METHODOLOGY/PRINCIPAL FINDINGS: A persistent infection was generated using a small-colony variant (SCV) and a wild-type (WT) B. pseudomallei in BALB/c mice via intranasal administration. Infected mice that survived for >60 days were sacrificed. Lungs, livers, spleens, and peripheral blood mononuclear cells were harvested for experimental investigations. Histopathological changes of organs were observed in the infected mice, suggestive of successful establishment of persistent infections. Moreover, natural killer (NK) cell frequency was increased in SCV- and WT-infected mice. We observed programmed death-1 (PD-1) upregulation on B cells of SCV- and WT-infected mice. Interestingly, PD-1 upregulation was only observed on NK cells and monocytes of SCV-infected mice. In contrast, cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) downregulation was seen on NK cells of WT-infected mice, and on monocytes of SCV- and WT-infected mice.
CONCLUSIONS/SIGNIFICANCE: The SCV and the WT of B. pseudomallei distinctly upregulated PD-1 expression on B cells, NK cells, and monocytes to dampen host immunity, which likely facilitates bacterial persistence. PD-1/PD-L1 pathway appears to play an important role in the persistence of B. pseudomallei in the host.
METHODS: Organic acid and antioxidant profiles of Xeniji fermented foods were evaluated. Moreover, oral acute (5 g/kg body weight) and subchronic toxicity (0.1, 1 and 2 g/kg body weight) of Xeniji were tested on mice for 14 days and 30 days, respectively. Mortality, changes of body weight, organ weight and serum liver enzyme level were measured. Liver and spleen of mice from subchronic toxicity study were subjected to antioxidant and immunomodulation quantification.
RESULTS: Xeniji was rich in β-carotene, phytonadione, polyphenol, citric acid and essential amino acids. No mortality and significant changes of body weight and serum liver enzyme level were recorded for both oral acute and subchronic toxicity studies. Antioxidant level in the liver and immunity of Xeniji treated mice were significantly upregulated in dosage dependent manner.
CONCLUSION: Xeniji is a fermented functional food that rich in nutrients that enhanced antioxidant and immunity of mice. Xeniji that rich in β-carotene, phytonadione, polyphenol, citric acid and essential amino acids promote antioxidant and immunity in mice without causing toxic effect.
METHOD: The cell viability, sphere-forming and xenografts assay were used to evaluate the ability of ASIV to reverse taxol-resistance. Immunohistochemistry, cytokine application, small-interfering RNA, small molecule inhibitors, and RNA-seq approaches were applied to characterize the molecular mechanism of inhibition of epiregulin (EREG) and downstream signaling by ASIV to reverse taxol-resistance.
RESULTS: ASIV reversed taxol resistance through suppression of the stemness-associated genes of spheres in NSCLC. The mechanism exploration revealed that ASIV promoted the K48-linked polyubiquitination of EREG along with degradation. Moreover, EREG could be triggered by chemo-drug treatment. Consequently, EREG bound to the ErbB receptor and activated the ERK signal to regulate the expression of the stemness-associated genes. Inhibition of EREG/ErbB/ERK could reverse the taxol-resistance by inhibiting the stemness-associated genes. Finally, it was observed that TGFβ and Hedgehog signaling were downstream of EREG/ErbB/ERK, which could be targeted using inhibitors to reverse the taxol resistance of NSCLC.
CONCLUSIONS: These findings revealed that inhibition of EREG by ASIV reversed taxol-resistance through suppression of the stemness of NSCLC via EREG/ErbB/ERK-TGFβ, Hedgehog axis.