Klebsiella pneumoniae is a Gram-negative, cylindrical rod shaped opportunistic pathogen that is found in the environment as well as existing as a normal flora in mammalian mucosal surfaces such as the mouth, skin, and intestines. Clinically it is the most important member of the family of Enterobacteriaceae that causes neonatal sepsis and nosocomial infections. In this work, a combination of protein sequence analysis, structural modeling and molecular docking simulation approaches were employed to provide an understanding of the possible functions and characteristics of a hypothetical protein (KPN_02809) from K. pneumoniae MGH 78578. The computational analyses showed that this protein was a metalloprotease with zinc binding motif, HEXXH. To verify this result, a ypfJ gene which encodes for this hypothetical protein was cloned from K. pneumoniae MGH 78578 and the protein was overexpressed in Escherichia coli BL21 (DE3). The purified protein was about 32 kDa and showed maximum protease activity at 30 °C and pH 8.0. The enzyme activity was inhibited by metalloprotease inhibitors such as EDTA, 1,10-phenanthroline and reducing agent, 1,4-dithiothreitol (DTT). Each molecule of KPN_02809 protein was also shown to bind one zinc ion. Hence, for the first time, we experimentally confirmed that KPN_02809 is an active enzyme with zinc metalloprotease activity.
In this study, the hypothesis was tested that behaviour of rats under the open field test condition and effects of subsequent acute stress relate to conformational properties of the main plasma carrier protein, albumin.To evaluate albumin properties, fluorescence intensity of a molecular probe CAPIDAN (N-carboxyphenylimide of dimethylaminonaphthalic acid) at N (at pH 7.4) and F (at pH 4.2) albumin conformations was measured and the N-F signal ratio was calculated. The data obtained showed that CAPIDAN fluoresces selectively from albumin in rat serum and its fluorescence is sensitive to binding of fatty acids and some other ligands to albumin. Behaviour of 78 Wistar male rats was characterized from the fraction of time taken for exploratory and ambulatory activity during the open field test. In rats not subjected to stress (n = 40), a negative correlation was revealed between open field activity and CAPIDAN N-to-F ratio for albumin (r = - 0.55, p < 0.0005). In the group of rats subjected to acute stress (immobilization plus stochastic electrocutaneous stimulation) the correlation between behavioural activity and the albumin conformational properties was significantly positive (r = 0.59, p < 0.0001): the CAPIDAN albumin fluorescence ratio increased in the highly active rats and decreased in the low-activity rats. The mechanisms of the observed effects may involve differences in nonesterified fatty acid production during stress.
A specific ligand targeting the immunodominant region of hepatitis B virus is desired in neutralizing the infectivity of the virus. In a previous study, a disulfide constrained cyclic peptide cyclo S(1) ,S(9) Cys-Glu-Thr-Gly-Ala-Lys-Pro-His-Cys (S(1) , S(9) -cyclo-CETGAKPHC) was isolated from a phage displayed cyclic peptide library using an affinity selection method against hepatitis B surface antigen. The cyclic peptide binds tightly to hepatitis B surface antigen with a relative dissociation constant (KD (rel) ) of 2.9 nm. The binding site of the peptide was located at the immunodominant region on hepatitis B surface antigen. Consequently, this study was aimed to elucidate the structure of the cyclic peptide and its interaction with hepatitis B surface antigen in silico. The solution structure of this cyclic peptide was solved using (1) H, (13) C, and (15) N NMR spectroscopy and molecular dynamics simulations with NMR-derived distance and torsion angle restraints. The cyclic peptide adopted two distinct conformations due to the isomerization of the Pro residue with one structured region in the ETGA sequence. Docking studies of the peptide ensemble with a model structure of hepatitis B surface antigen revealed that the cyclic peptide can potentially be developed as a therapeutic drug that inhibits the virus-host interactions.
The surface antigen (HBsAg) of hepatitis B virus (HBV) is highly conformational and generally evokes protective humoral immune response in human. A disulfide constrained random heptapeptide library displayed on the coat protein III of filamentous bacteriophage M13 was employed to select specific ligands that interact with HBsAg subtype ad. Fusion phages carrying the amino acid sequence ETGAKPH and other related sequences were isolated. The binding site of peptide ETGAKPH was located on the immunodominant region of HBsAg. An equilibrium binding assay in solution showed that the phage binds tightly to HBsAg with a relative dissociation constant (KDrel) of 2.9+/-0.9 nM. The phage bearing this peptide has the potential to be used as a diagnostic reagent and two assays for detecting HBsAg in blood samples are described.
Interaction of a promising anticancer drug, lapatinib (LAP) with the major transport protein in human blood circulation, human serum albumin (HSA) was investigated using fluorescence and circular dichroism (CD) spectroscopy as well as molecular docking analysis. LAP-HSA complex formation was evident from the involvement of static quenching mechanism, as revealed by the fluorescence quenching data analysis. The binding constant, Ka value in the range of 1.49-1.01×10(5)M(-1), obtained at three different temperatures was suggestive of the intermediate binding affinity between LAP and HSA. Thermodynamic analysis of the binding data (∆H=-9.75kJmol(-1) and ∆S=+65.21Jmol(-1)K(-1)) suggested involvement of both hydrophobic interactions and hydrogen bonding in LAP-HSA interaction, which were in line with the molecular docking results. LAP binding to HSA led to the secondary and the tertiary structural alterations in the protein as evident from the far-UV and the near-UV CD spectral analysis, respectively. Microenvironmental perturbation around Trp and Tyr residues in HSA upon LAP binding was confirmed from the three-dimensional fluorescence spectral results. LAP binding to HSA improved the thermal stability of the protein. LAP was found to bind preferentially to the site III in subdomain IB on HSA, as probed by the competitive drug displacement results and supported by the molecular docking results. The effect of metal ions on the binding constant between LAP and HSA was also investigated and the results showed a decrease in the binding constant in the presence of these metal ions.
We have carried out the synthesis of new 4-oxoquinazolin-3(4H)-yl)furan-2-carboxamide derivatives by the reaction between isatoic anhydride, 2-furoic hydrazide and substituted salicylaldehydes in ethanol: water (5:5 v/v) solvent system using p-TSA as a catalyst under ultrasound irradiation at room temperature. The structures of newly synthesized compounds were confirmed through spectral techniques such as IR, 1H NMR, 13C NMR, and LCMS. The important features of this protocol include simple and easy workup procedure, reaction carried out at ambient temperature, use of ultrasound and high yield of oxoquinazolin-3(4H)-yl)furan-2-carboxamides in short reaction time. The synthesized compounds 4a-4j were screened against tyrosinase enzyme and all these compounds found to be potent inhibitors with much lower IC50 value of 0.028 ± 0.016 to 1.775 ± 0.947 µM than the standard kojic acid (16.832 ± 1.162 µM). The kinetics mechanism for compound 4e was analyzed by Lineweaver-Burk plots which revealed that compound inhibited tyrosinase non-competitively by forming an enzyme-inhibitor complex. Along with this all the synthesized compounds (4a-4j) were scanned for their DPPH free radical scavenging ability. The outputs received through in vitro and in silico analysis are coherent to the each other with good binding energy values (kcal/mol) posed by synthesized ligands.
The binding selectivity of the M(phen)(edda) (M=Cu, Co, Ni, Zn; phen=1,10-phenanthroline, edda=ethylenediaminediacetic acid) complexes towards ds(CG)(6), ds(AT)(6) and ds(CGCGAATTCGCG) B-form oligonucleotide duplexes were studied by CD spectroscopy and molecular modeling. The binding mode is intercalation and there is selectivity towards AT-sequence and stacking preference for A/A parallel or diagonal adjacent base steps in their intercalation. The nucleolytic properties of these complexes were investigated and the factors affecting the extent of cleavage were determined to be: concentration of complex, the nature of metal(II) ion, type of buffer, pH of buffer, incubation time, incubation temperature, and the presence of hydrogen peroxide or ascorbic acid as exogenous reagents. The fluorescence property of these complexes and its origin were also investigated. The crystal structure of the Zn(phen)(edda) complex is reported in which the zinc atom displays a distorted trans-N(4)O(2) octahedral geometry; the crystal packing features double layers of complex molecules held together by extensive hydrogen bonding that inter-digitate with adjacent double layers via pi...pi interactions between 1,10-phenanthroline residues. The structure is compared with that of the recently described copper(II) analogue and, with the latter, included in molecular modeling.
Carbon dots (C-dots) were used to study the binding mechanisms with serum protein, bovine serum albumin (BSA) by using two notable binding systems known as non-covalent and covalent interaction. Interaction between C-dots and BSA were estimated by Stern-Volmer equation and Double Log Regression Model (DLRM). According to the fluorescent intensity, quenching of model carrier protein by C-dots was due to dynamic quenching for non-covalent and static quenching for covalent binding. The binding site constant, KA and number of binding site, for covalent interaction is 1754.7L/mol and n≈1 (0.6922) were determined by DLRM on fluorescence quenching results. The blue shift of the fluorescence spectrum, from 450nm to 421nm (non-covalent) and 430nm (covalent) and suggested that both the microenvironment of C-dots and protein changed in relation to the protein concentration. The fluorescence intensity results show that protein structure has a significant role in Protein-C-dots interactions and type of binding influence physicochemical properties of C-dots differently. Understanding to this bio interface is important to utilize both quantum dots and biomolecules for biomedical field. It can be a useful guideline to design further applications in biomedical and bioimaging.
Enterovirus A71 (EV-A71) is an emerging pathogen in the Enterovirus A species group. EV-A71 causes hand, foot and mouth disease (HFMD), with virulent variants exhibiting polio-like acute flaccid paralysis and other central nervous system manifestations. We analysed all enterovirus A71 complete genomes with collection dates from 2008 to mid-2018. All sub-genotypes exhibit a strong molecular clock with omega (dN/dS) suggesting strong purifying selection. In sub-genotypes B5 and C4, positive selection can be detected at two surface sites on the VP1 protein, also detected in positive selection studies performed prior to 2008. Toggling of a limited repertoire of amino acids at these positively selected residues over the last decade suggests that EV-A71 may be undergoing a sustained frequency-dependent selection process for immune evasion, raising issues for vaccine development. These same sites have also been previously implicated in virus-host binding and strain-associated severity of HFMD, suggesting that immune evasion may be an indirect driver for virulence (154 words).
The IntFOLD server provides a unified resource for the automated prediction of: protein tertiary structures with built-in estimates of model accuracy (EMA), protein structural domain boundaries, natively unstructured or disordered regions in proteins, and protein-ligand interactions. The component methods have been independently evaluated via the successive blind CASP experiments and the continual CAMEO benchmarking project. The IntFOLD server has established its ranking as one of the best performing publicly available servers, based on independent official evaluation metrics. Here, we describe significant updates to the server back end, where we have focused on performance improvements in tertiary structure predictions, in terms of global 3D model quality and accuracy self-estimates (ASE), which we achieve using our newly improved ModFOLD7_rank algorithm. We also report on various upgrades to the front end including: a streamlined submission process, enhanced visualization of models, new confidence scores for ranking, and links for accessing all annotated model data. Furthermore, we now include an option for users to submit selected models for further refinement via convenient push buttons. The IntFOLD server is freely available at: http://www.reading.ac.uk/bioinf/IntFOLD/.
Transferrin is a protein super-family involved in iron transport, a central process in cellular homeostasis. Throughout the evolution of vertebrates, transferrin members have diversified into distinct subfamilies including serotransferrin, ovotransferrin, lactoferrin, melanotransferrin, the inhibitor of carbonic anhydrase, pacifastin, and the major yolk protein in sea urchin. Previous phylogenetic analyses have established the branching order of the diverse transferrin subfamilies but were mostly focused on the transferrin repertoire present in mammals. Here, we conduct a comprehensive phylogenetic analysis of transferrin protein sequences in sequenced vertebrates, placing a special focus on the less-studied nonmammalian vertebrates. Our analyses uncover a novel transferrin clade present across fish, sauropsid, and amphibian genomes but strikingly absent from mammals. Our reconstructed scenario implies that this novel class emerged through a duplication event at the vertebrate ancestor, and that it was subsequently lost in the lineage leading to mammals. We detect footprints of accelerated evolution following the duplication event, which suggest positive selection and early functional divergence of this novel clade. Interestingly, the loss of this novel class of transferrin in mammals coincided with the divergence by duplication of lactoferrin and serotransferrin in this lineage. Altogether, our results provide novel insights on the evolution of iron-binding proteins in the various vertebrate groups.
The causative agent of white tail disease (WTD) in the giant freshwater prawn is Macrobrachium rosenbergii nodavirus (MrNV). The recombinant capsid protein (CP) of MrNV was previously expressed in Escherichia coli, and it self-assembled into icosahedral virus-like particles (VLPs) with a diameter of approximately 30 nm. Extensive studies on the MrNV CP VLPs have attracted widespread attention in their potential applications as biological nano-containers for targeted drug delivery and antigen display scaffolds for vaccine developments. Despite their advantageous features, the recombinant MrNV CP VLPs produced in E. coli are seriously affected by protease degradations, which significantly affect the yield and stability of the VLPs. Therefore, the aim of this study is to enhance the stability of MrNV CP by modulating the protease degradation activity. Edman degradation amino acid sequencing revealed that the proteolytic cleavage occurred at arginine 26 of the MrNV CP. The potential proteases responsible for the degradation were predicted in silico using the Peptidecutter, Expasy. To circumvent proteolysis, specific protease inhibitors (PMSF, AEBSF and E-64) were tested to reduce the degradation rates. Modulation of proteolytic activity demonstrated that a cysteine protease was responsible for the MrNV CP degradation. The addition of E-64, a cysteine protease inhibitor, remarkably improved the yield of MrNV CP by 2.3-fold compared to the control. This innovative approach generates an economical method to improve the scalability of MrNV CP VLPs using individual protease inhibitors, enabling the protein to retain their structural integrity and stability for prominent downstream applications including drug delivery and vaccine development.
A study on the binding interaction of lectins from Artocarpus heterophyllus (jacalin), Glycine max and Sambucus nigra with standardised quantity of IgA from the IgA nephropathy patients and normal controls was performed. The Glycine max lectin demonstrated higher affinity towards the serum IgA of IgAN patients as compared to normal controls. However, the affinity binding was lower in cases ofjacalin and the Sambucus nigra lectin. When serum samples were treated with neuraminidase, the differential jacalin affinity binding between IgA1 of patients and normal controls was abrogated. Our data are in support of the view that the O-linked oligosaccharide moieties of the patients IgA1 were generally lacking in galactose and sialic acid residues.
Inhibition of Thymidine phosphorylase (TP) is continuously studied for the design and development of new drugs for the treatment of neoplastic diseases. As a part of our effort to identify TP inhibitors, we performed a structure-based virtual screening (SBVS) of our compound collection. Based on the insights gained from structures of virtual screening hits, a scaffold was designed using 1,3,4-oxadiazole as the basic structural feature and SAR studies were carried out for the optimization of this scaffold. Twenty-five novel bis-indole linked 1,3,4-oxadiazoles (7-31) were designed, synthesized and tested in vitro against E. coli TP (EcTP). Compound 7 emerged as potent TP inhibitor with an IC50 value of 3.50 ± 0.01 μM. Docking studies were carried out using GOLD software on thymidine phosphorylase from human (hTP) and E. coli (EcTP). Various hydrogen bonding, hydrophobic interactions, and π-π stacking were observed between designed molecules and the active site amino acid residues of the studied enzymes.
Protein arginine deiminase type IV (PAD4) is responsible for the posttranslational conversion of peptidylarginine to peptidylcitrulline. Citrullinated protein is the autoantigen in rheumatoid arthritis, and therefore, PAD4 is currently a promising therapeutic target for the disease. Recently, we reported the importance of the furan ring in the structure of PAD4 inhibitors. In this study, the furan ring was incorporated into peptides to act as the "warhead" of the inhibitors for PAD4. IC50 studies showed that the furan-containing peptide-based inhibitors were able to inhibit PAD4 to a better extent than the furan-containing small molecules that were previously reported. The best peptide-based inhibitor inhibited PAD4 reversibly and competitively with an IC50 value of 243.2 ± 2.4 μm. NMR spectroscopy and NMR-restrained molecular dynamic simulations revealed that the peptide-based inhibitor had a random structure. Molecular docking studies showed that the peptide-based inhibitor entered the binding site and interacted with the essential amino acids involved in the catalytic activity. The peptide-based inhibitor could be further developed into a therapeutic drug for rheumatoid arthritis.
The present article describes the synthesis, in vitro urease inhibition and in silico molecular docking studies of a novel series of bi-heterocyclic bi-amides. The synthesis of title compounds was initiated by benzoylation, with benzoyl chloride (1), of the key starter ethyl 2-(2-amino-1,3-thiazol-4-yl)acetate (2) in weak basic aqueous medium followed by hydrazide formation, 4, and cyclization with CS2 to reach the parent bi-heterocyclic nucleophile, N-{4-[(5-sulfanyl-1,3,4-oxadiazol-2-yl)methyl]-1,3-thiazol-2-yl}benzamide (5). Various electrophiles, 8a-l, were synthesized by a two-step process and these were finally coupled with 5 to yield the targeted bi-heterocyclic bi-amide molecules, 9a-l. The structures of the newly synthesized products were corroborated by IR, 1H NMR, 13C NMR, EI-MS and elemental analysis. The in vitro screening of these molecules against urease explored that most of the compounds exhibit potent inhibitory potential against this enzyme. The compound 9j, with IC50 value of 2.58 ± 0.02 µM, exhibited most promising inhibitory activity among the series, relative to standard thiourea having IC50 value of 21.11 ± 0.12 µM. In silico studies fully augmented the experimental enzyme inhibition results. Chemo-informatics analysis showed that synthesized compounds (9a-l) mostly obeyed the Lipinski's rule. Molecular docking study suggested that ligand 9j exhibited good binding energy value (-7.10 kcal/mol) and binds within the active region of target protein. So, on the basis of present investigation, it was inferred that 9j may serve as a novel scaffold for designing more potent urease inhibitors.
In this work, molecular docking, pharmacophore modeling and molecular dynamics (MD) simulation were rendered for the mouse P-glycoprotein (P-gp) (code: 4Q9H) and bioflavonoids; amorphigenin, chrysin, epigallocatechin, formononetin and rotenone including a positive control; verapamil to identify protein-ligand interaction features including binding affinities, interaction characteristics, hot-spot amino acid residues and complex stabilities. These flavonoids occupied the same binding site with high binding affinities and shared the same key residues for their binding interactions and the binding region of the flavonoids was revealed that overlapped the ATP binding region with hydrophobic and hydrophilic interactions suggesting a competitive inhibition mechanism of the compounds. Root mean square deviations (RMSDs) analysis of MD trajectories of the protein-ligand complexes and NBD2 residues, and ligands pointed out these residues were stable throughout the duration of MD simulations. Thus, the applied preliminary structure-based molecular modeling approach of interactions between NBD2 and flavonoids may be gainful to realize the intimate inhibition mechanism of P-gp at NBD2 level and on the basis of the obtained data, it can be concluded that these bioflavonoids have the potential to cause herb-drug interactions or be used as lead molecules for the inhibition of P-gp (as anti-multidrug resistance agents) via the NBD2 blocking mechanism in future.
Biphenyl-based compounds are clinically important for the treatments of hypertension and inflammatory, while many more are under development for pharmaceutical uses. In the present study, a series of 2-([1,1'-biphenyl]-4-yl)-2-oxoethyl benzoates, 2(a-q), and 2-([1,1'-biphenyl]-4-yl)-2-oxoethyl pyridinecarboxylate, 2(r-s) were synthesized by reacting 1-([1,1'-biphenyl]-4-yl)-2-bromoethan-1-one with various carboxylic acids using potassium carbonate in dimethylformamide at ambient temperature. Single-crystal X-ray diffraction studies revealed a more closely packed crystal structure can be produced by introduction of biphenyl moiety. Five of the compounds among the reported series exhibited significant anti-tyrosinase activities, in which 2p, 2r and 2s displayed good inhibitions which are comparable to standard inhibitor kojic acid at concentrations of 100 and 250 μg/mL. The inhibitory effects of these active compounds were further confirmed by computational molecular docking studies and the results revealed the primary binding site is active-site entrance instead of inner copper binding site which acted as the secondary binding site.
A series of dimeric naphthoquinones containing natural 2-hydroxy-1-4-naphthoquinone moiety was designed, synthesized, and evaluated against neuraminidase of H5N1 virus. p-hydroxy derivatives showed higher inhibition when compared to p-halogenated compounds. Molecular docking studies conducted with H5N1 neuraminidase clearly demonstrated different binding modes of the most active compound onto the open and closed conformations of loop 150. The results thus provide not only evidences of a novel scaffold evaluated as inhibitor, but also a rational explanation involving molecular modeling and the role of loop 150 in the binding.