Materials and Methods: The cytotoxic effect of hydromethanolic extract of S. polyanthum against 4T1 and MCF-7 mammary carcinoma cells was evaluated using 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The cells were treated with the concentration of extracts ranging from 15.63 µg/mL to 1000 µg/ml for 72 h, and the percentage of cell survivability was determined based on minimum concentration that was able to allow at least 50% growth of cancer cells (IC50) after 72 h. The antibacterial activity was tested against common bacteria causing mastitis in cow. The bacteria were isolated from milk samples. The antibacterial activity of the extract was determined by disk diffusion method and susceptibility test based on minimum inhibitory concentration (MIC).
Results: Staphylococcus aureus, Staphylococcus hyicus, and Staphylococcus intermedius were isolated from the milk samples that positive for mastitis. The MIC values range from 7.12 mm to 13.5 mm. The extract exhibits the widest zone of inhibition (13.5±0.20 mm) at 1000 mg/ml of concentrations. The extract relatively has low cytotoxicity effect against 4T1 and MCF-7 cells with IC50 values ranging from 672.57±59.42 and 126.05±50.89 µg/ml, respectively.
Conclusion: S. polyanthum exerts weak antibacterial activity and cytotoxic effect to mammary carcinoma cells. The extract does not toxic to cells. However, further study is recommended, especially, this plant should be tested for in vivo.
OBJECTIVES: To identify the species distribution, antibiotic susceptibility patterns and clinical profiles of CoNS isolated from blood cultures among paediatric patients in Hospital Kuala Lumpur (HKL).
METHODS: This study involved CoNS isolation from blood cultures of paediatric in-patients of the Paediatric Institute HKL. Isolates were identified to species level using Analytical Profile Index Staph identification strips and antimicrobial susceptibility pattern following Kirby-Bauer Disc Diffusion method. The clinical profiles of patients were obtained from their medical records.
RESULTS: Eleven CoNS species were identified from 148 isolates. Staphylococcus epidermidis was the most frequent species isolated (67.6%). The majority of the isolates showed resistance to penicillin (85.8%); while 70.3% were methicillin-resistant (MR) CoNS, which demonstrated a significant association with true infection (p=0.021). Predictors for significant CoNS infection included thrombocytopaenia, presence of predisposing factors, nosocomial infection, blood collected from peripheral vein, and CoNS isolated from two consecutive blood cultures. The most common predisposing factors for the isolation of CoNS were the presence of peripheral (54.1%) and central venous catheters (35.1%).
CONCLUSION: CoNS can cause significant bloodstream infections. The isolation of CoNS from blood cultures should be carefully interpreted by considering the predictive factors. Local data regarding predictive factors of patients with culture-positive CoNS, species distribution and antimicrobial susceptibility pattern are useful to determine the significance of blood culture results and care management of patients.
Material and Methods: Retrospective review was done to the patients who received two-stage revisions with an antibiotic loaded cement-spacer for PJI of the hip between January 2010 to May 2015. We found 65 patients (65 hips) with positive culture findings. Eight patients were lost to follow-up and excluded from the study. Among the rest of the 57 patients, methicillin-resistant infection (MR Group) was found in 28 cases. We also evaluate the 29 other cases that caused by the other pathogen as control group. We compared all of the relevant medical records and the treatment outcomes between the two groups.
Results: The mean of follow-up period was 33.7 months in the methicillin-resistant group and 28.4 months in the control group (p = 0.27). The causal pathogens in the methicillin-resistant group were: Methicillin-resistant Staphylococcus aureus (MRSA) in 10 cases, Methicillin-resistant Staphylococcus epidermidis (MRSE) in 16 cases and Methicillin-resistant coagulase-negative Staphylococcus (MRCNS) in two cases. The reimplantation rate was 92.8% and 89.6% in the methicillin-resistant and control group, respectively (p= 0.66). The rates of recurrent infection after reimplantation were 23.1% (6/26) in the methicillin-resistant group and 7.6% (2/26) in the control group (p= 0.12). The overall infection control rate was 71.4% (20/28) and 89.6% (26/29) in the methicillin-resistant and control group, respectively (p = 0.08). Both groups showed comparable baseline data on mean age, BMI, gender distribution, preoperative ESR/CRP/WBC and comorbidities.
Conclusions: Two-stage revision procedure resulted in low infection control rate and high infection recurrency rate for the treatment of methicillin-resistant periprosthetic joint infection (PJI) of the hip. Development of the treatment strategy is needed to improve the outcome of methicillin-resistant periprosthetic joint infection (PJI) of the hip.
METHODS: Swab and fluid samples (n=358) from healthcare workers' hands, frequently touched surfaces, medical equipment, patients' immediate surroundings, ward sinks and toilets, and solutions or fluids of 12 selected wards were collected. Biochemical tests, PCR and 16S rRNA sequencing were used for identification following isolation from CHROMagar™ Orientation medium. Clinically important bacteria such as Enterococcus spp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter spp., Pseudomonas aeruginosa and Enterobacter spp. were further characterised by disc diffusion method and rep-PCR.
RESULTS: The 24 Gram-negative and 19 Gram-positive bacteria species identified were widely distributed in the hospital environment. Staphylococci were predominant, followed by Bacillus spp. and P. aeruginosa. Frequently touched surfaces, medical equipment, and ward sinks and toilets were the top three sources of bacterial species. Nine S. aureus, four Acinetobacter spp., one K. pneumoniae and one Enterobacter spp. were multidrug-resistant (MDR). The ESKAPE organisms were genetically diverse and widely dispersed across the hospital wards. A MDR MRSA clone was detected in a surgical ward isolation room.
CONCLUSION: The large variety of cultivable, clinically important bacteria, especially the genetically related MDR S. aureus, K. pneumoniae, Acinetobacter spp. and Enterobacter spp., from various sampling sites indicated that the surfaces and fomites in the hospital were potential exogenous sources of nosocomial infection in the hospital.
METHODS: Retrospective study of reviewing microbiology specimens of breast abscess patients treated at Universiti Malaya Medical Centre from 2015 to 2020. Data collected from microbiology database and electronic medical records were analysed using SPSS V21.
RESULT: A total of 210 specimens from 153 patients were analysed. One-fifth (19.5%) of the specimens isolated were MDRO. Lactational associated infections had the largest proportion of MDR in comparison to non-lactational and secondary infections (38.5%, 21.7%, 25.7%, respectively; p = 0.23). Staphylococcus epidermidis recorded the highest number of MDR (n = 12) followed by S. aureus (n = 8). Adjusted by aetiological groups, the presence of MDRO is linked to failure of single aspirations (p = 0.554) and significantly doubled the risk of undergoing surgical drainage for resolution (p = 0.041).
CONCLUSION: MDR in breast abscess should be recognised as an increasing healthcare burden due to a paradigm shift of MDRO and a rise of resistance cases among lactational associated infection that were vulnerable to undergo surgical incision and drainage for resolution.
METHODS: MRSA strains were collected and molecularly typed by pulsed-field gel electrophoresis (PFGE).
RESULTS: PFGE typing on 180 MRSA isolated in UKMMC identified 5 pulsotypes (A-E) and 6 singletons, where pulsotypes B and C were suspected to be divergent clones originating from a single ancestor. This study also showed that most MRSA strains were isolated from swab (119 isolates), followed by blood (22 isolates), tracheal aspirate (11 isolates) and sputum (10 isolates). On the other hand, urine and bone isolates were less, which were 4 and 1 isolates, respectively. The distribution of different pulsotypes of MRSA among wards suggested that MRSA was communicated in surgical and medical wards in UKMMC, with pulsotype B MRSA as the dominant strain. Besides, it was found that most deceased patients were infected by pulsotype B MRSA, however, no particular pulsotype could be associated with patient age, underlying disease, or ward of admittance.
CONCLUSIONS: Five pulsotypes of MRSA and 6 singletons were identified, with pulsotype B MRSA as the endemic strains circulating in these wards, which is useful in establishment of preventive measures against MRSA transmission.
METHODS: GNR was synthesised via seed-mediated growth method, and the resulting nanoparticles were coated first with Alg and then PDADMAC. FTIR, zeta potential, transmission electron microscopy, and UV-Vis spectrophotometry analysis were performed to characterise the nanoparticles. The efficacy and speed of the non-coated GNR and GNR/Alg/PDADMAC in disintegrating S. aureus-preformed biofilms, as well as their in vitro biocompatibility (L929 murine fibroblast) were then studied.
RESULTS: The synthesised GNR/Alg/PDADMAC (mean length: 55.71 ± 1.15 nm, mean width: 23.70 ± 1.13 nm, aspect ratio: 2.35) was biocompatible and potent in eradicating preformed biofilms of methicillin-resistant (MRSA) and methicillin-susceptible S. aureus (MSSA) when compared to triclosan, an antiseptic used for disinfecting S. aureus colonisation on abiotic surfaces in the hospital. The minimum biofilm eradication concentrations of GNR/Alg/PDADMAC (MBEC50 for MRSA biofilm = 0.029 nM; MBEC50 for MSSA biofilm = 0.032 nM) were significantly lower than those of triclosan (MBEC50 for MRSA biofilm = 10,784 nM; MBEC50 for MRSA biofilm 5967 nM). Moreover, GNR/Alg/PDADMAC was effective in eradicating 50% of MRSA and MSSA biofilms within 17 min when used at a low concentration (0.15 nM), similar to triclosan at a much higher concentration (50 µM). Disintegration of MRSA and MSSA biofilms was confirmed by field emission scanning electron microscopy and confocal laser scanning microscopy.
CONCLUSION: These findings support the potential application of GNR/Alg/PDADMAC as an alternative agent to conventional antiseptics and antibiotics for the eradication of medically important MRSA and MSSA biofilms.