We evaluated 3,066 consecutive women admitted during 1 year to two major hospitals of Kuala Lumpur and the adjacent urban area of Malaysia. Indicators of acute pelvic inflammatory disease were more common among patients with induced abortions. PID was thought to be a major contributor to the higher costs associated with management of patients with induced abortions.
Renal cell carcinoma (RCC) generally has a poor prognosis because of late diagnosis and metastasis. We have previously described decreased tumour necrosis factor receptor-associated factor-1 (TRAF-1) in RCC compared with paired normal kidney in a patient cohort in Australia. In the present study, TRAF-1 expression in clear cell RCC (ccRCC) and normal kidney was again compared, but in a cohort from University Malaya Medical Centre. Serum TRAF-1 was also evaluated in RCC and normal samples.Immunohistochemistry with automated batch staining and Aperio ImageScope morphometry was used to compare TRAF-1 in 61 ccRCC with paired normal kidney tissue. Serum from 15 newly diagnosed and untreated ccRCC and 15 healthy people was tested for TRAF-1 using ELISA.In this cohort, TRAF-1 was highly expressed in proximal tubular epithelium of normal kidney, and significantly decreased in ccRCC tissue (p
Peanut (Arachis hypogaea) is an important source of protein and lipid globally. The effect of superheated-steam roasting on quality of peanut oil was evaluated based on physicochemical quality parameters. Three roasting temperatures (150, 200, and 250 °C) were used for different periods of roasting time and the obtained results were compared with those of conventional roasting. At 250 °C, superheated-steam roasted peanuts yielded more oil (26.84%) than conventionally roasted peanuts (24.85%). Compared with conventional roasting, superheated-steam roasting resulted in lower oil color, peroxide, p-anisidine, free fatty acid, conjugated diene and triene, and acid values and higher viscosity and iodine values in the roasted peanut oil. These values were significantly different from each other (p
This article describes a study designed to test a method for assessing the cost to the health services of illegally induced abortion and the feasibility of estimating the incidence of induced abortion by a field interviewing approach. The participating centers included three hospitals in Ankara, Turkey; three hospitals in Ibadan, Nigeria; one hospital in Caracas and one in Valencia, Venezuela; and two hospitals in Kuala Lumpur, Malaysia. Hospitalized abortion cases were classified as induced or spontaneous or as "probably induced," "possibly induced," or "unknown" according to a classification scheme comprising certain medical criteria. The sociodemographic characteristics of induced and spontaneous abortion cases were subjected to discriminant function analysis and the discriminating variables best characterizing the induced versus the spontaneous abortion groups were identified for each center. On the basis of this analysis, the "probably" and "possibly" induced and "unknown" categories were further classified as induced or spontaneous abortion, with stated probabilities. Thus an overall estimate is made of the proportion of all hospitalized abortions that can be considered illegally induced outside the hospital. Selected results on costs of induced and spontaneous abortion are shown. The method further tested the feasibility of obtaining valid survey data on abortion from the communities studied by re-interviewing the women hospitalized for induced and spontaneous abortion six months later in their homes. This exercise showed a degree of under-reporting of abortion that varied widely among centers, even among women who had admitted illegal induction at the time of hospitalization. The feasibility of estimating the incidence of illegal abortion by field studies is discussed in the light of these findings.
As the number of pathogenic microbial strains resistant to different antibiotics increases, amphipathic peptides with antimicrobial activity are promising agents for the therapy of infectious diseases. This work deals with the effect of an amphipathic antimicrobial peptide, melittin, expressed within recombinant plasmid vectors, on infection with urogenital pathogens Chlamydia trachomatis and Mycoplasma hominis in HeLa cell culture. Recombinant plasmid constructs with the melittin gene under the control of the tetracycline-responsive promoter of human cytomegalovirus were obtained. We showed inhibition of C. trachomatis and M. hominis infection after the introduction of recombinant plasmid vectors expressing the melittin gene into the infected cell culture.
In an ongoing effort to identify point mutations causing beta-thalassaemia, we have found two previously unreported mutations which are located in the Poly A site of the beta-globin gene. The screening programme used amplified DNA and dot-blot hybridization with several 32P-labelled oligonucleotide probes. DNA samples which remained unidentified by this methodology were subjected to sequencing with 32P-labelled primers and modified T7 DNA polymerase. The newly discovered mutations were confirmed by the dot-blot hybridization technique. One type concerned an AATAAA----AATGAA mutation in the polyadenylation site and was found in one family from Yugoslavia (including one patient with the C----T mutation at codon 29 in trans), one from Bulgaria (the patient had the G----A mutation at IVS-I-110 in trans), and one from Greece (this patient had the C----G mutation at IVS-II-745 in trans). Haematological data for three simple heterozygotes suggested a rather mild beta(+)-thalassemia. The second type involved an AATAAA----AATAGA mutation and was found in one family from Malaysia. The propositus had the beta E mutation on the other chromosome, was originally diagnosed as mild Hb E-beta(+)-thalassaemia, and had Hb A and Hb E percentages which were nearly the same.
This study concerned the identification of the beta-thalassaemia mutations that were present in 27 Malay patients with Hb E-beta-thalassaemia and seven Malay patients with thalassaemia major who were from West Malaysia. Nearly 50% of all beta-thalassaemia chromosomes carried the G----C substitution at nucleotide 5 of IVS-I; the commonly occurring Chinese anomalies such as the frameshift at codons 41 and 42, the nonsense mutation A----T at codon 17, the A----G substitution at position -28 of the promoter region, and the C----T substitution at position 654 of the second intron, were rare or absent. Two new thalassaemia mutations were discovered. The first involves a frameshift at codon 35 (-C) that was found in two patients with Hb E-beta zero-thalassaemia and causes a beta zero-thalassaemia because a stop codon is present at codon 60. The second is an AAC----AGC mutation in codon 19 that was present on six chromosomes. This substitution results in the production of an abnormal beta chain (beta-Malay) that has an Asn----Ser substitution at position beta 19. Hb Malay is a 'Hb Knossos-like' beta +-thalassaemia abnormality; the A----G mutation at codon 19 likely creates an alternate splicing site between codons 17 and 18, reducing the efficiency of the normal donor splice site at IVS-I to about 60%.
The house fly, Musca domestica has long been considered a potential agent for disease transmission ever since its existence. The general truth of this assertion remains undisputed till the present day in spite of increasing awareness toward an improved sanitation and better hygiene. The habitual movement of house fly from filthy substrata such as human faeces, animal excreta, carcasses, garbage, etc. makes them ideal candidates for disease transmission such as cholera, shigellosis, salmonellosis and others when settling on food. Fly as a potential mechanical vector of pathogenic bacteria was elucidated in this study by examining flies from various breeding sites such as food courts, dumping ground, food processing areas and poultry farm in Peninsular Malaysia. The flies were baited with 10% sugar solution on a glass slide in the field. All materials used for collection of samples were sterile. Bacteria from fly sample were isolated using the normal isolation technique. Bacillus sp., Coccobacillus sp., Staphylococcus sp., Microccus sp., Streptococcus sp., Acinetobacter sp., Enterobacter sp., Proteus sp., Escherichia sp., Klebsiella sp. and yeast cells were isolated from feaces, vomitus, external surfaces and internal organs of house fly. Newly emerged house fly did not harbour any bacteria.
Three new techniques of sterilising maggots of Lucilia cuprina for the purpose of debriding intractable wounds were studied. These techniques were utilisation of ultra-violet C (UVC) and maggot sterilisation with disinfectants. The status of sterility was checked on nutrient agar and blood agar and confirmed with staining. The indicators for the effectiveness of the methods were sterility and survival rate of the eggs or larvae. Egg sterilisation with UVC had the lowest hatching rate (16+/-0.00%) while egg sterilisation with disinfectants showed high hatching rate (36.67+/-4.41%) but low maggot survival rate (31.67+/-1.67%). Sterilisation of the maggots was the most suitable, since the survival rate was the highest (88.67+/-0.88%). Complete sterility was achieved in all cases, except that Proteus mirabilis was consistently found. However, the presence of this microorganism was considered beneficial.
After a centenary fight against malaria, Brazil has seen an opportunity for change with the proposal of the malaria elimination policy set by the Brazilian government, in line with malaria elimination policies in other Latin American countries. Brazilian malaria experts regard eliminating malaria by 2030 to be within reach. Herein we evaluated the likelihood that malaria elimination can be accomplished in Brazil through systematic review of the literature on malaria elimination in Brazil and epidemiological analysis. Fifty-two articles referring to malaria eradication/elimination in Brazil were analyzed to identify challenges and technological breakthroughs for controlling malaria. Monthly deaths (1979-2016) and monthly severe malaria cases (1998-2018) were analyzed according to age groups, geographic region and parasite species. As a result, we observed that the declining malaria burden was mostly attributable to a decline in Plasmodium falciparum-malaria. At the same time, the proportional increase of Plasmodium vivax-malaria in comparison with P. falciparum-malaria was notable. This niche replacement mechanism was discussed in the reviewed literature. In addition, the challenges to P. vivax-malaria elimination outnumbered the available technological breakthroughs. Although accumulated and basic information exists on mosquito vector biology, the lack of specific knowledge about mosquito vector taxonomy and ecology may hamper current attempts at stopping malaria in the country. An impressive reduction in malaria hospitalizations and mortality was seen in Brazil in the past 3 decades. Eliminating malaria deaths in children less than 5 years and P. falciparum severe cases may be achievable goals under the current malaria policy until 2030. However, eliminating P. vivax malaria transmission and morbidity seems unattainable with the available tools. Therefore, complete malaria elimination in Brazil in the near future is unlikely.
Studies profiling community and zonal malaria entomological risk indices are required to identify high risk areas where targeted control resources are most needed or likely to have the greatest impact on reducing risk of malaria infection. This study presents a first report on malaria vector risk indices in two vegetation zones within Adamawa state, Nigeria. Endophilic mosquitoes were collected for one year in selected communities in the Guinea and Sudan savanna zones within the State. Plasmodium falciparum Sporozoite and human blood meal ELISA assays were carried out on the female Anopheles mosquitoes collected. Sibling species composition of the An. gambiae complex were determined using PCR assays. Mean numbers of mosquitoes in the Guinea savanna communities were significantly (t = 7.73, DF = 11, p < 0.001) higher than the Sudan. Man-biting rates (F = 2.76, p = 0.13) of Anopheles mosquitoes were higher in the Guinea but not significantly different from Sudan savanna. Sporozoite rates of mosquitoes within the Guinea savanna were 2.7 times higher than the Sudan. The predominant Anopheles coluzzii species encountered in the state had higher overall human blood indices (0.63) and sporozoite rates (6.9%) compared to An. gambiae (0.39, 1.9%) and An. arabiensis (0.58, 2.3%) respectively. Overall annual human blood indices (0.59) of mosquitoes in Adamawa were lower compared to reports from other States. Prevalence and higher transmission risks indices of endophilic An. coluzzii mosquitoes reveal the need for LLIN and management of relatively permanent An. coluzzii breeding sites in the State. Widespread cattle rearing lifestyle and lower human blood indices of mosquitoes in the study area suggest the need to investigate cattle blood indices of the mosquitoes in the state. Higher entomological risk indices in the Guinea Savanna zone provide baseline information for prioritization of malaria vector control supplies within the State.
Corona virus SARS-CoV-2-induced viral disease (COVID-19) is a zoonotic disease that was initially transmitted from animals to humans. The virus surfaced towards the end of December 2019 in Wuhan, China where earlier SARS (Severe Acute Respiratory Syndrome) had also surfaced in 2003. Unlike SARS, SARS-CoV-2 (a close relative of the SARS virus) created a pandemic, and as of February 24 2021, caused 112,778,672 infections and 2,499,252 deaths world-wide. Despite the best efforts of scientists, no drugs against COVID-19 are yet in sight; five vaccines have received emergency approval in various countries, but it would be a difficult task to vaccinate twice the world population of 8 billion. The objective of the present study was to evaluate through in silico screening a number of phytochemicals in Allium cepa (onion) regarding their ability to bind to the main protease of COVID-19 known as the 3C-like protease or 3CLpro, (PDB ID: 6LU7), 3CLpro of SARS (PDB ID: 3M3V), and human angiotensin converting enzyme-2 (ACE-2), [PDB ID: 1R42], which functions as a receptor for entry of the virus into humans. Molecular docking (blind docking, that is docking not only against any target pocket) were done with the help of AutoDockVina. It was observed that of the twenty-two phytochemicals screened, twelve showed good binding affinities to the main protease of SARS-CoV-2. Surprisingly, the compounds also demonstrated good binding affinities to ACE-2. It is therefore very likely that the binding affinities shown by these compounds against both 3CLpro and ACE-2 merit further study for their potential use as therapeutic agents.
COVID-19, caused by the SARS-CoV-2 virus, can lead to massive inflammation in the gastrointestinal tract causing severe clinical symptoms. SARS-CoV-2 infects lungs after binding its spike proteins with alveolar angiotensin-converting enzyme 2 (ACE2), and it also triggers inflammation in the gastrointestinal tract. SARS-CoV-2 invades the gastrointestinal tract by interacting with Toll-like receptor-4 (TLR4) that induces the expression of ACE2. The influx of ACE2 facilitates cellular binding of more SARS-CoV-2 and causes massive gastrointestinal inflammation leading to diarrhea. Diarrhea prior to COVID-19 infection or COVID-19-induced diarrhea reportedly ends up in a poor prognosis for the patient. Flavonoids are part of traditional remedies for gastrointestinal disorders. Preclinical studies show that flavonoids can prevent infectious diarrhea. Recent studies show flavonoids can inhibit the multiplication of SARS-CoV-2. In combination with vitamin D, flavonoids possibly activate nuclear factor erythroid-derived-2-related factor 2 that downregulates ACE2 expression in cells. We suggest that flavonoids have the potential to prevent SARS-CoV-2 induced diarrhea.
The assortment of paracentric chromosomal inversion 2La is associated with the maintenance of dieldrin resistance in laboratory colonies of the malaria vector Anopheles gambiae. This association has not been tested in field populations. The aim of this study was to test the association between inversion 2La and dieldrin resistance in a field population of An. coluzzii in Nigeria. Field collected immature stages of Anopheles were raised to adults and exposed to 4% dieldrin according to WHO criteria. Knockdown was recorded at 10 min intervals for 1 hour and final mortality was recorded 24 hours post exposure. Species and inversion 2La diagnostic PCR assays were conducted on the resistant and susceptible mosquitoes. The mosquitoes were highly resistant to 4% dieldrin (17.1% knock down and 25.7% final mortality; KDT50 and KDT95 calculated as 170 and 1, 514 minutes respectively). Frequencies of 2La in both the resistant and susceptible cohorts assorted within HardyWeinberg estimates (χ2=1.32, p=0.8 for dead/susceptible mosquitoes and χ2=2.54, p=0.5 for survivors or resistant mosquitoes). However, a higher number of heterozygous mosquitoes were observed in the resistant cohort compared to the susceptible, with significant variation in karyotype frequencies (χ2=11.08, DF=2, p<0.05) and a significantly higher frequency of the 2La inversion arrangement in the resistant cohort (Pearson's χ2 = 4.58, p = 0.03.). These data are the first to associate paracentric chromosome inversion 2La and dieldrin resistance in field population of An. coluzzii. Dieldrin resistance shows a weak but significant association with 2La whose assortment is affected by positive heterosis. Variation in the assortment of 2La inversion arrangements between resistant and susceptible cohorts of this An. coluzzii population suggests that dieldrin resistance is at least partially linked to inversion 2La which may explain the persistence of dieldrin resistance in this population despite a significant absence of selection for resistance to this insecticide.
Costelytra zealandica (Coleoptera: Scarabeidae) is a univoltine endemic species that has colonised and become a major pest of introduced clover and ryegrass pastures that form about half of the land area of New Zealand. Female beetles were previously shown to use phenol as their sex pheromone produced by symbiotic bacteria in the accessory or colleterial gland. In this study, production of phenol was confirmed from the female beetles, while bacteria were isolated from the gland and tested for attractiveness towards grass grub males in traps in the field. The phenol-producing bacterial taxon was identified by partial sequencing of the 16SrRNA gene, as Morganella morganii. We then tested the hypothesis that the phenol sex pheromone is biosynthesized from the amino acid tyrosine by the bacteria. This was shown to be correct, by addition of isotopically labelled tyrosine ((13)C) to the bacterial broth, followed by detection of the labelled phenol by SPME-GCMS. Elucidation of this pathway provides specific evidence how the phenol is produced as an insect sex pheromone by a mutualistic bacteria.
This paper presents an experimental characterization of millimeter-wave (mm-wave) channels in the 6.5 GHz, 10.5 GHz, 15 GHz, 19 GHz, 28 GHz and 38 GHz frequency bands in an indoor corridor environment. More than 4,000 power delay profiles were measured across the bands using an omnidirectional transmitter antenna and a highly directional horn receiver antenna for both co- and cross-polarized antenna configurations. This paper develops a new path-loss model to account for the frequency attenuation with distance, which we term the frequency attenuation (FA) path-loss model and introduce a frequency-dependent attenuation factor. The large-scale path loss was characterized based on both new and well-known path-loss models. A general and less complex method is also proposed to estimate the cross-polarization discrimination (XPD) factor of close-in reference distance with the XPD (CIX) and ABG with the XPD (ABGX) path-loss models to avoid the computational complexity of minimum mean square error (MMSE) approach. Moreover, small-scale parameters such as root mean square (RMS) delay spread, mean excess (MN-EX) delay, dispersion factors and maximum excess (MAX-EX) delay parameters were used to characterize the multipath channel dispersion. Multiple statistical distributions for RMS delay spread were also investigated. The results show that our proposed models are simpler and more physically-based than other well-known models. The path-loss exponents for all studied models are smaller than that of the free-space model by values in the range of 0.1 to 1.4 for all measured frequencies. The RMS delay spread values varied between 0.2 ns and 13.8 ns, and the dispersion factor values were less than 1 for all measured frequencies. The exponential and Weibull probability distribution models best fit the RMS delay spread empirical distribution for all of the measured frequencies in all scenarios.
The heterocyclic chalcone containing thiophene ring 1-(4-chlorophenyl)-3-(2-thienyl)prop-2-en-1-one, C13H9ClOS was synthesized and investigated using experimental techniques such as nuclear magnetic resonance (1H and 13C NMR), Fourier transform infrared spectroscopy (FTIR) at room temperature, differential scanning calorimeter (DSC) from room temperature to 500K and Raman scattering at the temperature range 10-413K in order to study its structure and vibrational properties as well as stability and possible phase transition. Density functional theory (DFT) calculations were performed to determine the vibrational spectrum viewing to improve the knowledge of the material properties. A reasonable agreement was observed between theoretical and experimental Raman spectrum taken at 10K since anharmonic effects of the molecular motion is reduced at low temperatures, leading to a more comprehensive assignment of the vibrational modes. Increasing the temperature up to 393K, was observed the typical phonon anharmonicity behavior associated to changes in the Raman line intensities, line-widths and red-shift, in special in the external mode region, whereas the internal modes region remains almost unchanged due its strong chemical bonds. Furthermore, C13H9ClOS goes to melting phase transition in the temperature range 393-403K and then sublimates in the temperature range 403-413K. This is denounced by the disappearance of the external modes and the absence of internal modes in the Raman spectra, in accordance with DSC curve. The enthalpy (ΔH) obtained from the integration of the endothermic peak in DSC curve centered at 397K is founded to be 121.5J/g.
This work proposes channel impulse response (CIR) prediction for time-varying ultra-wideband (UWB) channels by exploiting the fast movement of channel taps within delay bins. Considering the sparsity of UWB channels, we introduce a window-based CIR (WB-CIR) to approximate the high temporal resolutions of UWB channels. A recursive least square (RLS) algorithm is adopted to predict the time evolution of the WB-CIR. For predicting the future WB-CIR tap of window wk, three RLS filter coefficients are computed from the observed WB-CIRs of the left wk-1, the current wk and the right wk+1 windows. The filter coefficient with the lowest RLS error is used to predict the future WB-CIR tap. To evaluate our proposed prediction method, UWB CIRs are collected through measurement campaigns in outdoor environments considering line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios. Under similar computational complexity, our proposed method provides an improvement in prediction errors of approximately 80% for LOS and 63% for NLOS scenarios compared with a conventional method.