This study examined whether pre-treating palm kernel expeller (PKE) with exogenous enzyme would degrade its fiber content; thus improving its metabolizable energy (ME), growth performance, villus height and digesta viscosity in broiler chickens fed diets containing PKE. Our results showed that enzyme treatment decreased (p<0.05) hemicellulose and cellulose contents of PKE by 26.26 and 32.62%, respectively; and improved true ME (TME) and its nitrogen corrected value (TMEn) by 38% and 33%, respectively, compared to the raw sample. Average daily gain (ADG), feed intake and feed conversion ratio (FCR) of chickens fed on different dietary treatments in the grower period were not significantly different. Although there was no difference in feed intake (p>0.05) among treatment groups in the finisher period, ADG of chickens in the control (PKE-free diet) was higher (p<0.05) than in all treatment groups fed either 20 or 30% PKE, irrespective of with or without enzyme treatment. However, ADG of birds fed with 20% PKE was higher than those fed with 30% PKE. The FCR of chickens in the control was the lowest (2.20) but not significantly different from those fed 20% PKE diets while birds in the 30% PKE diets recorded higher (p>0.05) FCR. The intestinal villus height and crypt depth (duodenum, jejunum and ileum) were not different (p>0.05) among treatments except for duodenal crypt depth. The villus height and crypt depth of birds in enzyme treated PKE diets were higher (p<0.05) than those in the raw PKE groups. Viscosity of the intestinal digesta was not different (p>0.05) among treatments. Results of this study suggest that exogenous enzyme is effective in hydrolyzing the fiber (hemicellulose and cellulose) component and improved the ME values of PKE, however, the above positive effects were not reflected in the growth performance in broiler chickens fed the enzyme treated PKE compared to those received raw PKE. The results suggest that PKE can be included up to 5% in the grower diet and 20% in the finisher diet without any significant negative effect on FCR in broiler chickens.
This study analyzes and compares the results of leachate composition at the semi-aerobic Pulau Burung Landfill Site (PBLS) (unaerated pond and intermittently aerated pond) and the anaerobic Kulim Sanitary Landfill in the northern region of Malaysia. The raw samples were collected and analyzed for twenty parameters. The average values of the parameters such as phenols (1.2, 6.7, and 2.6 mg/L), total nitrogen (448, 1200, and 300 mg/L N-TN), ammonia-N (542, 1568, and 538 mg/L NH(3)-N), nitrite (91, 49, and 52 mg/L NO(2)(-)-N), total phosphorus (21, 17, and 19 mg/L), BOD(5) (83, 243, and 326 mg/L), COD (935, 2345, and 1892 mg/L), BOD(5)/COD (0.096,0.1124,0.205%), pH (8.20, 8.28, and 7.76), turbidity (1546, 180, and 1936 Formazin attenuation units (FAU)), and color (3334, 3347, and 4041 Pt Co) for leachate at the semi-aerobic PBLS (unaerated and intermittently aerated) and the anaerobic Kulim Sanitary Landfill were recorded, respectively. The obtained results were compared with previously published data and data from the Malaysia Environmental Quality Act 1974. The results indicated that Pulau Burung leachate was more stabilized compared with Kulim leachate. Furthermore, the aeration process in PBLS has a considerable effect on reducing the concentration of several pollutants. The studied leachate requires treatment to minimize the pollutants to an acceptable level prior to discharge into water courses.
This study aims to compare the performance of planted and unplanted constructed wetlands with gravel- and raw rice husk-based media for phenol and nitrogen removal. Four laboratory-scale horizontal subsurface-flow constructed wetland units, two of which planted with cattail (Typha latifolia) were operated outdoors. The units were operated at a nominal hydraulic retention time of 7 days and fed with domestic wastewater spiked with phenol concentration at 300 mg/L for 74 days and then at 500 mg/L for 198 days. The results show that planted wetland units performed better than the unplanted ones in the removal and mineralization of phenol. This was explained by the creation of more micro-aerobic zones in the root zone of the wetland plants which allow a faster rate of phenol biodegradation, and the phenol uptake by plants. The better performance of the rice husk-based planted wetland compared to that of the gravel-based planted wetland in phenol removal could be explained by the observation that more rhizomes were established in the rice husk-based wetland unit thus creating more micro-aerobic zones for phenol degradation. The role of rice husk as an adsorbent in phenol removal was considered not of importance.
Two strains ofRhizopus rhizopodiformis that produced lipases in broth culture were isolated. Maximum lipase production (23 U/ml) was obtained after 72 h culture. Both the crude lipases were stable at 50°C for 30 min and at 45°C for 24 h. Maltose was the best carbon source and peptone the best nitrogen source for the production of lipases. Only glycerol and lecithin stimulated lipase production further.
This review investigates the performance and the feasibility of the integration of an algal reactor in recirculating aquaculture systems (RAS). The number of studies related to this topic is limited, despite the apparent benefit of algae that can assimilate part of the inorganic waste in RAS. We identified two major challenges related to algal integration in RAS: first, the practical feasibility for improving nitrogen removal performance by algae in RAS; second, the economic feasibility of integrating an algal reactor in RAS. The main factors that determine high algal nitrogen removal rates are light and hydraulic retention time (HRT). Besides these factors, nitrogen-loading rates and RAS configuration could be important to ensure algal performance in nitrogen removal. Since nitrogen removal rate by algae is determined by HRT, this will affect the size (area or volume) of the algal reactor due to the time required for nutrient uptake by algae and large surface area needed to capture enough light. Constraints related to design, space, light capture, and reactor management could incur additional cost for aquaculture production. However, the increased purification of RAS wastewater could reduce the cost of water discharge in places where this is subject to levees. We believe that an improved understanding of how to manage the algal reactor and technological advancement of culturing algae, such as improved algal reactor design and low-cost artificial light, will increase the practical and economic feasibility of algal integration in RAS, thus improving the potential of mass cultivation of algae in RAS.
The present work deals with the production of paper materials from onion peels (Allium Cepa) fibers
as an alternative potential non-wood fiber. The onion peels were obtained from a local small and
medium food industry. The onion peels were cooked at 120, 150 and 180 minutes. The peels were
grinded and poured in a set of mould and deckle for the formation of a thin sheet of paper. The
physical, mechanical, morphological characteristics and water rise capillary values (KLEMM
Method) were evaluated to determine its suitability for a paper material. The results show that the
increase in cooking time from 120 to 180 minutes resulted in an increase in the tensile index from
32.28N*m/g to 42.13N*m/g and tear index from 9.80mN*m2
/g to 15.62mN*m2
/g. The bonding
strength increased due to higher number of fibers, finer fiber size, and increase in the fiber contact
area and fiber distribution. The high porosity area affects the performance of water rise capillary
values of the paper sheets. The onion peels fiber gave impressive handsheets characteristics when
compared with other sources of non-wood fibers.
Condition Index (CI) was used to estimate the reproductive biology cycle of the hard clam Meretrix lyrata based on dry
body weight and shell weight. High CI value was observed due to the increase in the body weight of the hard clam that
corresponding to the maturity stage and early spawning. The CI value of M. lyrata from Buntal Village, Kuching, Sarawak
showed three highest peaks during the 12-month study on May and October 2013 and March 2014. The lowest CI values
were obtained in September and November 2013 and April 2014. Ammonia nitrogen was the only water parameter that
significantly correlated to the CI values. The CI application is important to estimate the maturity of hard clam gonad
to facilitate conservation activity through the hard clam harvesting out of the gonad maturation and spawning period.
Rising world population is expected to increase the demand for nitrogen fertilizers to improve crop yield and ensure food security. With existing challenges on low nutrient use efficiency (NUE) of urea and its environmental concerns, controlled release fertilizers (CRFs) have become a potential solution by formulating them to synchronize nutrient release according to the requirement of plants. However, the most significant challenge that persists is the "tailing" effect, which reduces the economic benefits in terms of maximum fertilizer utilization. High materials cost is also a significant obstacle restraining the widespread application of CRF in agriculture. The first part of this review covers issues related to the application of conventional fertilizer and CRFs in general. In the subsequent sections, different raw materials utilized to form CRFs, focusing on inorganic and organic materials and synthetic and natural polymers alongside their physical and chemical preparation methods, are compared. Important factors affecting rate of release, mechanism of release and mathematical modelling approaches to predict nutrient release are also discussed. This review aims to provide a better overview of the developments regarding CRFs in the past ten years, and trends are identified and analyzed to provide an insight for future works in the field of agriculture.
Universal access to clean water has been a global ambition over the years. Photocatalytic water disinfection through advanced oxidation processes has been regarded as one of the promising methods for breaking down microbials. The forefront of this research focuses on the application of metal-free photocatalysts for disinfection to prevent secondary pollution. Graphitic carbon nitride (g-C3 N4 ) has achieved instant attention as a metal-free and visible-light-responsive photocatalyst for various energy and environmental applications. However, the photocatalytic efficiency of g-C3 N4 is still affected by its rapid charge recombination and sluggish electron-transfer kinetics. In this contribution, two-dimensionally protonated g-C3 N4 was employed as metal-free photocatalyst for water treatment and demonstrated 100 % of Escherichia coli within 4 h under irradiation with a 23 W light bulb. The introduction of protonation can modulate the surface charge of g-C3 N4 ; this enhances its conductivity and provides a "highway" for the delocalization of electrons. This work highlights the potential of conjugated polymers in antibacterial application.
Air pollution is a widely discussed topic amongst the academic and industrial spheres as it can bring adverse effects to human health and economic loss. As humans spend most of their time at the office and at home, good indoor air quality with enriched oxygen concentration is particularly important. In this study, polysulfone (PSF) hollow fiber membranes fabricated by dry-jet wet phase inversion method were coated by a layer of polydimethylsiloxane (PDMS) or poly(ether block amide) (PEBAX) at different concentrations and used to evaluate their performance in gas separation for oxygen enrichment. The surface-coated membranes were characterized using SEM and EDX to determine the coating layer thickness and surface chemical properties, respectively. Results from the gas permeation study revealed that the PSF membrane coated with PDMS offered higher permeance and selectivity compared to the membrane coated with PEBAX. The best performing PDMS-coated membrane demonstrated oxygen and nitrogen gas permeance of 18.31 and 4.01 GPU, respectively with oxygen/nitrogen selectivity of 4.56. Meanwhile, the PEBAX-coated membrane only showed 12.23 and 3.11 GPU for oxygen and nitrogen gas, respectively with a selectivity of 3.94. It can be concluded the PDMS coating is more promising for PSF hollow fiber membrane compared to the PEBAX coating for the oxygen enrichment process.
Paenibacillus durus strain ATCC 35681T is a Gram-positive diazotroph that displayed capability of fixing nitrogen even in the presence of nitrate or ammonium. However, the nitrogen fixation activity was detected only at day 1 of growth when cultured in liquid nitrogen-enriched medium. The transcripts of all the nifH homologues were present throughout the 9-day study. When grown in nitrogen-depleted medium, nitrogenase activities occurred from day 1 until day 6 and the nifH transcripts were also present during the course of the study albeit at different levels. In both studies, the absence of nitrogen fixation activity regardless of the presence of the nifH transcripts raised the possibility of a post-transcriptional or post-translational regulation of the system. A putative SigA box sequence was found upstream of the transcription start site of nifB1, the first gene in the major nitrogen fixation cluster. The upstream region of nifB2 showed a promoter recognizable by SigE, a sigma factor normally involved in sporulation.
Fertilizers are the most important and complex nutrients for crop plants in particular for grain yield and quality. The composition of the fertilizer as well as the essential elements that influence the growth of the crop need to be clearly identified. Due to that, this study was carried out to investigate the effect of different fertilizer formulation on the leaf mustard (Brassica juncea) growth. High nitrogen, phosphorus and potassium fertilizers were used to investigate their effects on the morphometric size of the leaves, plant height and the leaf area index of the leaf mustard. Results showed that the application of different formulation of fertilizer improves the growth of leaf mustard compared to control. Leaf mustard with the high phosphorus treatment recorded an increase in plant height and the leaf area index (LAI). Lamina length (LL) range is shown between phosphorus and control (1.11 cm), while the range of lamina width (LW), left width (WL) and right width (WR) are between potassium and control about
0.57 cm, 0.28 cm and 0.28 cm, respectively. Overall, there is a significant difference between the leaf mustard leaves in different high element fertilizers compared with all of the variable, F(15,1024) = 29.26, p0.05, no significant difference). The highest mean in LAI was obtained when treated with a high phosphorus fertilizer (0.47 m2). The mean difference of LAI of high phosphorus compared to high potassium, high nitrogen and control is 0.02 m2, 0.08 m2 and 0.12 m2. There is no significant differences between the LAI in different high element fertilizers with F(3,176) = 0.15; p>0.05. Further study should be conducted to determine the effects of different fertilizers on the growth of other vegetables and fruit quality.
Bakteria endofit adalah berpotensi untuk menghasilkan antibiotik dan metabolit sekunder yang lain. Penghasilan metabolit sekunder dapat ditingkatkan melalui pengoptimuman kandungan nutrien seperti sumber nitrogen. Dalam kajian ini kandungan sumber nitrogen iaitu ammonium sulfat, ammonium dihidrogen fosfat, kalium nitrat dan natrum nitrat telah diubahsuai di dalam kaldu International Streptomyces Project 4 (ISP4) untuk pertumbuhan Streptomyces SUK 02. Pengekstrakan dilakukan dengan menggunakan etil asetat dan aktiviti antifungus ditentukan dengan menggunakan teknik serapan agar. Fungus ujian yang digunakan adalah Aspergillus fumigatus dan Fusarium solani. Hasil kajian menunjukkan peratusan berat (w/v) ekstrak kasar maksima didapati daripada kaldu yang mengandungi natrium nitrat (3.30%), diikuti oleh ammonium dihidrogen fosfat (2.24%), ammonium sulfat (1.46%) dan kalium nitrat (1.20%). Aktiviti antifungus dikesan daripada ekstrak bersumberkan nitrogen ammonium sulfat.Peratus perencatan ekstrak tersebut terhadap Aspergillus fumigatus dan Fusarium solani adalah 33.0-35.0% dan 17.4-30.0%, masing-masing. Manakala nilai MIC terhadap Aspergillus fumigatus adalah 1.5 mg/ml. Sebagai kesimpulan, natrium nitrat merupakan sumber nitrogen yang sesuai bagi partumbuhan optimum Streptomyces SUK 02 manakala kehadiran ammonium sulfat boleh meningkatkan aktiviti antifungus.
Surface coverage and some properties soil chemicals were assessed at the Punta Fort William, Greenwich Island during the summer from 1–11 February 2008. Twenty sampling points were established along two strip transects covering a total area of 160 m2. Punta Fort William was basically barren. Rocks, stones and pebbles covered 89.4% of the Punta Fort William. The diversity of vegetation in Punta Fort William was relatively low as compared to other South Shetland Islands. Mosses predominated the area and covered 9.1% of the total surface. Colobantus quitensis was the only vascular plant found at the Punta Fort William. It covered 0.5% of the total surface area. Lichens contributed 0.2% of the surface coverage. Although lichen coverage was low, its frequency of occurrence was among the highest. Total organic carbon (TOC) and total nitrogen (TN) in the study area ranged from 1 g to 39 g C kg–1 and 12 μg to 3892 μg N kg–1, respectively. The level of TOC and TN were comparable to those reported in other maritime locations in Antarctic. Higher levels of TOC and TN were detected in the areas with intensive biological activities. Hydrocarbon concentration was very low in this area and the sources of hydrocarbons were both natural and anthropogenic. The natural hydrocarbons source was mostly biogenic while the petrogenic hydrocarbons input was anthropogenic.
The adsorption of phenol, from aqueous solutions on activated carbon from waste tyres, was studied in a batch system at different initial concentrations (100-500mg/L) at 30°C for 48 hours. The activated carbon was prepared using the two-step physiochemical activation, with potassium hydroxide (KOH) at ratio KOH/char = 5. The carbonization process was done at 800°C for 1 hour with nitrogen flow rate 150ml/min, followed by the activation with the carbon dioxide flow rate 150ml/min at 800°C for 2 hours. The adsorption isotherms were determined by shaking 0.1g of activated carbon with 100ml phenol solutions. The initial and final concentrations of phenol in aqueous solution were analyzed using the UV-Visible Spectrophotometer (Shimadzu, UV-1601) at a wavelength of 270nm. Experimental isotherm data were analyzed using the Langmuir and Freundlich isotherm models.The equilibrium data for phenol adsorption could fit both isotherm models well with the R2 value of 0.9774 and 0.9895, respectively. The maximum adsorption capacity of the adsorbent obtained from the Langmuir model was up to 156.25 mg/g
Sungai Sarawak is the most important river in Sarawak. This study was aimed at assessing water quality in the selected stations from Satok bridge to the downstream, Muara Tebas, located along Sungai Sarawak. Water quality trend analysis was conducted to determine the correlation between the water quality parameters. Trend analysis was carried out using Mann-Kendall Test because data collected was non-parametric. Next, Spearman rank was used in order to determine the correlation between parameters. The results obtained and the observation made in this study reveals that the trend exists only for Chemical Oxygen Value (COD). But there are trends for Biochemical Oxygen Demand, (BOD), Dissolved Oxygen (DO), Total Suspended Solid (TSS), Ammoniacal Nitrogen (NH4N) and Turbidity to decrease or increase with no trends between 2007 and 2011. The correlation between parameters is not very strong because there are many determinants of water quality parameters. The result from this study would provide useful information for water quality management in order to maintain and improve the water quality of Sungai Sarawak.
Controlled humidity environment is of significance in many scientific researches and experiments. In most laboratory-scale atmospheric chambers, an electrical temperature-based control system is used to adjust humidity. Since these chambers are not affordable in every laboratory, other low cost chambers using nitrogen gas or silica gel are used to adjust humidity. In this paper, a mechanism was developed to control the relative humidity in closed lab-scale chambers. Humidification is done by spraying water through a blower fan while de-humidification is by pumping air through silica gel as well as nitrogen gas injection. A Mamdani type fuzzy controller was designed to control the components and relative humidity. The results show the proposed system and controller can adjust and maintain relative humidity from 41% to 100% with maximum overshoot of 1% and the maximum range of error of steady state of 1.2 %.
Substitutional clusters of multiple light element dopants are a promising route to the elusive shallow donor in diamond. To understand the behaviour of co-dopants, this report presents an extensive first principles study of possible clusters of boron and nitrogen. We use periodic hybrid density functional calculations to predict the geometry, stability and electronic excitation energies of a range of clusters containing up to five N and/or B atoms. Excitation energies from hybrid calculations are compared to those from the empirical marker method, and are in good agreement.
When a boron-rich or nitrogen-rich cluster consists of 3 - 5 atoms, the minority dopant element - a nitrogen or boron atom respectively - can be in either a central or peripheral position. We find B-rich clusters are most stable when N sits centrally, whereas N-rich clusters are most stable with B in a peripheral position. In the former case, excitation energies mimic those of the single boron acceptor, while the latter produce deep levels in the band-gap. Implications for probable clusters that would arise in high-pressure high-temperature (HPHT) co-doped diamond and their properties are discussed.
In DNA splicing system, the potential effect of sets of restriction enzymes and
a ligase that allow DNA molecules to be cleaved and re-associated to produce further
molecules is modelled mathematically. This modelling is done in the framework of formal
language theory, in which the nitrogen bases, nucleotides and restriction sites are modelled
as alphabets, strings and rules respectively. The molecules resulting from a splicing system
is depicted as the splicing language. In this research, the splicing language resulting from
DNA splicing systems with one palindromic restriction enzyme for one and two (nonoverlapping)
cutting sites are generalised as regular expressions.
A study was carried out to determine the process parameters and optimization for the hydrolysis of protein precipitate from cockle (Anadara granosa) meat wash water. Precipitation of the protein in the wash water was done using pH manipulation (pH3-8). The precipitate was hydrolyzed using hydrochloric acid (HCl) and optimized for HCl volume, HCl concentration and hydrolysis time using response surface methodology (RSM) based on a central composite rotatable design. Based on the results, hydrolysis of cockle meat wash water precipitate was carried out by precipitation of the wash water at pH4. Optimum condition for the hydrolysis of 2.0 g of cockle meat wash water precipitate was 25 mL of 1 N HCl for 10 h which resulted in nitrogen content (NC) of 0.7% and degree of hydrolysis (DH) of 55%. NC and DH were significantly influenced only by the hydrolysis time.