Displaying publications 141 - 160 of 169 in total

Abstract:
Sort:
  1. Ha ZY, Mathew S, Yeong KY
    Curr Protein Pept Sci, 2020;21(1):99-109.
    PMID: 31702488 DOI: 10.2174/1389203720666191107094949
    Butyrylcholinesterase is a serine hydrolase that catalyzes the hydrolysis of esters in the body. Unlike its sister enzyme acetylcholinesterase, butyrylcholinesterase has a broad substrate scope and lower acetylcholine catalytic efficiency. The difference in tissue distribution and inhibitor sensitivity also points to its involvement external to cholinergic neurotransmission. Initial studies on butyrylcholinesterase showed that the inhibition of the enzyme led to the increment of brain acetylcholine levels. Further gene knockout studies suggested its involvement in the regulation of amyloid-beta, a brain pathogenic protein. Thus, it is an interesting target for neurological disorders such as Alzheimer's disease. The substrate scope of butyrylcholinesterase was recently found to include cocaine, as well as ghrelin, the "hunger hormone". These findings led to the development of recombinant butyrylcholinesterase mutants and viral gene therapy to combat cocaine addiction, along with in-depth studies on the significance of butyrylcholinesterase in obesity. It is observed that the pharmacological impact of butyrylcholinesterase increased in tandem with each reported finding. Not only is the enzyme now considered an important pharmacological target, it is also becoming an important tool to study the biological pathways in various diseases. Here, we review and summarize the biochemical properties of butyrylcholinesterase and its roles, as a cholinergic neurotransmitter, in various diseases, particularly neurodegenerative disorders.
    Matched MeSH terms: Parkinson Disease/drug therapy*; Parkinson Disease/genetics; Parkinson Disease/metabolism; Parkinson Disease/pathology
  2. Rosdinom R, Fazli A, Ruzyanei NJ, Azlin B, Srijit D
    Clin Ter, 2011;162(1):23-9.
    PMID: 21448542
    BACKGROUND AND AIMS: Parkinson disease (PD) is the second most prevalent neurodegenerative disorder after Alzheimer disease. Besides motor presentations, cognitive impairment is among the other likely complications as the illness progresses. This study aimed to determine the prevalence of cognitive impairment in PD and the factors associated with the cognitive impairment.
    MATERIALS AND METHODS: A cross-sectional, descriptive study was conducted on all PD patients at different stages of their illness, in two major tertiary hospitals in Malaysia with their caregivers, over a three month period in 2002. Patients' cognitive functions were tested using the Mini Mental State Examination (MMSE). Important sociodemographic data and relevant clinical information of the patients as well as caregivers' information on income, duration of care-giving, relationship with the patient, and other relevant variables were gathered. Patients' level of functioning was assessed using the Activities of Daily Living (ADL) index. Staging of illness was done based on the Hoehn and Yahr Scale.
    RESULTS: Out of 115 eligible patients, 35% were in the 60-69 age group with 57% in stage 2 of illness, A total of 29% of patients experienced various degrees of cognitive impairment , with almost half (47%) in the stage 3 and 4 exhibiting MMSE scores <24. Factors which were significantly associated with impaired cognitions were race, educational level and stage of illness.
    CONCLUSION: Cognitive impairment was fairly common in PD and the severity of impairment in cognition and physical functioning increased with the advancement of the illness.
    Matched MeSH terms: Parkinson Disease/drug therapy; Parkinson Disease/psychology*
  3. Tan AH, Chong CW, Lim SY, Yap IKS, Teh CSJ, Loke MF, et al.
    Ann Neurol, 2021 03;89(3):546-559.
    PMID: 33274480 DOI: 10.1002/ana.25982
    OBJECTIVE: Gut microbiome alterations in Parkinson disease (PD) have been reported repeatedly, but their functional relevance remains unclear. Fecal metabolomics, which provide a functional readout of microbial activity, have scarcely been investigated. We investigated fecal microbiome and metabolome alterations in PD, and their clinical relevance.

    METHODS: Two hundred subjects (104 patients, 96 controls) underwent extensive clinical phenotyping. Stool samples were analyzed using 16S rRNA gene sequencing. Fecal metabolomics were performed using two platforms, nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography-mass spectrometry.

    RESULTS: Fecal microbiome and metabolome composition in PD was significantly different from controls, with the largest effect size seen in NMR-based metabolome. Microbiome and NMR-based metabolome compositional differences remained significant after comprehensive confounder analyses. Differentially abundant fecal metabolite features and predicted functional changes in PD versus controls included bioactive molecules with putative neuroprotective effects (eg, short chain fatty acids [SCFAs], ubiquinones, and salicylate) and other compounds increasingly implicated in neurodegeneration (eg, ceramides, sphingosine, and trimethylamine N-oxide). In the PD group, cognitive impairment, low body mass index (BMI), frailty, constipation, and low physical activity were associated with fecal metabolome compositional differences. Notably, low SCFAs in PD were significantly associated with poorer cognition and low BMI. Lower butyrate levels correlated with worse postural instability-gait disorder scores.

    INTERPRETATION: Gut microbial function is altered in PD, characterized by differentially abundant metabolic features that provide important biological insights into gut-brain pathophysiology. Their clinical relevance further supports a role for microbial metabolites as potential targets for the development of new biomarkers and therapies in PD. ANN NEUROL 2021;89:546-559.

    Matched MeSH terms: Parkinson Disease/metabolism; Parkinson Disease/microbiology*
  4. Srinivasan V, Pandi-Perumal SR, Maestroni GJ, Esquifino AI, Hardeland R, Cardinali DP
    Neurotox Res, 2005;7(4):293-318.
    PMID: 16179266
    The pineal product melatonin has remarkable antioxidant properties. It scavenges hydroxyl, carbonate and various organic radicals, peroxynitrite and other reactive nitrogen species. Melatonyl radicals formed by scavenging combine with and, thereby, detoxify superoxide anions in processes terminating the radical reaction chains. Melatonin also enhances the antioxidant potential of the cell by stimulating the synthesis of antioxidant enzymes like superoxide dismutase, glutathione peroxidase and glutathione reductase, and by augmenting glutathione levels. The decline in melatonin production in aged individuals has been suggested as one of the primary contributing factors for the development of age-associated neurodegenerative diseases, e.g., Alzheimer's disease. Melatonin has been shown to be effective in arresting neurodegenerative phenomena seen in experimental models of Alzheimer's disease, Parkinsonism and ischemic stroke. Melatonin preserves mitochondrial homeostasis, reduces free radical generation, e.g., by enhancing mitochondrial glutathione levels, and safeguards proton potential and ATP synthesis by stimulating complex I and IV activities. Therapeutic trials with melatonin have been effective in slowing the progression of Alzheimer's disease but not of Parkinson's disease. Melatonin's efficacy in combating free radical damage in the brain suggests that it may be a valuable therapeutic agent in the treatment of cerebral edema after traumatic brain injury.
    Matched MeSH terms: Parkinson Disease/metabolism; Parkinson Disease/pathology
  5. Magalingam KB, Radhakrishnan A, Ramdas P, Haleagrahara N
    J Mol Neurosci, 2015 Mar;55(3):609-17.
    PMID: 25129099 DOI: 10.1007/s12031-014-0400-x
    Quercetin glycosides, rutin and isoquercitrin, are potent antioxidants that have been found to possess neuroprotective effect in diseases like Parkinson's and Alzheimer's disease. In the present study, we have examined the gene expression changes with rutin and isoquercitrin pretreatment on 6-hydroxydopamine (6-OHDA)-treated toxicity in rat pheochromocytoma (PC12) cells. PC12 cells were pretreated with rutin or isoquercitrin and subsequently exposed to 6-OHDA. Rutin-pretreated PC12 attenuated the Park2, Park5, Park7, Casp3, and Casp7 genes which were expressed significantly in the 6-OHDA-treated PC12 cells. Rutin upregulated the TH gene which is important in dopamine biosynthesis, but isoquercitrin pretreatment did not affect the expression of this gene. Both rutin and isoquercitrin pretreatments upregulated the ion transport and antiapoptotic genes (NSF and Opa1). The qPCR array data were further validated by qRT-PCR using four primers, Park5, Park7, Casp3, and TH. This finding suggests that changes in the expression levels of transcripts encoded by genes that participate in ubiquitin pathway and dopamine biosynthesis may be involved in Parkinson's disease.
    Matched MeSH terms: Parkinson Disease/metabolism*
  6. Gopalai AA, Lim SY, Aziz ZA, Lim SK, Tan LP, Chong YB, et al.
    Ann Acad Med Singap, 2013 May;42(5):237-40.
    PMID: 23771111
    INTRODUCTION: The G2385R and R1628P LRRK2 gene variants have been associated with an increased risk of Parkinson's disease (PD) in the Asian population. Recently, a new LRRK2 gene variant, A419V, was reported to be a third risk variant for PD in Asian patients. Our objective was to investigate this finding in our cohort of Asian subjects.

    MATERIALS AND METHODS: Eight hundred and twenty-eight subjects (404 PD patients, and 424 age and gender-matched control subjects without neurological disorders) were recruited. Genotyping was done by Taqman® allelic discrimination assay on an Applied Biosystems 7500 Fast Real-Time PCR machine.

    RESULTS: The heterozygous A419V genotype was found in only 1 patient with PD, compared to 3 in the control group (0.4% vs 1.3%), giving an odds ratio of 0.35 (95% confidence interval (CI), 0.01 to 3.79; P = 0.624).

    CONCLUSION: A419V is not an important LRRK2 risk variant in our Asian cohort of patients with PD. Our data are further supported by a literature review which showed that 4 out of 6 published studies reported a negative association of this variant in PD.

    Matched MeSH terms: Parkinson Disease/genetics*
  7. Choong CJ, Say YH
    Neurotoxicology, 2011 Dec;32(6):857-63.
    PMID: 21658409 DOI: 10.1016/j.neuro.2011.05.012
    α-Synuclein (α-Syn) plays a crucial role in the pathophysiology of Parkinson's disease (PD). α-Syn has been extensively studied in many neuronal cell-based PD models but has yielded mixed results. The objective of this study was to re-evaluate the dual cytotoxic/protective roles of α-Syn in dopaminergic SH-SY5Y cells. Stable SH-SY5Y cells overexpressing wild type or familial α-Syn mutants (A30P, E46K and A53T) were subjected to acute and chronic rotenone and maneb treatment. Compared with untransfected SH-SY5Y cells, wild type α-Syn attenuated rotenone and maneb-induced cell death along with an attenuation of toxin-induced mitochondrial membrane potential changes and Reactive Oxygen Species level, whereas the mutant α-Syn constructs exacerbated environmental toxins-induced cytotoxicity. After chronic treatment, wild type α-Syn but not the mutant variants was found to rescue cells from subsequent acute hydrogen peroxide insult. These results suggest that the fundamental property of wild type α-Syn may be protective, and such property may be lost by its familial PD mutations.
    Matched MeSH terms: Parkinson Disease/genetics*
  8. Jafarieh O, Md S, Ali M, Baboota S, Sahni JK, Kumari B, et al.
    Drug Dev Ind Pharm, 2015;41(10):1674-81.
    PMID: 25496439 DOI: 10.3109/03639045.2014.991400
    Parkinson disease (PD) is a common, progressive neurodegenerative disorder, characterized by marked depletion of striatal dopamine and degeneration of dopaminergic neurons in the substantia nigra.
    Matched MeSH terms: Parkinson Disease/drug therapy
  9. Mohd Murshid N, Aminullah Lubis F, Makpol S
    Cell Mol Neurobiol, 2020 Oct 19.
    PMID: 33074454 DOI: 10.1007/s10571-020-00979-z
    Epigenetic mechanisms involving the modulation of gene activity without modifying the DNA bases are reported to have lifelong effects on mature neurons in addition to their impact on synaptic plasticity and cognition. Histone methylation and acetylation are involved in synchronizing gene expression and protein function in neuronal cells. Studies have demonstrated in experimental models of neurodegenerative disorders that manipulations of these two mechanisms influence the susceptibility of neurons to degeneration and apoptosis. In Alzheimer's disease (AD), the expression of presenilin 1 (PSEN1) is markedly increased due to decreased methylation at CpG sites, thus promoting the accumulation of toxic amyloid-β (Aβ) peptide. In Parkinson's disease (PD), dysregulation of α-synuclein (SNCA) expression is presumed to occur via aberrant methylation at CpG sites, which controls the activation or suppression of protein expression. Mutant Huntingtin (mtHTT) alters the activity of histone acetyltransferases (HATs), causing the dysregulation of transcription observed in most Huntington's disease (HD) cases. Folate, vitamin B6, vitamin B12, and S-adenosylmethionine (SAM) are vital cofactors involved in DNA methylation modification; 5-azacytidine (AZA) is the most widely studied DNA methyltransferase (DNMT) inhibitor, and dietary polyphenols are DNMT inhibitors in vitro. Drug intervention is believed to reverse the epigenetic mechanisms to serve as a regulator in neuronal diseases. Nevertheless, the biochemical effect of the drugs on brain function and the underlying mechanisms are not well understood. This review focuses on further discussion of therapeutic targets, emphasizing the potential role of epigenetic factors including histone and DNA modifications in the diseases.
    Matched MeSH terms: Parkinson Disease
  10. Kamal H, Tan GC, Ibrahim SF, Shaikh MF, Mohamed IN, Mohamed RMP, et al.
    Front Cell Neurosci, 2020;14:282.
    PMID: 33061892 DOI: 10.3389/fncel.2020.00282
    Alcohol use disorder (AUD) has been associated with neurodegenerative diseases such as Alzheimer's and Parkinson's disease. Prolonged excessive alcohol intake contributes to increased production of reactive oxygen species that triggers neuroimmune response and cellular apoptosis and necrosis via lipid peroxidation, mitochondrial, protein or DNA damage. Long term binge alcohol consumption also upregulates glutamate receptors, glucocorticoids and reduces reuptake of glutamate in the central nervous system, resulting in glutamate excitotoxicity, and eventually mitochondrial injury and cell death. In this review, we delineate the following principles in alcohol-induced neurodegeneration: (1) alcohol-induced oxidative stress, (2) neuroimmune response toward increased oxidants and lipopolysaccharide, (3) glutamate excitotoxicity and cell injury, and (4) interplay between oxidative stress, neuroimmune response and excitotoxicity leading to neurodegeneration and (5) potential chronic alcohol intake-induced development of neurodegenerative diseases, including Alzheimer's and Parkinson's disease.
    Matched MeSH terms: Parkinson Disease
  11. Angelopoulou E, Paudel YN, Julian T, Shaikh MF, Piperi C
    Mol Neurobiol, 2021 Apr;58(4):1372-1391.
    PMID: 33175322 DOI: 10.1007/s12035-020-02201-z
    The exact etiology of Parkinson's disease (PD) remains obscure, although many cellular mechanisms including α-synuclein aggregation, oxidative damage, excessive neuroinflammation, and dopaminergic neuronal apoptosis are implicated in its pathogenesis. There is still no disease-modifying treatment for PD and the gold standard therapy, chronic use of levodopa is usually accompanied by severe side effects, mainly levodopa-induced dyskinesia (LID). Hence, the elucidation of the precise underlying molecular mechanisms is of paramount importance. Fyn is a tyrosine phospho-transferase of the Src family nonreceptor kinases that is highly implicated in immune regulation, cell proliferation and normal brain development. Accumulating preclinical evidence highlights the emerging role of Fyn in key aspects of PD and LID pathogenesis: it may regulate α-synuclein phosphorylation, oxidative stress-induced dopaminergic neuronal death, enhanced neuroinflammation and glutamate excitotoxicity by mediating key signaling pathways, such as BDNF/TrkB, PKCδ, MAPK, AMPK, NF-κB, Nrf2, and NMDAR axes. These findings suggest that therapeutic targeting of Fyn or Fyn-related pathways may represent a novel approach in PD treatment. Saracatinib, a nonselective Fyn inhibitor, has already been tested in clinical trials for Alzheimer's disease, and novel selective Fyn inhibitors are under investigation. In this comprehensive review, we discuss recent evidence on the role of Fyn in the pathogenesis of PD and LID and provide insights on additional Fyn-related molecular mechanisms to be explored in PD and LID pathology that could aid in the development of future Fyn-targeted therapeutic approaches.
    Matched MeSH terms: Parkinson Disease
  12. Hussain Z, Thu HE, Elsayed I, Abourehab MAS, Khan S, Sohail M, et al.
    J Control Release, 2020 12 10;328:873-894.
    PMID: 33137366 DOI: 10.1016/j.jconrel.2020.10.053
    Owing to their tremendous potential, the inference of nano-scaled materials has revolutionized many fields including the medicine and health, particularly for development of various types of targeted drug delivery devices for early prognosis and successful treatment of various diseases, including the brain disorders. Owing to their unique characteristic features, a variety of nanomaterials (particularly, ultra-fine particles (UFPs) have shown tremendous success in achieving the prognostic and therapeutic goals for early prognosis and treatment of various brain maladies such as Alzheimer's disease, Parkinson's disease, brain lymphomas, and other ailments. However, serious attention is needful due to innumerable after-effects of the nanomaterials. Despite their immense contribution in optimizing the prognostic and therapeutic modalities, biological interaction of nanomaterials with various body tissues may produce severe nanotoxicity of different organs including the heart, liver, kidney, lungs, immune system, gastro-intestinal system, skin as well as nervous system. However, in this review, we have primarily focused on nanomaterials-induced neurotoxicity of the brain. Following their translocation into different regions of the brain, nanomaterials may induce neurotoxicity through multiple mechanisms including the oxidative stress, DNA damage, lysosomal dysfunction, inflammatory cascade, apoptosis, genotoxicity, and ultimately necrosis of neuronal cells. Our findings indicated that rigorous toxicological evaluations must be carried out prior to clinical translation of nanomaterials-based formulations to avoid serious neurotoxic complications, which may further lead to develop various neuro-degenerative disorders.
    Matched MeSH terms: Parkinson Disease
  13. Teo CH, Soga T, Parhar IS
    Neurosignals, 2018 02 22;26(1):31-42.
    PMID: 29490303 DOI: 10.1159/000487764
    Beta-catenin is a protein with dual functions in the cell, playing a role in both adhesion between cells as well as gene transcription via the canonical Wnt signalling pathway. In the canonical Wnt signalling pathway, beta-catenin again plays multiple roles. In the embryonic stage, the regulation of beta-catenin levels activates genes that govern cell proliferation and differentiation. In an adult organism, beta-catenin continues to regulate the cell cycle - as a result over-expression of beta-catenin may lead to cancer. In the brain, dysfunctions in Wnt signalling related to beta-catenin levels may also cause various pathological conditions like Alzheimer's disease, Parkinson's disease, and depression. Beta-catenin can be influenced by stressful conditions and increases in glucocorticoid levels. In addition, beta-catenin can be regulated by neurotransmitters such as serotonin and dopamine. Fluctuations in beta-catenin in brain regions under duress have been associated with depressive-like behaviours. It is theorized that the change in behaviour can be attributed to the regulation of Dicer by beta-catenin. Dicer, a protein that produces micro-RNAs in the cell, is a target gene for beta-catenin. Amongst the micro-RNA that it produces are those involved in stress resilience. In this way, beta-catenin has taken its place in the well-studied biochemistry of stress and depression, and future research into this interesting protein may yet yield fruitful results in that field.
    Matched MeSH terms: Parkinson Disease
  14. Ayipo YO, Mordi MN, Mustapha M, Damodaran T
    Eur J Pharmacol, 2021 Feb 15;893:173837.
    PMID: 33359647 DOI: 10.1016/j.ejphar.2020.173837
    Neuropsychiatric disorders are diseases of the central nervous system (CNS) which are characterised by complex pathomechanisms that including homeostatic failure, malfunction, atrophy, pathology remodelling and reactivity anomaly of the neuronal system where treatment options remain challenging. β-Carboline (βC) alkaloids are scaffolds of structurally diverse tricyclic pyrido[3,4-b]indole alkaloid with vast occurrence in nature. Their unique structural features which favour interactions with enzymes and protein receptor targets account for their potent neuropharmacological properties. However, our current understanding of their biological mechanisms for these beneficial effects, especially for neuropsychiatric disorders is sparse. Therefore, we present a comprehensive review of the scientific progress in the last two decades on the prospective pharmacology and physiology of the βC alkaloids in the treatment of some neuropsychiatric conditions such as depression, anxiety, Alzheimer's disease, Parkinson's disease, brain tumour, essential tremor, epilepsy and seizure, licking behaviour, dystonia, agnosia, spasm, positive ingestive response as demonstrated in non-clinical models. The current evidence supports that βC alkaloids offer potential therapeutic agents against most of these disorders and amenable for further drug design.
    Matched MeSH terms: Parkinson Disease
  15. Nies YH, Mohamad Najib NH, Lim WL, Kamaruzzaman MA, Yahaya MF, Teoh SL
    Front Neurosci, 2021;15:660379.
    PMID: 33994934 DOI: 10.3389/fnins.2021.660379
    Parkinson's disease (PD) is a severely debilitating neurodegenerative disease, affecting the motor system, leading to resting tremor, cogwheel rigidity, bradykinesia, walking and gait difficulties, and postural instability. The severe loss of dopaminergic neurons in the substantia nigra pars compacta causes striatal dopamine deficiency and the presence of Lewy bodies indicates a pathological hallmark of PD. Although the current treatment of PD aims to preserve dopaminergic neurons or to replace dopamine depletion in the brain, it is notable that complete recovery from the disease is yet to be achieved. Given the complexity and multisystem effects of PD, the underlying mechanisms of PD pathogenesis are yet to be elucidated. The advancement of medical technologies has given some insights in understanding the mechanism and potential treatment of PD with a special interest in the role of microRNAs (miRNAs) to unravel the pathophysiology of PD. In PD patients, it was found that striatal brain tissue and dopaminergic neurons from the substantia nigra demonstrated dysregulated miRNAs expression profiles. Hence, dysregulation of miRNAs may contribute to the pathogenesis of PD through modulation of PD-associated gene and protein expression. This review will discuss recent findings on PD-associated miRNAs dysregulation, from the regulation of PD-associated genes, dopaminergic neuron survival, α-synuclein-induced inflammation and circulating miRNAs. The next section of this review also provides an update on the potential uses of miRNAs as diagnostic biomarkers and therapeutic tools for PD.
    Matched MeSH terms: Parkinson Disease
  16. Solayman M, Islam MA, Alam F, Khalil MI, Kamal MA, Gan SH
    Curr Drug Metab, 2017;18(1):50-61.
    PMID: 27396919 DOI: 10.2174/1389200217666160709204826
    Parkinson's disease (PD) is characterized by neurodegeneration and a progressive functional impairment of the midbrain nigral dopaminergic neurons. The cause remains unknown; however, several pathological processes and central factors, such as protein aggregation, mitochondrial dysfunction, iron accumulation, neuroinflammation and oxidative stress, have been reported. The current treatment method primarily targets symptoms by using anti-Parkinson drugs such as levodopa, carbidopa, dopamine (DA) agonists, monoamine oxidase type B inhibitors and anticholinergics to replace DA. When drug therapy is not satisfactory, surgical treatments are recommended. Unfortunately, the existing conventional strategies that target PD are associated with numerous side effects and possess an economic burden. Therefore, novel therapeutic approaches that regulate the pathways leading to neuronal death and dysfunction are necessary. For many years, nature has provided the primary resource for the discovery of potential therapeutic agents. Remarkably, many natural products from medicinal plants, fruits and vegetables have been demonstrated to be efficacious anti-Parkinson agents. These products possess neuroprotective properties as a result of not only their wellrecognized anti-oxidative and anti-inflammatory activities but also their inhibitory roles regarding iron accumulation, protein misfolding and the maintenance of proteasomal degradation, as well as mitochondrial homeostasis. The aim of this review is to report the available anti-Parkinson agents based on natural products and delineate their therapeutic actions, which act on various pathways. Overall, this review emphasizes the types of natural products that are potential future resources in the treatment of PD as novel regimens or supplementary agents.
    Matched MeSH terms: Parkinson Disease
  17. Anil Kumar, S., Saif, S.A., Oothuman, P., Mustafa, M.I.A.
    MyJurnal
    Introduction: Reduced cerebral blood fl ow is associated with neurodegenerative disorders and dementia, in particular. Experimental evidence has demonstrated the initiating role of chronic cerebral hypoperfusion in neuronal damage to the hippocampus, the cerebral cortex, the white matter areas and the visual system. Permanent, bilateral occlusion of the common carotid arteries of rats (two vessel occlusion - 2VO) has been introduced for the reproduction of chronic cerebral hypoperfusion as it occurs in Alzheimer’s disease and human aging. Increased generation of free radicals through lipid peroxidation can damage neuronal cell membrane. Markers of lipid peroxidation have been found to be elevated in brain tissues and body fl uids in neurodegenerative diseases, including Alzheimer’s disease, Parkinson disease and amyotrophic lateral sclerosis. Materials and Methods: Malondialdehyde (MDA), fi nal product of lipid peroxidation, was estimated by thiobarbituric acid-reactive substances (TBARS) assay kit at eight weeks after induction of 2VO in the rats and control group. Results: Our study revealed a highly signifi cant (p
    Matched MeSH terms: Parkinson Disease
  18. Tan JM, Saifullah B, Kura AU, Fakurazi S, Hussein MZ
    Nanomaterials (Basel), 2018 May 31;8(6).
    PMID: 29857532 DOI: 10.3390/nano8060389
    Four drug delivery systems were formulated by non-covalent functionalization of carboxylated single walled carbon nanotubes using biocompatible polymers as coating agent (i.e., Tween 20, Tween 80, chitosan or polyethylene glycol) for the delivery of levodopa, a drug used in Parkinson's disease. The chemical interaction between the coating agent and carbon nanotubes-levodopa conjugate was confirmed by Fourier transform infrared (FTIR) and Raman studies. The drug release profiles were revealed to be dependent upon the type of applied coating material and this could be further adjusted to a desired rate to meet different biomedical conditions. In vitro drug release experiments measured using UV-Vis spectrometry demonstrated that the coated conjugates yielded a more prolonged and sustained release pattern compared to the uncoated conjugate. Cytotoxicity of the formulated conjugates was studied by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay using normal mouse embryonic fibroblast 3T3 cell line. Compared to the non-coated conjugate, the MTT data indicated that the coating procedure improved the biocompatibility of all systems by 34⁻41% when the concentration used exceeded 100 μg/mL. In conclusion, the comprehensive results of this study suggest that carbon nanotubes-based drug carrier coated with a suitable biomaterial may possibly be a potential nanoparticle system that could facilitate drug delivery to the brain with tunable physicochemical properties.
    Matched MeSH terms: Parkinson Disease
  19. Ng YW, Say YH
    PeerJ, 2018;6:e4696.
    PMID: 29713567 DOI: 10.7717/peerj.4696
    Background: Obesity-related central nervous system (CNS) pathologies like neuroinflammation and reactive gliosis are associated with high-fat diet (HFD) related elevation of saturated fatty acids like palmitic acid (PA) in neurons and astrocytes of the brain.

    Methods: Human neuroblastoma cells SH-SY5Y (as a neuronal model) and human glioblastoma cells T98G (as an astrocytic model), were treated with 100-500 µM PA, oleic acid (OA) or lauric acid (LA) for 24 h or 48 h, and their cell viability was assessed by 3-(4,5-dimetylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The effects of stable overexpression of γ-synuclein (γ-syn), a neuronal protein recently recognized as a novel regulator of lipid handling in adipocytes, and transient overexpression of Parkinson's disease (PD) α-synuclein [α-syn; wild-type (wt) and its pathogenic mutants A53T, A30P and E46K] in SH-SY5Y and T98G cells, were also evaluated. The effects of co-treatment of PA with paraquat (PQ), a Parkinsonian pesticide, and leptin, a hormone involved in the brain-adipose axis, were also assessed. Cell death mode and cell cycle were analyzed by Annexin V/PI flow cytometry. Reactive oxygen species (ROS) level was determined using 2',7'-dichlorofluorescien diacetate (DCFH-DA) assay and lipid peroxidation level was determined using thiobarbituric acid reactive substances (TBARS) assay.

    Results: MTT assay revealed dose- and time-dependent PA cytotoxicity on SH-SY5Y and T98G cells, but not OA and LA. The cytotoxicity was significantly lower in SH-SY5Y-γ-syn cells, while transient overexpression of wt α-syn or its PD mutants (A30P and E46K, but not A53T) modestly (but still significantly) rescued the cytotoxicity of PA in SH-SY5Y and T98G cells. Co-treatment of increasing concentrations of PQ exacerbated PA's neurotoxicity. Pre-treatment of leptin, an anti-apoptotic adipokine, did not successfully rescue SH-SY5Y cells from PA-induced cytotoxicity-suggesting a mechanism of PA-induced leptin resistance. Annexin V/PI flow cytometry analysis revealed PA-induced increase in percentages of cells in annexin V-positive/PI-negative quadrant (early apoptosis) and subG0-G1 fraction, accompanied by a decrease in G2-M phase cells. The PA-induced ROS production and lipid peroxidation was at greater extent in T98G as compared to that in SH-SY5Y.

    Discussion: In conclusion, PA induces apoptosis by increasing oxidative stress in neurons and astrocytes. Taken together, the results suggest that HFD may cause neuronal and astrocytic damage, which indirectly proposes that CNS pathologies involving neuroinflammation and reactive gliosis could be prevented via the diet regimen.

    Matched MeSH terms: Parkinson Disease
  20. Ng KY, Leong MK, Liang H, Paxinos G
    Brain Struct Funct, 2017 Sep;222(7):2921-2939.
    PMID: 28478550 DOI: 10.1007/s00429-017-1439-6
    Melatonin, through its different receptors, has pleiotropic functions in mammalian brain. Melatonin is secreted mainly by the pineal gland and exerts its effects via receptor-mediated and non-receptor-mediated actions. With recent advancement in neuroanatomical mapping, we may now understand better the localizations of the two G protein-coupled melatonin receptors MT1 and MT2. The abundance of these melatonin receptors in respective brain regions suggests that receptor-mediated actions of melatonin might play crucial roles in the functions of central nervous system. Hence, this review aims to summarize the distribution of melatonin receptors in the brain and to discuss the putative functions of melatonin in the retina, cerebral cortex, reticular thalamic nucleus, habenula, hypothalamus, pituitary gland, periaqueductal gray, dorsal raphe nucleus, midbrain and cerebellum. Studies on melatonin receptors in the brain are important because cumulative evidence has pointed out that melatonin receptors not only play important physiological roles in sleep, anxiety, pain and circadian rhythm, but might also be involved in the pathogenesis of a number of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease and Huntington's disease.
    Matched MeSH terms: Parkinson Disease
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links