Displaying publications 141 - 160 of 198 in total

Abstract:
Sort:
  1. Ebadi M, Bullo S, Buskara K, Hussein MZ, Fakurazi S, Pastorin G
    Sci Rep, 2020 Dec 09;10(1):21521.
    PMID: 33298980 DOI: 10.1038/s41598-020-76504-5
    The use of nanocarriers composed of polyethylene glycol- and polyvinyl alcohol-coated vesicles encapsulating active molecules in place of conventional chemotherapy drugs can reduce many of the chemotherapy-associated challenges because of the increased drug concentration at the diseased area in the body. The present study investigated the structure and magnetic properties of iron oxide nanoparticles in the presence of polyvinyl alcohol and polyethylene glycol as the basic surface coating agents. We used superparamagnetic iron oxide nanoparticles (FNPs) as the core and studied their effectiveness when two polymers, namely polyvinyl alcohol (PVA) and polyethylene glycol (PEG), were used as the coating agents together with magnesium-aluminum-layered double hydroxide (MLDH) as the nanocarrier. In addition, the anticancer drug sorafenib (SO), was loaded on MLDH and coated onto the surface of the nanoparticles, to best exploit this nano-drug delivery system for biomedical applications. Samples were prepared by the co-precipitation method, and the resulting formation of the nanoparticles was confirmed by X-ray, FTIR, TEM, SEM, DLS, HPLC, UV-Vis, TGA and VSM. The X-ray diffraction results indicated that all the as-synthesized samples contained highly crystalline and pure Fe3O4. Transmission electron microscopy analysis showed that the shape of FPEGSO-MLDH nanoparticles was generally spherical, with a mean diameter of 17 nm, compared to 19 nm for FPVASO-MLDH. Fourier transform infrared spectroscopy confirmed the presence of nanocarriers with polymer-coating on the surface of iron oxide nanoparticles and the existence of loaded active drug consisting of sorafenib. Thermogravimetric analyses demonstrated the thermal stability of the nanoparticles, which displayed enhanced anticancer effect after coating. Vibrating sample magnetometer (VSM) curves of both produced samples showed superparamagnetic behavior with the high saturation magnetization of 57 emu/g for FPEGSO-MLDH and 49 emu/g for FPVASO-MLDH. The scanning electron microscopy (SEM) images showed a narrow size distribution of both final samples. The SO drug loading and the release behavior from FPEGSO-MLDH and FPVASO-MLDH were assessed by ultraviolet-visible spectroscopy. This evaluation showed around 85% drug release within 72 h, while 74% of sorafenib was released in phosphate buffer solution at pH 4.8. The release profiles of sorafenib from the two designed samples were found to be sustained according to pseudo-second-order kinetics. The cytotoxicity studies confirmed the anti-cancer activity of the coated nanoparticles loaded with SO against liver cancer cells, HepG2. Conversely, the drug delivery system was less toxic than the pure drug towards fibroblast-type 3T3 cells.
    Matched MeSH terms: Liver/pathology
  2. Alfarisi HAH, Ibrahim MB, Mohamed ZBH, Azahari N, Hamdan AHB, Che Mohamad CA
    ScientificWorldJournal, 2020;2020:4503253.
    PMID: 33132768 DOI: 10.1155/2020/4503253
    Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disorder worldwide with no curative therapy. The aim of this study was to investigate the hepatoprotective effects of a novel Trihoney against biochemical and histological manifestations of NAFLD in hypercholesterolemic rabbits. Methodology. Forty-eight male New Zealand white (NZW) rabbits were grouped into normal diet (C), normal diet with 0.6 g/kg/day of Trihoney (C + H), 1% cholesterol diet (HCD), 1% cholesterol diet with 0.3 g/kg/day of Trihoney (HCD + H1), 1% cholesterol diet with 0.6 g/kg/day of Trihoney (HCD + H2), and 1% cholesterol diet with 2 mg/kg/day of atorvastatin (HCD + At.). Animals were sacrificed after 12 weeks of treatment. Serum lipids and liver function test (LFT) were measured prior to and at the endpoint of the experiment for total cholesterol (TC), low-density lipoprotein (LDL-c), alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT), and total bilirubin (T. Bil.). Liver was processed for histopathology study. Liver homogenate was analysed for oxidative stress parameters: superoxide dismutase (SOD), glutathione peroxidase (GPx), and malondialdehyde (MDA). Results. Lipid analysis approved the induction of hypercholesterolemia. A significant elevation (p < 0.01) of serum AST and ALT levels showed by the HCD group was compared to C and C + H groups. Trihoney exhibited a significant reduction (p < 0.001) of AST and ALT compared to the HCD group. Likewise, AST and ALT reduced significantly in the HCD + At. group (p < 0.001). Trihoney supplementation induced significant (p < 0.05) enhancement of SOD and GPx activities. Atorvastatin treatment was associated with significant (p < 0.05) reduction of SOD and GPx activities in the liver. Trihoney and atorvastatin showed marked (p < 0.001) reduction of hepatic lipid peroxidation. Trihoney showed histological protection against progression of NAFLD to nonalcoholic steatohepatitis (NASH). Atorvastatin exhibited no beneficial impact on hepatic architecture. Conclusion. Trihoney was able to maintain normal liver function and showed hepatoprotection against progression of NAFLD to NASH probably through hypocholesterolaemic and antioxidant functions.
    Matched MeSH terms: Liver/pathology
  3. Rahman MA, Uddin MN, Babteen NA, Alnajeebi AM, Zakaria ZA, Aboelenin SM
    Biomed Res Int, 2021;2021:6978450.
    PMID: 34725640 DOI: 10.1155/2021/6978450
    BACKGROUND: Hatikana is a traditional medicinal plant used to treat inflammation, urolithiasis, goiter, cancer, wounds and sores, gastrointestinal, tumor, tetanus, arthritis, hepatic damage, neurodegeneration, and other ailments. The goal of this study is to investigate the antidiabetic properties of Hatikana extract (HKEx) and to construct the effects of its natural constituents on the genes and biochemical indices that are connected with them.

    METHODS: HKEx was evaluated using GC-MS and undertaken for a three-week intervention in fructose-fed STZ-induced Wistar albino rats at the doses of HKEx50, HKEx100, and HKEx200 mg/kg bw. Following intervention, blood serum was examined for biochemical markers, and liver tissue was investigated for the mRNA expression of catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD1) by RTPCR analysis. Most abundant compounds (oleanolic acid, 7α, 28-olean diol, and stigmasterol) from GC-MS were chosen for the network pharmacological assay to verify function-specific gene-compound interactions using STITCH, STRING, GSEA, and Cytoscape plugin cytoHubba.

    RESULTS: In vivo results showed a significant (P < 0.05) decrease of blood sugar, aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatinine kinase (CK-MB), and lactate dehydrogenase (LDH) and increase of liver glycogen, glucose load, and serum insulin. Out of three antioxidative genes, catalase (CAT) and superoxide dismutase (SOD1) were found to be few fold increased. Oleanolic acid and stigmasterol were noticed to strongly interact with 27 target proteins. Oleanolic acid interacted with the proteins AKR1B10, CASP3, CASP8, CYP1A2, CYP1A2, HMGB1, NAMPT, NFE2L2, NQO1, PPARA, PTGIR, TOP1, TOP2A, UGT2B10, and UGT2B11 and stigmasterol with ABCA1, ABCG5, ABCG8, CTSE, HMGCR, IL10, CXCL8, NR1H2, NR1H3, SLCO1B1, SREBF2, and TNF. Protein-protein interaction (PPI) analysis revealed the involvement of 25 target proteins out of twenty seven. Cytoscape plugin cytoHubba identified TNF, CXCL8, CASP3, PPARA, SREBF2, and IL10 as top hub genes. Pathway analysis identified 31 KEGG metabolic, signaling, and immunogenic pathways associated with diabetes. Notable degree of PPI enrichment showed that SOD1 and CAT are responsible for controlling signaling networks and enriched pathways.

    CONCLUSION: The findings show that antioxidative genes have regulatory potential, allowing the HKEx to be employed as a possible antidiabetic source pending further validation.

    Matched MeSH terms: Liver/pathology
  4. Goon DE, Ab-Rahim S, Mohd Sakri AH, Mazlan M, Tan JK, Abdul Aziz M, et al.
    Sci Rep, 2021 Oct 25;11(1):21001.
    PMID: 34697380 DOI: 10.1038/s41598-021-00454-9
    Excessive high fat dietary intake promotes risk of developing non-alcoholic fatty liver disease (NAFLD) and predisposed with oxidative stress. Palm based tocotrienol-rich fraction (TRF) has been reported able to ameliorate oxidative stress but exhibited poor bioavailability. Thus, we investigated whether an enhanced formulation of TRF in combination with palm kernel oil (medium-chain triglycerides) (ETRF) could ameliorate the effect of high-fat diet (HFD) on leptin-deficient male mice. All the animals were divided into HFD only (HFD group), HFD supplemented with ETRF (ETRF group) and HFD supplemented with TRF (TRF group) and HFD supplemented with PKO (PKO group). After 6 weeks, sera were collected for untargeted metabolite profiling using UHPLC-Orbitrap MS. Univariate analysis unveiled alternation in metabolites for bile acids, amino acids, fatty acids, sphingolipids, and alkaloids. Bile acids, lysine, arachidonic acid, and sphingolipids were downregulated while xanthine and hypoxanthine were upregulated in TRF and ETRF group. The regulation of these metabolites suggests that ETRF may promote better fatty acid oxidation, reduce oxidative stress and pro-inflammatory metabolites and acts as anti-inflammatory in fatty liver compared to TRF. Metabolites regulated by ETRF also provide insight of its role in fatty liver. However, further investigation is warranted to identify the mechanisms involved.
    Matched MeSH terms: Liver/pathology
  5. Shah MD, Gnanaraj C, Haque AT, Iqbal M
    Pharm Biol, 2015 Jan;53(1):31-9.
    PMID: 25243876 DOI: 10.3109/13880209.2014.909502
    Nephrolepis biserrata L. (Nephrolepidaceae) has been used in folk medicine for protection against different diseases.
    Matched MeSH terms: Liver/pathology
  6. Tan JR, Chakravarthi S, Judson JP, Haleagrahara N, Segarra I
    Naunyn Schmiedebergs Arch Pharmacol, 2013 Jul;386(7):619-33.
    PMID: 23552887 DOI: 10.1007/s00210-013-0861-4
    Sunitinib is a tyrosine kinase inhibitor for GIST and advanced renal cell carcinoma. Diclofenac is used in cancer pain management. Coadministration may mediate P450 toxicity. We evaluate their interaction, assessing biomarkers ALT, AST, BUN, creatinine, and histopathological changes in the liver, kidney, heart, brain, and spleen. ICR mice (male, n = 6 per group/dose) were administered saline (group A) or 30 mg/kg diclofenac ip (group B), or sunitinib po at 25, 50, 80, 100, 140 mg/kg (group C) or combination of diclofenac (30 mg/kg, ip) and sunitinib (25, 50, 80, 100, 140 mg/kg po). Diclofenac was administered 15 min before sunitinib, mice were euthanized 4 h post-sunitinib dose, and biomarkers and tissue histopathology were assessed. AST was 92.2 ± 8.0 U/L in group A and 159.7 ± 14.6 U/L in group B (p < 0.05); in group C, it the range was 105.1-152.6 U/L, and in group D, it was 156.0-209.5 U/L (p < 0.05). ALT was 48.9 ± 1.6 U/L (group A), 95.1 ± 4.5 U/L (p < 0.05) in group B, and 50.5-77.5 U/L in group C and 82.3-115.6 U/L after coadministration (p < 0.05). Renal function biomarker BUN was 16.3 ± 0.6 mg/dl (group A) and increased to 29.9 ± 2.6 mg/dl in group B (p < 0.05) and it the range was 19.1-33.3 mg/dl (p < 0.05) and 26.9-40.8 mg/dl in groups C and D, respectively. Creatinine was 5.9 pmol/ml in group A; 6.2 pmol/ml in group B (p < 0.01), and the range was 6.0-6.2 and 6.2-6.4 pmol/ml in groups C and D, respectively (p < 0.05 for D). Histopathological assessment (vascular and inflammation damages) showed toxicity in group B (p < 0.05) and mild toxicity in group C. Damage was significantly lesser in group D than group B (p < 0.05). Spleen only showed toxicity after coadministration. These results suggest vascular and inflammation protective effects of sunitinib, not shown after biomarker analysis.
    Matched MeSH terms: Liver/pathology
  7. Sharifudin SA, Fakurazi S, Hidayat MT, Hairuszah I, Moklas MA, Arulselvan P
    Pharm Biol, 2013 Mar;51(3):279-88.
    PMID: 23043505 DOI: 10.3109/13880209.2012.720993
    Moringa oleifera Lam. (Moringaceae) is a rich source of essential minerals and antioxidants; it has been used in human and animal nutrition. The leaves and flowers are being used by the population with great dietary importance.
    Matched MeSH terms: Liver/pathology
  8. Ibrahim IA, Qader SW, Abdulla MA, Nimir AR, Abdelwahab SI, Al-Bayaty FH
    Molecules, 2012;17(3):2796-811.
    PMID: 22395408 DOI: 10.3390/molecules17032796
    Current anti-gastric ulcer agents have side effects, despite the progression and expansion of advances in treatment. This study aimed to investigate the gastroprotective mechanisms of Pithecellobium jiringa ethanol extract against ethanol-induced gastric mucosal ulcers in rats. For this purpose, Sprague Dawley rats were randomly divided into five groups: Group 1 (normal control) rats were orally administered with vehicle (carboxymethyl cellulose), Group 2 (ulcer control) rats were also orally administered with vehicle. Group 3 (positive control) rats were orally administered with 20 mg/kg omeprazole, Groups 4 and 5 (experimental groups) received ethanol extract of Pithecellobium jiringa ethanol extract at a concentration of 250 and 500 mg/kg, respectively. Sixty minutes later, vehicle was given orally to the normal control group, and absolute ethanol was given orally to the ulcer control, positive control and experimental groups to generate gastric mucosal injury. The rats were sacrificed an hour later. The effect of oral administration of plant extract on ethanol-induced gastric mucosal injury was studied grossly and histology. The level of lipid peroxidation (malondialdehyde-MDA), superoxide dismutase (SOD) and gastric wall mucus were measured from gastric mucosal homogenate. The ulcer control group exhibited severe gastric mucosal injury, and this finding was also confirmed by histology of gastric mucosa which showed severe damage to the gastric mucosa with edema and leucocyte infiltration of the submucosal layer. Pre-treatment with plant extract significantly reduced the formation of ethanol-induced gastric lesions, and gastric wall mucus was significantly preserved. The study also indicated a significant increase in SOD activity in gastric mucosal homogenate, whereas a significant decrease in MDA was observed. Acute toxicity tests did not show any signs of toxicity and mortality up to 5 g/kg. The ulcer protective effect of this plant may possibly be due to its preservation of gastric wall mucus along with increased SOD activity and reduction of oxidative stress (MDA). The extract is non-toxic, even at relatively high concentrations.
    Matched MeSH terms: Liver/pathology
  9. Fakurazi S, Sharifudin SA, Arulselvan P
    Molecules, 2012 Jul 10;17(7):8334-50.
    PMID: 22781444 DOI: 10.3390/molecules17078334
    The aim of the study was to investigate the in vitro antioxidant properties Moringa oleifera Lam. (MO) extracts and its curative role in acetaminophen (APAP)-induced toxic liver injury in rats caused by oxidative damage. The total phenolic content and antioxidant properties of hydroethanolic extracts of different MO edible parts were investigated by employing an established in vitro biological assay. In the antihepatotoxic study, either flowers or leaves extract (200 mg/kg or 400 mg/kg, i.p) were administered an hour after APAP administration, respectively. N-Acetylcysteine was used as the positive control against APAP-induced hepatotoxicity. The levels of liver markers such as alanine aminotransferase (ALT) and the levels of oxidative damage markers including malondialdehyde (MDA), 4-hydroxynonenal (4-HNE) protein adduct, reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) were analysed and compared between experimental groups. Among MO edible parts the flower extracts contain the highest total phenolic content and antioxidant capacity, followed by leaves extract. The oxidative marker MDA, as well as 4-HNE protein adduct levels were elevated and GSH, SOD and CAT were significantly decreased in groups treated with hepatotoxin. The biochemical liver tissue oxidative markers measured in the rats treated with MO flowers and leaves hydroethanolic extracts showed a significant (p < 0.05) reduction in the severity of the liver damage. The results of this study strongly indicate the therapeutic properties of MO hydroethanolic extracts against acute liver injury and thereby scientifically support its traditional use.
    Matched MeSH terms: Liver/pathology*
  10. Nithianantham K, Shyamala M, Chen Y, Latha LY, Jothy SL, Sasidharan S
    Molecules, 2011 Dec 06;16(12):10134-45.
    PMID: 22146374 DOI: 10.3390/molecules161210134
    BACKGROUND AND AIM: Clitoria ternatea, a medicinal herb native to tropical equatorial Asia, is commonly used in folk medicine to treat various diseases. The aim of the present study is to evaluate the hepatoprotective and antioxidant activity of C. ternatea against experimentally induced liver injury.

    METHODS: The antioxidant property of methanolic extract (ME) of C. ternatea leaf was investigated by employing an established in vitro antioxidant assay. The hepatoprotective effect against paracetamol-induced liver toxicity in mice of ME of C. ternatea leaf was also studied. Activity was measured by monitoring the levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and billirubin along with histopathological analysis.

    RESULTS: The amount of total phenolics and flavonoids were estimated to be 358.99 ± 6.21 mg/g gallic acid equivalent and 123.75 ± 2.84 mg/g catechin equivalent, respectively. The antioxidant activity of C. ternatea leaf extract was 67.85% at a concentration of 1 mg/mL and was also concentration dependant, with an IC(50) value of 420.00 µg/mL. The results of the paracetamol-induced liver toxicity experiments showed that mice treated with the ME of C. ternatea leaf (200 mg/kg) showed a significant decrease in ALT, AST, and bilirubin levels, which were all elevated in the paracetamol group (p < 0.01). C. ternatea leaf extract therapy also protective effects against histopathological alterations. Histological studies supported the biochemical findings and a maximum improvement in the histoarchitecture was seen.

    CONCLUSIONS: The current study confirmed the hepatoprotective effect of C. ternatea leaf extract against the model hepatotoxicant paracetamol. The hepatoprotective action is likely related to its potent antioxidative activity.

    Matched MeSH terms: Liver/pathology
  11. Somchit N, Chung JH, Yaacob A, Ahmad Z, Zakaria ZA, Kadir AA
    Drug Chem Toxicol, 2012 Jul;35(3):304-9.
    PMID: 22288423 DOI: 10.3109/01480545.2011.614619
    Voriconazole is a new, potent broad-spectrum triazole systemic antifungal drug, a second-generation azole antifungal that is increasing in popularity, especially for the treatment of invasive aspergillosis and fluconazole-resistant invasive Candida infections. However, it is also known to induce hepatotoxicity clinically. The aim of this study was to investigate the hepatotoxicity and nephrotoxicity potential of voriconazole in vivo in rats. Forty rats were treated intraperitoneally with voriconazole as single (0, 10, l00, and 200 mg/kg) or repeated (0, 10, 50, and l00 mg/kg per day for 14 days) doses. Venous blood was collected for the repeated-dose group on days 1 and 14. Rats were sacrificed 24 hours after the last dose. Body weight, liver weight, and kidney weight of rats were recorded. Livers and kidneys samples were taken for histological and transmission electron microscopy (TEM) analysis. Results revealed that voriconazole had no effects on serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphotase, gamma glutamyl transpeptidase, blood urea nitrogen, and creatinine for both the single- and repeated-dose groups. However, histologically, in the repeated 50- and 100-mg/kg voriconazole-treated rats, mild focal inflammation was observed. Under TEM, only small changes in the 100 mg/kg/day group were revealed. These results collectively demonstrated that voriconazole did not induce significant hepatotoxicity and nephrotoxicity, even at very high doses.
    Matched MeSH terms: Liver/pathology
  12. Shukri R, Mohamed S, Mustapha NM, Hamid AA
    J Sci Food Agric, 2011 Nov;91(14):2697-706.
    PMID: 21744354 DOI: 10.1002/jsfa.4516
    Jering (Archidendron jiringa) is eaten in the tropics and traditionally extolled for treating diabetes, high blood pressure and eliminating bladder stones. Jering contains an unusual amino acid-djenkolic acid (S,S'-methylenebiscysteine)-which may form sharp crystals in the urinary tract, causing pain and haematuria. This study evaluates the beneficial and toxic effects of dietary jering on tissues and organs in normal and diabetic rats.
    Matched MeSH terms: Liver/pathology
  13. Lau GL, Sieo CC, Tan WS, Hair-Bejo M, Jalila A, Ho YW
    Poult Sci, 2010 Dec;89(12):2589-96.
    PMID: 21076096 DOI: 10.3382/ps.2010-00904
    The efficacy of bacteriophage EC1, a lytic bacteriophage, against Escherichia coli O78:K80, which causes colibacillosis in poultry, was determined in the present study. A total of 480 one-day-old birds were randomly assigned to 4 treatments groups, each with 4 pens of 30 birds. Birds from the control groups (groups I and II) received PBS (pH 7.4) or 10(10) pfu of bacteriophage EC1, respectively. Group III consisted of birds challenged with 10(8) cfu of E. coli O78:K80 and treated with 10(10) pfu of bacteriophage EC1 at 2 h postinfection, whereas birds from group IV were challenged with 10(8) cfu of E. coli O78:K80 only. All the materials were introduced into the birds by intratracheal inoculation. Based on the results of the present study, the infection was found to be less severe in the treated E. coli-challenged group. Mean total viable cell counts of E. coli identified on eosin methylene blue agar (designated EMB + E. coli) in the lungs were significantly lower in treated, E. coli-challenged birds than in untreated, E. coli-challenged birds on d 1 and 2 postinfection. The EMB + E. coli isolation frequency was also lower in treated birds; no E. coli was detectable in blood samples on any sampling day, and E. coli were isolated only in the liver, heart, and spleen of treated chickens at a ratio of 2/6, 1/6, and 3/6, respectively, at d 1 postinfection. The BW of birds from the E. coli-challenged group treated with bacteriophage EC1 were not significantly different from those of birds from both control groups but were 15.4% higher than those of the untreated, E. coli-challenged group on d 21 postinfection. The total mortality rate of birds during the 3-wk experimental period decreased from 83.3% in the untreated, E. coli-challenged birds (group IV) to 13.3% in birds treated with bacteriophage EC1 (group III). These results suggest that bacteriophage EC1 is effective in vivo and could be used to treat colibacillosis in chickens.
    Matched MeSH terms: Liver/pathology
  14. Chin CY, Monack DM, Nathan S
    BMC Genomics, 2010;11:672.
    PMID: 21110886 DOI: 10.1186/1471-2164-11-672
    At present, very little is known about how Burkholderia pseudomallei (B. pseudomallei) interacts with its host to elicit melioidosis symptoms. We established a murine acute-phase melioidosis model and used DNA microarray technology to investigate the global host/pathogen interaction. We compared the transcriptome of infected liver and spleen with uninfected tissues over an infection period of 42 hr to identify genes whose expression is altered in response to an acute infection.
    Matched MeSH terms: Liver/pathology
  15. Alwahaibi NY, Budin SB, Mohamed J, Alhamdani A
    J Gastroenterol Hepatol, 2010 Apr;25(4):786-91.
    PMID: 20492335 DOI: 10.1111/j.1440-1746.2009.06160.x
    Selenium's molecular mechanism for cancer chemoprevention remains unknown. We aimed to study the gene expression of nuclear factor-kappaB (NF-kappaB), tumor growth factor-alpha (TGF-alpha) and cyclin D1 and the effects of sodium selenite using preventive and therapeutic approaches in chemically-induced hepatocarcinogenesis in rats.
    Matched MeSH terms: Liver/pathology
  16. Lim AY, Segarra I, Chakravarthi S, Akram S, Judson JP
    BMC Pharmacol., 2010;10:14.
    PMID: 20950441 DOI: 10.1186/1471-2210-10-14
    BACKGROUND: Sunitinib, a tyrosine kinase inhibitor to treat GIST and mRCC may interact with paracetamol as both undergo P450 mediated biotransformation and P-glycoprotein transport. This study evaluates the effects of sunitinib-paracetamol coadministration on liver and renal function biomarkers and liver, kidney, brain, heart and spleen histopathology. ICR male mice (n = 6 per group/dose) were administered saline (group-A) or paracetamol 500 mg/kg IP (group-B), or sunitinib at 25, 50, 80, 100, 140 mg/kg PO (group-C) or coadministered sunitinib at 25, 50, 80, 100, 140 mg/kg PO and paracetamol IP at fixed dose 500 mg/kg (group-D). Paracetamol was administered 15 min before sunitinib. Mice were sacrificed 4 h post sunitinib administration.
    RESULTS: Group-A serum ALT and AST levels were 14.29 ± 2.31 U/L and 160.37 ± 24.74 U/L respectively and increased to 249.6 ± 222.7 U/L and 377.1 ± 173.6 U/L respectively in group-B; group-C ALT and AST ranged 36.75-75.02 U/L and 204.4-290.3 U/L respectively. After paracetamol coadministration with low sunitinib doses (group-D), ALT and AST concentrations ranged 182.79-221.03 U/L and 259.7-264.4 U/L respectively, lower than group-B. Paracetamol coadministration with high sunitinib doses showed higher ALT and AST values (range 269.6-349.2 U/L and 430.2-540.3 U/L respectively), p < 0.05. Hepatic histopathology showed vascular congestion in group-B; mild congestion in group-C (but lesser than in group-B and D). In group-D, at low doses of sunitinib, lesser damage than in group-B occurred but larger changes including congestion were observed at high sunitinib doses. BUN levels were higher (p < 0.05) for group-B (33.81 ± 5.68 mg/dL) and group-D (range 35.01 ± 6.95 U/L to 52.85 ± 12.53 U/L) compared to group-A (15.60 ± 2.17 mg/dL) and group-C (range 17.50 ± 1.25 U/L to 26.68 ± 6.05 U/L). Creatinine remained unchanged. Renal congestion and necrosis was lower in group-C than group-B but was higher in group-D (p > 0.05). Mild cardiotoxicity occurred in groups B, C and D. Brain vascular congestion occurred at high doses of sunitinib administered alone or with paracetamol. Hepatic and renal biomarkers correlated with histopathology signs.
    CONCLUSIONS: Paracetamol and sunitinib coadministration may lead to dose dependent outcomes exhibiting mild hepatoprotective effect or increased hepatotoxicity. Sunitinib at high doses show renal, cardiac and brain toxicity. Liver and renal function monitoring is recommended.
    Matched MeSH terms: Liver/pathology
  17. Somchit N, Norshahida AR, Hasiah AH, Zuraini A, Sulaiman MR, Noordin MM
    Hum Exp Toxicol, 2004 Nov;23(11):519-25.
    PMID: 15625777
    Itraconazole and fluconazole are oral antifungal drugs, which have a wide spectrum antifungal activity and better efficacy than the older drugs. However, both drugs have been associated with hepatotoxicity in susceptible patients. The mechanism of antifungal drug-induced hepatotoxicity is largely unknown. Therefore, the aim of this present study was to investigate and compare the hepatotoxicity induced by these drugs in vivo. Rats were treated intraperitoneally with itraconazole or fluconazole either single (0, 10, 100 and 200 mg/kg) or subchronic (0, 10, 50 and 100 mg/kg per day for 14 days) doses. Plasma and liver samples were taken at the end of the study. A statistically significant and dose dependent increase of plasma alanine aminotransferase (ALT) and alkaline phosphatase (ALP) activities were detected in the subchronic itraconazole-treated group. In addition, dose-dependent hepatocellular necrosis, degeneration of periacinar and mizonal hepatocytes, bile duct hyperplasia and biliary cirrhosis and giant cell granuloma were observed histologically in the same group. Interestingly, fluconazole treated rats had no significant increase in transaminases for both single and subchronic groups. In the subchronic fluconazole treated rats, only mild degenerative changes of centrilobular hepatocytes were observed. These results demonstrated that itraconazole was a more potent hepatotoxicant than fluconazole in vivo in rats.
    Matched MeSH terms: Liver/pathology*
  18. Vattam KK, Raghavendran H, Murali MR, Savatey H, Kamarul T
    Hum Exp Toxicol, 2016 Aug;35(8):893-901.
    PMID: 26429928 DOI: 10.1177/0960327115608246
    In the present study, thirty six male Sprague Dawley rats were randomly divided into six groups and were injected with varying doses of alloxan (Ax) and nicotinamide (NA). The serum levels of glucose, insulin, and adiponectin were measured weekly up to 4 weeks.
    Matched MeSH terms: Liver/pathology
  19. Tan BL, Norhaizan ME, Hairuszah I, Hazilawati H, Roselina K
    Oxid Med Cell Longev, 2015;2015:539798.
    PMID: 26257841 DOI: 10.1155/2015/539798
    Brewers' rice, which is known locally as temukut, is a mixture of broken rice, rice bran, and rice germ. Our present study was designed to identify the effect of brewers' rice on the attenuation of liver and kidney damage induced by azoxymethane (AOM). Alanine transaminase (ALT), alkaline phosphatase (ALP), aspartate transaminase (AST), creatinine, and urea were evaluated to understand potential hepatoprotective effects and the ability of brewers' rice to attenuate kidney pathology induced by AOM treatment. Liver and kidney tissues were evaluated by hematoxylin and eosin (H&E) staining. Overall analyses revealed that brewers' rice improved the levels of serum markers in a manner associated with better histopathological outcomes, which indicated that brewers' rice could enhance recovery from hepatocyte and kidney damage. Taken together, these results suggest that brewers' rice could be used in future applications to combat liver and kidney disease.
    Matched MeSH terms: Liver/pathology
  20. Fleming AF
    Clin Haematol, 1982 Jun;11(2):365-88.
    PMID: 7042157
    Matched MeSH terms: Liver/pathology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links