MATERIAL AND METHODS: Seaweeds were extracted with ethanol and further fractionated with hexane, ethyl acetate and water. The extracts were tested for mushroom tyrosinase inhibitory activity, cytotoxicity in human epidermal melanocyte (HEM), and Chang cells. Extracts with potent melanocytotoxicity were formulated into cosmetic cream and tested on guinea pigs in dermal irritation tests and de-pigmentation assessments.
RESULTS: Both Sargassum polycystum and Padina tenuis seaweeds showed significant inhibitory effect on mushroom tyrosinase in the concentration tested. SPEt showed most potent cytotoxicity on HEM (IC50 of 36µg/ml), followed by SPHF (65µg/ml), and PTHF (78.5µg/ml). SPHF and SPEt reduced melanin content in skin of guinea pigs when assessed histologically.
CONCLUSION: SPEt, SPHF and PTHF were able to inhibit HEM proliferation in vitro, with SPHF being most potent and did not cause any dermal irritation in guinea pigs. The results obtained indicate that SPHF is a promising pharmacological or cosmetic agent.
METHODS AND RESULTS: The crude extracts of E. pubescens were obtained through methanol extraction, and evaluated for antimicrobial activities. From this extract, 1,7-bis(3,4-dihydroxyphenyl)heptan-3-yl acetate (etlingerin) was isolated. When compared to curcumin (a compound with a similar chemical structure), etlingerin showed twofold lower minimum inhibitory concentration values while also being bactericidal. Through time kill assay, etlingerin showed rapid killing effects (as fast as 60 min) against the Gram-positive bacteria (Staphylococcus aureus ATCC 43300 and Bacillus subtilis ATCC 8188). Further assessment revealed that etlingerin caused leakage of intracellular materials, therefore suggesting alteration in membrane permeability as its antimicrobial mechanism. Cytotoxicity study demonstrated that etlingerin exhibited approximately 5- to 12-fold higher IC50 values against several cell lines, as compared to curcumin.
CONCLUSIONS: Etlingerin isolated from E. pubescens showed better antibacterial and cytotoxic activities when compared to curcumin. Etlingerin could be safe for human use, though further cytotoxicity study using animal models is needed.
SIGNIFICANCE AND IMPACT OF THE STUDY: Etlingerin has a potential to be used in treating bacterial infections due to its good antimicrobial activity, while having potentially low cytotoxicity.
METHODS AND RESULTS: Cur-NPs (30 nm and 200 nm) were nebulized separately onto the multidrug-resistant lung cancer cells (H69AR). Smaller NPs induced significantly higher cell death owing to a higher rate of particle internalization via dynamin-dependent clathrin-mediated endocytosis. Owing to the higher lysosome trafficking of Cur-NP30 nm compared to Cur-NP200 nm, oxidation of lysosome was higher (0.47 ± 0.08 vs 0.38 ± 0.08), contributing to significantly higher mitochondrial membrane potential loss (1.57 ± 0.17 vs 1.30 ± 0.11). MRP1 level in H69AR cells was reduced from 352 ± 12.3 ng/µg of protein (untreated cells) to 287 ± 12 ng/µg of protein (Cur-NP30 nm) and 303 ± 13.4 ng/µg of protein (Cur-NP200 nm). NF-κB, and various cytokine expressions were reduced after treatment with nebulized Cur-NPs.
CONCLUSIONS: Nebulized Cur-NPs formulations could be internalized into the H69AR cells. The Cur-NPs toxicity toward the H69AR was size and time-dependent. Cur-NP30 nm was more effective than Cur-NP200 nm to retain within the cells to exert higher oxidative stresss-induced cell death.