
    Sci Rep, 2021 10 14;11(1):20379.
    PMID: 34650140 DOI: 10.1038/s41598-021-99499-z
    The current work analyzes the effects of concentric ballooned catheterization and heat transfer on the hybrid nano blood flow through diseased arterial segment having both stenosis and aneurysm along its boundary. A fractional second-grade fluid model is considered which describes the non-Newtonian characteristics of the blood. Governing equations are linearized under mild stenosis and mild aneurysm assumptions. Precise articulations for various important flow characteristics such as heat transfer, hemodynamic velocity, wall shear stress, and resistance impedance are attained. Graphical portrayals for the impact of the significant parameters on the flow attributes have been devised. The streamlines of blood flow have been examined as well. The present finding is useful for drug conveyance system and biomedicines.
    Matched MeSH terms: Hot Temperature/therapeutic use*
  5. Rasib SZM, Ahmad Z, Khan A, Akil HM, Othman MBH, Hamid ZAA, et al.
    Int J Biol Macromol, 2018 Mar;108:367-375.
    PMID: 29222015 DOI: 10.1016/j.ijbiomac.2017.12.021
    In this study, chitosan-poly(methacrylic acid-co-N-isopropylacrylamide) [chitosan-p(MAA-co-NIPAM)] hydrogels were synthesized by emulsion polymerization. In order to be used as a carrier for drug delivery systems, the hydrogels had to be biocompatible, biodegradable and multi-responsive. The polymerization was performed by copolymerize MAA and NIPAM with chitosan polymer to produce a chitosan-based hydrogel. Due to instability during synthesis and complexity of components to produce the hydrogel, further study at different times of reaction is important to observe the synthesis process, the effect of end product on swelling behaviour and the most important is to find the best way to control the hydrogel synthesis in order to have an optimal swelling behaviour for drug release application. Studied by using Fourier transform infra-red (FTIR) spectroscopy found that, the synthesized was successfully produced stable chitosan-based hydrogel with PNIPAM continuously covered the outer surface of hydrogel which influenced much on the stability during synthesis. The chitosan and PMAA increased the zeta potential of the hydrogel and the chitosan capable to control shrinkage above human body temperature. The chitosan-p(MAA-co-NIPAM) hydrogels also responses to pH and temperature thus improved the ability to performance as a drug carrier.
    Matched MeSH terms: Temperature*
  6. Ramli NAS, Mohd Noor MA, Musa H, Ghazali R
    J Sci Food Agric, 2018 Jul;98(9):3351-3362.
    PMID: 29250790 DOI: 10.1002/jsfa.8839
    BACKGROUND: Palm oil is one of the major oils and fats produced and traded worldwide. The value of palm oil products is mainly influenced by their quality. According to ISO 17025:2005, accredited laboratories require a quality control procedure with respect to monitoring the validity of tests for determination of quality parameters. This includes the regular use of internal quality control using secondary reference materials. Unfortunately, palm oil reference materials are not currently available. To establish internal quality control samples, the stability of quality parameters needs to be evaluated.

    RESULTS: In the present study, the stability of quality parameters for palm oil products was examined over 10 months at low temperature storage (6 ± 2 °C). The palm oil products tested included crude palm oil (CPO); refined, bleached and deodorized (RBD) palm oil (RBDPO); RBD palm olein (RBDPOo); and RBD palm stearin (RBDPS). The quality parameters of the oils [i.e. moisture content, free fatty acid content (FFA), iodine value (IV), fatty acids composition (FAC) and slip melting point (SMP)] were determined prior to and throughout the storage period. The moisture, FFA, IV, FAC and SMP for palm oil products changed significantly (P  0.05). The stability study indicated that the quality of the palm oil products was stable within the specified limits throughout the storage period at low temperature.

    CONCLUSION: The storage conditions preserved the quality of palm oil products throughout the storage period. These findings qualify the use of the palm oil products CPO, RBDPO, RBDPOo and RBDPS as control samples in the validation of test results. © 2017 Society of Chemical Industry.

    Matched MeSH terms: Temperature*
  7. Chong KY, Chin NL, Yusof YA
    Food Sci Technol Int, 2017 Oct;23(7):608-622.
    PMID: 28614964 DOI: 10.1177/1082013217713331
    The effects of thermosonication on the quality of a stingless bee honey, the Kelulut, were studied using processing temperature from 45 to 90 ℃ and processing time from 30 to 120 minutes. Physicochemical properties including water activity, moisture content, color intensity, viscosity, hydroxymethylfurfural content, total phenolic content, and radical scavenging activity were determined. Thermosonication reduced the water activity and moisture content by 7.9% and 16.6%, respectively, compared to 3.5% and 6.9% for conventional heating. For thermosonicated honey, color intensity increased by 68.2%, viscosity increased by 275.0%, total phenolic content increased by 58.1%, and radical scavenging activity increased by 63.0% when compared to its raw form. The increase of hydroxymethylfurfural to 62.46 mg/kg was still within the limits of international standards. Optimized thermosonication conditions using response surface methodology were predicted at 90 ℃ for 111 minutes. Thermosonication was revealed as an effective alternative technique for honey processing.
    Matched MeSH terms: Hot Temperature*
  8. Ahmad Kamal NH, Selamat J, Sanny M
    PMID: 29334335 DOI: 10.1080/19440049.2018.1425553
    This study investigated the simultaneous formation of polycyclic aromatic hydrocarbons (PAHs) and heterocyclic aromatic amines (HCAs) in gas-grilled beef satay at different temperatures (150, 200, 250, 300, and 350°C). Solid-phase extraction (SPE) was used for sample clean-up. Fifteen PAHs were determined using high performance liquid chromatography with fluorescence detection (HPLC-FLD) and nine HCAs were quantified using liquid chromatography tandem-mass spectrometry (LC-MS/MS) with a gradient programme. The lowest significantly concentrations of PAHs and HCAs were generated at 150°C; the formation of PAHs and HCAs simultaneously increased with temperatures. Benzo[a]pyrene was detected in all samples and increased markedly at 300 and 350°C. The sums of 4 PAHs (PAH4) in marinated beef satay at 300 and 350°C exceeded the maximum level in Commission Regulation (EU) 2015/1125. Significant reductions of polar and non-polar HCAs (except PhIP) were found in marinated beef satay across all temperatures. Overall, PAHs and HCAs showed opposite trends of formation in beef satay with marination.
    Matched MeSH terms: Temperature*
  9. Jumaidin R, Sapuan SM, Jawaid M, Ishak MR, Sahari J
    Int J Biol Macromol, 2017 Apr;97:606-615.
    PMID: 28109810 DOI: 10.1016/j.ijbiomac.2017.01.079
    The aim of this research is to investigate the effect of sugar palm fibre (SPF) on the mechanical, thermal and physical properties of seaweed/thermoplastic sugar palm starch agar (TPSA) composites. Hybridized seaweed/SPF filler at weight ratio of 25:75, 50:50 and 75:25 were prepared using TPSA as a matrix. Mechanical, thermal and physical properties of hybrid composites were carried out. Obtained results indicated that hybrid composites display improved tensile and flexural properties accompanied with lower impact resistance. The highest tensile (17.74MPa) and flexural strength (31.24MPa) was obtained from hybrid composite with 50:50 ratio of seaweed/SPF. Good fibre-matrix bonding was evident in the scanning electron microscopy (SEM) micrograph of the hybrid composites' tensile fracture. Fourier transform infrared spectroscopy (FT-IR) analysis showed increase in intermolecular hydrogen bonding following the addition of SPF. Thermal stability of hybrid composites was enhanced, indicated by a higher onset degradation temperature (259°C) for 25:75 seaweed/SPF composites than the individual seaweed composites (253°C). Water absorption, thickness swelling, water solubility, and soil burial tests showed higher water and biodegradation resistance of the hybrid composites. Overall, the hybridization of SPF with seaweed/TPSA composites enhances the properties of the biocomposites for short-life application; that is, disposable tray, plate, etc.
    Matched MeSH terms: Temperature*
  10. Engku Nur Syafirah EAR, Nurul Najian AB, Foo PC, Mohd Ali MR, Mohamed M, Yean CY
    Acta Trop, 2018 Jun;182:223-231.
    PMID: 29545156 DOI: 10.1016/j.actatropica.2018.03.004
    Cholera, caused by Vibrio cholerae is a foodborne disease that frequently reported in food and water related outbreak. Rapid diagnosis of cholera infection is important to avoid potential spread of disease. Among available diagnostic platforms, loop-mediated isothermal amplification (LAMP) is regarded as a potential diagnostic tool due to its rapidity, high sensitivity and specificity and independent of sophisticated thermalcycler. However, the current LAMP often requires multiple pipetting steps, hence is susceptible to cross contamination. Besides, the strict requirement of cold-chain during transportation and storage make its application in low resource settings to be inconvenient. To overcome these problems, the present study is aimed to develop an ambient-temperature-stable and ready-to-use LAMP assay for the detection of toxigenic Vibrio cholerae in low resource settings. A set of specific LAMP primers were designed and tested against 155 V. cholerae and non-V. cholerae strains. Analytical specifity showed that the developed LAMP assay detected 100% of pathogenic V. cholerae and did not amplified other tested bacterial strains. Upon testing against stool samples spiked with toxigenic V. cholerae outbreak isolates, the LAMP assay detected all of the spiked samples (n = 76/76, 100%), in contrast to the conventional PCR which amplified 77.6% (n = 59/76) of the tested specimens. In term of sensitivity, the LAMP assay was 100-fold more sensitive as compared to the conventional PCR method, with LOD of 10 fg per μL and 10 CFU per mL. Following lyophilisation with addition of lyoprotectants, the dry-reagent LAMP mix has an estimated shelf-life of 90.75 days at room temperature.
    Matched MeSH terms: Temperature*
  11. Sukiato F, Wasserman RJ, Foo SC, Wilson RF, Cuthbert RN
    J Vector Ecol, 2019 12;44(2):264-270.
    PMID: 31729799 DOI: 10.1111/jvec.12358
    Urbanization has caused an increase in favorable habitats for Aedes aegypti (Diptera: Culicidae), given their ability to reproduce in small and often non-degradable artificial water-containers. While much work has been done on Ae. aegypti biology and ecology in urban landscapes, the role of shading on immature stages as an independent factor from temperature, and any possible interactions between these factors, remains unexamined. We assessed how temperature and shading affected egg hatch-rate, larval/pupal mortality, and larval development to adult stage under different factorial temperature (28; 31; 34; 37; 40° C) and shade (0%, 3,100 lux; 40%, 1,860 lux; 75%, 775 lux; 100%, 0 lux) regimes. Hatch-rate was significantly lower at 37° C (57 %), and no eggs hatched at 40° C. There was no significant effect caused by shading on hatchability. Larval and pupal mortality at 37° C was significantly higher (35%) compared to lower temperature groups, while the effects of shading were emergent at low temperatures. Developmental times from hatching to adult emergence were significantly reduced with increasing temperatures and with greater light exposures. The eco-physiological response of Ae. aegypti larvae to temperature and light regimes suggest a photosensitivity previously unstudied in this species.
    Matched MeSH terms: Cold Temperature; Temperature
  12. Boo NY, Selvarani S
    Singapore Med J, 2005 Aug;46(8):387-91.
    PMID: 16049607
    This study aimed to determine the proportions of normothermic infants who remained normothermic, and hypothermic infants who became normothermic following the use of a heated water-filled mattress (HWM) in the labour room.
    Matched MeSH terms: Body Temperature; Hot Temperature
  13. Husain R, Cheah SH, Duncan MT
    Singapore Med J, 1996 Aug;37(4):398-401.
    PMID: 8993142
    The investigation examined the possibility that observance of Ramadan by Moslems in Malaysia is associated with modification of circulatory parameters. Cardiovascular reactivity was investigated employing the cold hand immersion test as the stressor stimulus. Resultant data showed increased blood pressures and vascular resistance during Ramadan in the absence of cold stimulus while the magnitude of the maximal cardiac and vascular response to the applied stressor which served as indicators of reactivity was not affected by the Ramadan situation.
    Matched MeSH terms: Cold Temperature/adverse effects*
  14. Yogeetha R, Raman R, Quek KF
    Singapore Med J, 2007 Apr;48(4):304-6.
    PMID: 17384876
    This study aims to assess the difference in nasal patency and resistance to temperature changes objectively and subjectively.
    Matched MeSH terms: Temperature*
  15. Chong VH, Yaakub AB
    Singapore Med J, 2007 Jun;48(6):592; author reply 593.
    PMID: 17538765
    Matched MeSH terms: Body Temperature; Hot Temperature
  16. Boo NY, Chew EL
    Singapore Med J, 2006 Sep;47(9):757-62.
    PMID: 16924356
    This study aimed to compare the core, abdominal wall, and plantar temperatures of well jaundiced term infants undergoing phototherapy with or without clingfilm covering the lower two-thirds of the upper end of their bassinets.
    Matched MeSH terms: Body Temperature*
  17. Mohamed M, Yusup S, Quitain AT, Kida T
    Environ Sci Pollut Res Int, 2019 Nov;26(33):33882-33896.
    PMID: 29956260 DOI: 10.1007/s11356-018-2549-2
    The CO2 capture capacity and cyclic stability of calcium oxide (CaO) prepared from cockle shells (CS) were enhanced by incorporating rice husk (RH) and binder through wet-mixing method. The cyclic reaction of calcination and carbonation was demonstrated using thermal gravimetric analyzer (TGA) which the calcination was performed in a pure N2 environment at 850 °C for 20 min and carbonation at 650 °C for 30 min in 20 vol% of CO2 in N2. The analysis using x-ray fluorescence (XRF) identified silica (Si) as the major elements in the sorbents. The RH-added sorbents also contained several types of metal elements such as which was a key factor to minimize the sintering of the sorbent during the cyclic reaction and contributed to higher CO2 capture capacity. The presence of various morphologies also associated with the improvement of the synthesized sorbents performance. The highest initial CO2 capture capacity was exhibited by CS+10%RH sorbent, which was 12% higher than the RH-free sorbent (CS). However, sorbents with the higher RH loading amount such as 40 and 50 wt% were preferred to maintain high capture capacity when the sorbents were regenerated and extended to the cyclic reaction. The sorbents also demonstrated the lowest average sorption decay, which suggested the most stable sorbent for cyclic-reaction. Once regenerated, the capture capacity of the RH-added sorbent was further increased by 12% when clay was added into the sorbent. Overall, the metal elements in RH and clay were possibly the key factor that enhances the performance of CaO prepared from CS, particularly for cyclic CO2 capture. Graphical abstract Cyclic calcination and carbonation reaction.
    Matched MeSH terms: Hot Temperature; Temperature
  18. Wang X, Wei Y, Jiang S, Ye J, Chen Y, Xu F, et al.
    Food Res Int, 2024 Jun;186:114331.
    PMID: 38729716 DOI: 10.1016/j.foodres.2024.114331
    Peach fruit is prone to chilling injury (CI) during low-temperature storage, resulting in quality deterioration and economic losses. Our previous studies have found that exogenous trehalose treatment can alleviate the CI symptoms of peach by increasing sucrose accumulation. The purpose of this study was to explore the potential molecular mechanism of trehalose treatment in alleviating CI in postharvest peach fruit. Transcriptome analysis showed that trehalose induced gene expression in pathways of plant MAPK signaling, calcium signaling, and reactive oxygen species (ROS) signaling. Furthermore, molecular docking analysis indicated that PpCDPK24 may activate the ROS signaling pathway by phosphorylating PpRBOHE. Besides, PpWRKY40 mediates the activation of PpMAPKKK2-induced ROS signaling pathway by interacting with the PpRBOHE promoter. Accordingly, trehalose treatment significantly enhanced the activities of antioxidant-related enzymes such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and gluathione reductase (GR), as well as the transcription levels AsA-GSH cycle related gene, which led to the reduction of H2O2 and malondialdehyde (MDA) content in peach during cold storage. In summary, our results suggest that the potential molecular mechanism of trehalose treatment is to enhance antioxidant capacity by activating CDPK-mediated Ca2 + -ROS signaling pathway and WRKY-mediated MAPK-WRKY-ROS signaling pathway, thereby reducing the CI in peach fruit.
    Matched MeSH terms: Cold Temperature*
  19. Ping FW, Keong CC, Bandyopadhyay A
    Indian J Med Res, 2011 Jan;133:96-102.
    PMID: 21321426
    Athletes in Malaysia need to perform in a hot and humid environment due to the climatic nature of the country. Chronic supplementation of Panax ginseng (PG) (a deciduous perennial plant belonging to the Araliaceae family) enhances physical performance. As the ergogenic effect of acute supplementation of PG on endurance performance has not been explored in the Malaysian population especially in a hot and humid condition this study was taken up.
    Matched MeSH terms: Hot Temperature*
  20. Muhamad SN, How V, Lim FL, Md Akim A, Karuppiah K, Mohd Shabri NSA
    Sci Rep, 2024 Jul 15;14(1):16265.
    PMID: 39009671 DOI: 10.1038/s41598-024-67110-w
    Rising global temperatures can lead to heat waves, which in turn can pose health risks to the community. However, a notable gap remains in highlighting the primary contributing factors that amplify heat-health risk among vulnerable populations. This study aims to evaluate the precedence of heat stress contributing factors in urban and rural vulnerable populations living in hot and humid tropical regions. A comparative cross-sectional study was conducted, involving 108 respondents from urban and rural areas in Klang Valley, Malaysia, using a face-to-face interview and a validated questionnaire. Data was analyzed using the principal component analysis, categorizing factors into exposure, sensitivity, and adaptive capacity indicators. In urban areas, five principal components (PCs) explained 64.3% of variability, with primary factors being sensitivity (health morbidity, medicine intake, increased age), adaptive capacity (outdoor occupation type, lack of ceiling, longer residency duration), and exposure (lower ceiling height, increased building age). In rural, five PCs explained 71.5% of variability, with primary factors being exposure (lack of ceiling, high thermal conductivity roof material, increased building age, shorter residency duration), sensitivity (health morbidity, medicine intake, increased age), and adaptive capacity (female, non-smoking, higher BMI). The order of heat-health vulnerability indicators was sensitivity > adaptive capacity > exposure for urban areas, and exposure > sensitivity > adaptive capacity for rural areas. This study demonstrated a different pattern of leading contributors to heat stress between urban and rural vulnerable populations.
    Matched MeSH terms: Hot Temperature/adverse effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links