Displaying publications 141 - 160 of 417 in total

Abstract:
Sort:
  1. Yapp JH, Raja Ahmad RMK, Mahmud R, Mohtarrudin N, Mohamad Yusof L, Abdul Rahim E, et al.
    Wound Repair Regen, 2019 05;27(3):225-234.
    PMID: 30667138 DOI: 10.1111/wrr.12698
    Frequent repositioning is important to prevent pressure ulcer (PU) development, by relieving pressure and recovering damages on skin areas induced by repetitive loading. Although repositioning is the gold standard to prevent PU, there is currently no strategy for determining tissue condition under preventive approaches. In this study, the peak reactive hyperemia (RH) trends and ultrasonographic (US) features are compared with the tissue condition under histopathological examination to determine the potential use of these features in determining the tissue condition noninvasively. Twenty-one male Sprague-Dawley rats (seven per group), with body weight of 385-485 g, were categorized into three groups and subjected to different recovery times, each with three repetitive loading cycles at skin tissues above of right trochanter area. The first, second, and third groups were subjected to short (3 minutes), moderate (10 minutes), and prolonged (40 minutes) recovery, respectively, while applying fixed loading time and pressure (10 minutes and 50 mmHg, respectively), to provide different degree of recovery and tissue conditions (tissue damage and tissue recovery). Peak RH was measured in the three cycles to determine RH trend (increasing, decreasing, and inconsistent). All rat tissues were evaluated using ultrasound at pre- and post-experiment and rated by two raters to categorize the severity of tissue changes (no, mild, moderate, and severe). The tissue condition was also evaluated using histopathological examination to distinguish between normal and abnormal tissues. Most of the samples with increasing RH trend is related to abnormal tissue (71%); while inconsistent RH trends is more related to normal tissue (82%). There is no relationship between the tissue conditions evaluated under ultrasonographic and histopathological examination. Peak RH trend over repetitive loading may serve as a new feature for determining the tissue condition that leading to pressure ulcer.
    Matched MeSH terms: Wound Healing/physiology*
  2. Ang LF, Darwis Y, Koh RY, Gah Leong KV, Yew MY, Por LY, et al.
    Pharmaceutics, 2019 May 01;11(5).
    PMID: 31052413 DOI: 10.3390/pharmaceutics11050205
    Curcuminoids have been used for the management of burns and wound healing in traditional Chinese medicine practices but the wide application of curcuminoids as a healing agent for wounds has always been a known problem due to their poor solubility, bioavailability, colour staining properties, as well as due to their intense photosensitivity and the need for further formulation approaches to maximise their various properties in order for them to considerably contribute towards the wound healing process. In the present study, a complex coacervation microencapsulation was used to encapsulate curcuminoids using gelatin B and chitosan. This study also focused on studying and confirming the potential of curcuminoids in a microencapsulated form as a wound healing agent. The potential of curcuminoids for wound management was evaluated using an in vitro human keratinocyte cell (HaCaT) model and the in vivo heater-inflicted burn wound model, providing evidence that the antioxidant activities of both forms of curcuminoids, encapsulated or not, are higher than those of butylated hydroxyanisole and butylated hydroxytoluene in trolox equivalent antioxidant capacity (TEAC) and (2,2-diphenyl-1-picryl-hydrazyl-hydrate) (DPPH) studies. However, curcuminoids did not have much impact towards cell migration and proliferation in comparison with the negative control in the in vitro HaCaT study. The micoencapsulation formulation was shown to significantly influence wound healing in terms of increasing the wound contraction rate, hydroxyproline synthesis, and greater epithelialisation, which in turn provides strong justification for the incorporation of the microencapsulated formulation of curcuminoids as a topical treatment for burns and wound healing management as it has the potential to act as a crucial wound healing agent in healthcare settings.
    Matched MeSH terms: Wound Healing
  3. Baraya YS, Wong KK, Yaacob NS
    J Ethnopharmacol, 2019 Apr 06;233:13-21.
    PMID: 30594607 DOI: 10.1016/j.jep.2018.12.041
    ETHNOPHARMACOLOGICAL RELEVANCE: Strobilanthes crispus (L.) Blume, locally known in Malaysia as "Pecah kaca" or "Jin batu", has been traditionally used for treatment of various ailments including cancer. We previously demonstrated that a standardized bioactive subfraction of S. crispus, termed as F3, possessed potent anticancer effects in both in vitro and in vivo breast cancer models.

    AIM OF THE STUDY: To investigate the potential of F3 from S. crispus to prevent metastasis in breast cancer.

    MATERIALS AND METHODS: The antimetastatic effects of F3 were first investigated on murine 4T1 and human MDA-MB-231 breast cancer cell (BCC) lines using cell proliferation, wound healing and invasion assays. A 4T1-induced mouse mammary carcinoma model was then used to determine the expression of metastasis tumor markers, epithelial (E)-cadherin, matrix metalloproteinase (MMP)-9, mucin (MUC)-1, nonepithelial (N)-cadherin, Twist, vascular endothelial growth factor (VEGF) and vimentin, using immunohistochemistry, following oral treatment with F3 for 30 days.

    RESULTS: Significant growth arrest was observed with F3 IC50 values of 84.27 µg/ml (24 h) and 74.41 µg/ml (48 h) for MDA-MB-231, and 87.35 µg/ml (24 h) and 78.75 µg/ml (48 h) for 4T1 cells. F3 significantly inhibited migration of both BCC lines at 50 μg/ml for 24 h (p = 0.018 and p = 0.015, respectively). Similarly, significant inhibition of invasion was demonstrated in 4T1 (75 µg/ml, p = 0.016) and MDA-MB-231 (50 µg/ml, p = 0.040) cells compared to the untreated cultures. F3 treatment resulted in reduced tumor growth compared to untreated mice (p 

    Matched MeSH terms: Wound Healing/drug effects
  4. Jaganathan SK, Mani MP, Khudzari AZM
    Polymers (Basel), 2019 Apr 01;11(4).
    PMID: 30960571 DOI: 10.3390/polym11040586
    The ultimate goal in tissue engineering is to fabricate a scaffold which could mimic the native tissue structure. In this work, the physicochemical and biocompatibility properties of electrospun composites based on polyurethane (PU) with added pepper mint (PM) oil and copper sulphate (CuSO₄) were investigated. Field Emission Electron microscope (FESEM) study depicted the increase in mean fiber diameter for PU/PM and decrease in fiber diameter for PU/PM/CuSO₄ compared to the pristine PU. Fourier transform infrared spectroscopy (FTIR) analysis revealed the formation of a hydrogen bond for the fabricated composites as identified by an alteration in PU peak intensity. Contact angle analysis presented the hydrophobic nature of pristine PU and PU/PM while the PU/PM/CuSO₄ showed hydrophilic behavior. Atomic force microscopy (AFM) analysis revealed the increase in the surface roughness for the PU/PM while PU/PM/CuSO₄ showed a decrease in surface roughness compared to the pristine PU. Blood compatibility studies showed improved blood clotting time and less toxic behavior for the developed composites than the pristine PU. Finally, the cell viability of the fabricated composite was higher than the pristine PU as indicated in the MTS assay. Hence, the fabricated wound dressing composite based on PU with added PM and CuSO₄ rendered a better physicochemical and biocompatible nature, making it suitable for wound healing applications.
    Matched MeSH terms: Wound Healing
  5. Ishak WMW, Katas H, Yuen NP, Abdullah MA, Zulfakar MH
    Drug Deliv Transl Res, 2019 04;9(2):418-433.
    PMID: 29667150 DOI: 10.1007/s13346-018-0522-8
    Wound healing is a physiological event that generates reconstitution and restoration of granulation tissue that ends with scar formation. As omega fatty acids are part of membrane phospholipids and participate in the inflammatory response, we investigated the effects of omega-3, omega-6, and omega-9 fatty acids in the form of oils on wound healing. Linseed (LO), evening primrose (EPO), and olive oils (OO) rich in omega-3, omega-6, and omega-9 fatty acids were formulated into emulsions and were topically applied on rats with excision wounds. All omega-3-, omega-6-, and omega-9-rich oil formulations were found to accelerate wound closure compared to untreated, with significant improvement (p wound healing but they accomplish this by different mechanisms.
    Matched MeSH terms: Wound Healing/drug effects*
  6. Shiang SW, Vendargon SJ, Hamid SRBGS
    J Coll Physicians Surg Pak, 2019 Apr;29(4):371-374.
    PMID: 30925964 DOI: 10.29271/jcpsp.2019.04.371
    OBJECTIVE: To determine the wound complications post coronary artery bypass graft surgery (CABG) by conventional vein harvest technique (CVH) and minimally invasive vein harvest technique (MIVH) in Hospital Sultanah Aminah Johor Bahru, Malaysia.

    STUDY DESIGN: Clinical audit report.

    PLACE AND DURATION OF STUDY: Hospital Sultanah Aminah Johor Bahru, Malaysia, from March 2016 to May 2017.

    METHODOLOGY: Data were collected retrospectively from all 127 patients who underwent CABG with saphenous vein grafts, either with CVH technique (n=68), or MIVH technique (n=59) performed with Vasoview system. The rate of wound dehiscence was evaluated. Patients with severe wound dehiscence that required readmission and surgical intervention were identified for further evaluation.

    RESULTS: There was total 26.8% of wound dehiscence in our study, which was not appreciably different between two groups (p=0.092). Patient with severe wound breakdown that required surgical intervention was significantly less in MIVH group (1/59, 1.7%) compared to CVH group (8/68, 11.8%, p=0.037). There was no significant difference in readmission rate between MIVH and CVH group (p=0.574).

    CONCLUSION: There is significant reduction in severity of wound dehiscence post-saphenous vein harvesting among CABG patients with MIVH technique. However, there is no statistical difference in wound dehiscence and readmission rate between MIVH and CVH technique.

    Matched MeSH terms: Wound Healing
  7. Alavi T, Rezvanian M, Ahmad N, Mohamad N, Ng SF
    Drug Deliv Transl Res, 2019 04;9(2):508-519.
    PMID: 29181832 DOI: 10.1007/s13346-017-0450-z
    Composite film dressings composed of pluronic F127 (PL)-pectin (PC) and pluronic (PL) F127-gelatin (GL) were investigated as potential drug delivery system for wound healing. Composite films were solvent cast by blending PL with PC or GL in different ratios using glycerol (2.5%) as plasticizer. Erythromycin (ER) (0.1%) was incorporated in films as model hydrophobic antibiotic. The optimized composite films were characterized for physical appearance, morphology, mechanical profile, and thermal behavior. In addition, drug release, antibacterial activity, and cytocompatibility of the films were investigated to assess their potential as drug delivery system. The composite films exhibited excellent wound dressing characters in terms of appearance, stability, and mechanical profile. Moreover, ER-loaded composite films released ER in controlled manner, exhibited antibacterial activity against Staphylococcus aureus, and were non-toxic to human skin fibroblast. These findings demonstrate that these composite films hold the potential to be formulated as antibacterial wound dressing.
    Matched MeSH terms: Wound Healing/drug effects
  8. Mohamad N, Loh EYX, Fauzi MB, Ng MH, Mohd Amin MCI
    Drug Deliv Transl Res, 2019 04;9(2):444-452.
    PMID: 29302918 DOI: 10.1007/s13346-017-0475-3
    The healing of wounds, including those from burns, currently exerts a burden on healthcare systems worldwide. Hydrogels are widely used as wound dressings and in the field of tissue engineering. The popularity of bacterial cellulose-based hydrogels has increased owing to their biocompatibility. Previous study demonstrated that bacterial cellulose/acrylic acid (BC/AA) hydrogel increased the healing rate of burn wound. This in vivo study using athymic mice has extended the use of BC/AA hydrogel by the addition of human epidermal keratinocytes and human dermal fibroblasts. The results showed that hydrogel loaded with cells produces the greatest acceleration on burn wound healing, followed by treatment with hydrogel alone, compared with the untreated group. The percentage wound reduction on day 13 in the mice treated with hydrogel loaded with cells (77.34 ± 6.21%) was significantly higher than that in the control-treated mice (64.79 ± 6.84%). Histological analysis, the expression of collagen type I via immunohistochemistry, and transmission electron microscopy indicated a greater deposition of collagen in the mice treated with hydrogel loaded with cells than in the mice administered other treatments. Therefore, the BC/AA hydrogel has promising application as a wound dressing and a cell carrier.
    Matched MeSH terms: Wound Healing
  9. Chin CY, Ng PY, Ng SF
    Drug Deliv Transl Res, 2019 04;9(2):453-468.
    PMID: 29560587 DOI: 10.1007/s13346-018-0510-z
    Previously, Moringa oleifera leaf (MOL) standardised aqueous extract-loaded films were successfully developed and they showed potential wound healing activity in vitro. The objective of this study was to evaluate in vivo dermal safety as well as wound healing efficacy of these MOL film dressings (containing 0.1, 0.5 and 1% MOL) on diabetic rat model. The acute dermal toxicity was carried out on healthy rats, and signs of toxicity over 14 days were observed. For wound healing studies, excision and abrasion wounds were created out on the STZ/HFD-induced diabetic rat model and the wound healing was studied over 21 days. The wound healing evaluation determined by histology staining, hydroxyproline assay and ELISA assays on wound healing related-growth factors, cytokines and chemokines. MOL film formulations exhibited no signs of dermal toxicities. In excision wound model, 0.5% film significantly enhanced the wound closure by 77.67 ± 7.28% at day 7 compared to control group. While in abrasion wounds, 0.5% MOL films accelerated wound closure significantly at 81 ± 4.5% as compared to the control. The histology findings and hydroxyproline assay revealed that high collagen deposition and complete re-epithelialisation were observed for the wounds treated with 0.5 and 1% MOL films. All MOL film dressings had successfully tested non-toxic via in vivo safety dermal toxicity. It was concluded that the 0.5% MOL extract-loaded film had proven to be the most promising approach to accelerate diabetic wound healing process in both full-thickness excision and partial thickness abrasion wounds on the HFD/STZ-induced diabetic type II model.
    Matched MeSH terms: Wound Healing/drug effects*
  10. Muniandy K, Gothai S, Arulselvan P, Kumar SS, Norhaizan ME, Umamaheswari A, et al.
    Pak J Pharm Sci, 2019 Mar;32(2):703-707.
    PMID: 31081786
    Wound healing is a natural intricate cascade process involving cellular, biochemical and molecular mechanism to restore the injured or wounded tissue. Malaysia's multi-ethnic social fabric is reflected in its different traditional folk cuisines with different nutritional important ingredients. Despite these differences, there are some commonly used pantry ingredients among Malaysians and these ingredients may possess some healing power for acute and chronic wounds. These essential nutritional ingredients are included Amla (Ribes uva-crispa), Cinnamon (Cinnamomun venum), Curry Leaves (Murraya koenigii), Coriander (Coriandrum sativum), Fenugreek (Trigonella foenum-graecum), Garlic (Allium indica), Onion (Allium cepa) and Tamarind (Tamarindus indica). This article provides a review of the remedies with confirmed wound healing activities from previous experiments conducted by various researchers. Most of the researchers have focused only on the preliminary studies through appropriate model; hence detailed investigations which including pharmacological and pre-clinical studies are needed to discover its molecular mechanisms. In this review article, we have discussed about the wound healing potential of few commonly used edible plants and their known mechanism.
    Matched MeSH terms: Wound Healing/drug effects*; Wound Healing/physiology
  11. Maarof M, Mh Busra MF, Lokanathan Y, Bt Hj Idrus R, Rajab NF, Chowdhury SR
    Drug Deliv Transl Res, 2019 02;9(1):144-161.
    PMID: 30547385 DOI: 10.1007/s13346-018-00612-z
    Skin substitutes are one of the main treatments for skin loss, and a skin substitute that is readily available would be the best treatment option. However, most cell-based skin substitutes require long production times, and therefore, patients endure long waiting times. The proteins secreted from the cells and tissues play vital roles in promoting wound healing. Thus, we aimed to develop an acellular three-dimensional (3D) skin patch with dermal fibroblast conditioned medium (DFCM) and collagen hydrogel for immediate treatment of skin loss. Fibroblasts from human skin samples were cultured using serum-free keratinocyte-specific media (KM1 or KM2) and serum-free fibroblast-specific medium (FM) to obtain DFCM-KM1, DFCM-KM2, and DFCM-FM, respectively. The acellular 3D skin patch was soft, semi-solid, and translucent. Collagen mixed with DFCM-KM1 and DFCM-KM2 showed higher protein release compared to collagen plus DFCM-FM. In vitro and in vivo testing revealed that DFCM and collagen hydrogel did not induce an immune response. The implantation of the 3D skin patch with or without DFCM on the dorsum of BALB/c mice demonstrated a significantly faster healing rate compared to the no-treatment group 7 days after implantation, and all groups had complete re-epithelialization at day 17. Histological analysis confirmed the structure and integrity of the regenerated skin, with positive expression of cytokeratin 14 and type I collagen in the epidermal and dermal layer, respectively. These findings highlight the possibility of using fibroblast secretory factors together with collagen hydrogel in an acellular 3D skin patch that can be used allogeneically for immediate treatment of full-thickness skin loss.
    Matched MeSH terms: Wound Healing/drug effects*
  12. Tan WS, Arulselvan P, Ng SF, Mat Taib CN, Sarian MN, Fakurazi S
    BMC Complement Altern Med, 2019 Jan 17;19(1):20.
    PMID: 30654793 DOI: 10.1186/s12906-018-2427-y
    BACKGROUND: Impaired wound healing is a debilitating complication of diabetes that leads to significant morbidity, particularly foot ulcers. The risk of developing diabetic foot ulcers for diabetic patients is 15% over their lifetime and approximately 85% of limb amputations is caused by non-healing ulcers. Unhealed, gangrenous wounds destroy the structural integrity of the skin, which acts as a protective barrier that prevents the invasion of external noxious agents into the body. Vicenin-2 (VCN-2) has been reported to contain prospective anti-oxidant and anti-inflammatory properties that enhance cell proliferation and migration. Sodium Alginate (SA) is a natural polysaccharide that possesses gel forming properties and has biodegradable and biocompatible characteristics. Therefore, the objective of this study is to evaluate the effect of SA wound dressings containing VCN-2 on diabetic wounds.

    METHODS: Wounds were inflicted in type-1 diabetic-streptozotocin (STZ) induced male Sprague Dawley rats. Subsequently, relevant groups were topically treated with the indicated concentrations (12.5, 25 and 50 μM) of VCN-2 hydrocolloid film over the study duration (14 days). The control group was treated with vehicle dressing (blank or allantoin). Wounded tissues and blood serum were collected on 0, 7 and 14 days prior to sacrifice. Appropriate wound assessments such as histological tests, nitric oxide assays, enzyme-linked immunosorbent assays (ELISA) and immunoblotting assays were conducted to confirm wound healing efficacy in the in vivo model. One-way Analysis of Variance (ANOVA) was used for statistical analysis.

    RESULTS: Results showed that hydrocolloid film was recapitulated with VCN-2 enhanced diabetic wound healing in a dose-dependent manner. VCN-2 reduced pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α), mediators (iNOS and COX-2), and nitric oxide (NO) via the NF-κB pathway. Data suggests that the VCN-2 film facilitated healing in hyperglycemic conditions by releasing growth factors such as (VEGF and TGF-β) to enhance cell proliferation, migration, and wound contraction via the VEGF and TGF-β mechanism pathways.

    CONCLUSIONS: This study's findings suggest that VCN-2 may possess wound healing potential since topical treatment with VCN-2 hydrocolloid films effectively enhanced wound healing in hyperglycemic conditions.

    Matched MeSH terms: Wound Healing/drug effects*
  13. Nasir NAM, Paus R, Ansell DM
    Wound Repair Regen, 2019 01;27(1):126-133.
    PMID: 30575205 DOI: 10.1111/wrr.12688
    Ex vivo wounded human skin organ culture is an invaluable tool for translationally relevant preclinical wound healing research. However, studies incorporating this system are still underutilized within the field because of the low throughput of histological analysis required for downstream assessment. In this study, we use intravital fluorescent dye to lineage trace epidermal cells, demonstrating that wound re-epithelialization of human ex vivo wounds occurs consistent with an extending shield mechanism of collective migration. Moreover, we also report a relatively simple method to investigate global epithelial closure of explants in culture using daily fluorescent dye treatment and en face imaging. This study is the first to quantify healing of ex vivo wounds in a longitudinal manner, providing global assessments for re-epithelialization and tissue contraction. We show that this approach can identify alterations to healing with a known healing promoter. This methodological study highlights the utility of human ex vivo wounds in enhancing our understanding of mechanisms of human skin repair and in evaluating novel therapies to improve healing outcome.
    Matched MeSH terms: Wound Healing/physiology*
  14. Kee KK, Nair HKR, Yuen NP
    J Wound Care, 2019 Jan 01;28(Sup1):S4-S13.
    PMID: 30724120 DOI: 10.12968/jowc.2019.28.Sup1.S4
    OBJECTIVE:: Objectives. To determine the prevalence and risk factors for diabetic foot infection (DFI), and to identify factors associated with delayed wound healing of diabetic foot ulcer (DFU).

    METHOD:: The retrospective study was performed in a referral wound care clinic in Hospital Kuala Lumpur. Data was collected from January 2014 to October 2016 on DFU patients who attended this clinic.

    RESULTS:: Of the 340 patients (216 male and 124 female) DFU patients who attended the clinic (mean age: 58.1±10.8 years old), 41.5% presented with infection with a mean cross-sectional ulcer area of 21.5±33.2cm2. Binary logistic regression analysis revealed that patients of Chinese ethnicity (OR: 3.39; 95%CI 1.49 to 7.70), with fasting blood glucose ≥7mmol/l (OR: 3.41; 95%CI 1.57 to 7.39), ulcer size ≥10cm2 (OR: 2.90; 95%CI 1.45 to 5.82) and blood pressure ≥140/90mmHg (OR: 2.52; 95%CI 1.54 to 4.14) were more likely to develop DFI. The median healing time for patients with DFUs was three months. There were six variables identified as significantly associated with prolonged healing time of DFU, namely presence of infection (p<0.001), poor glycaemic control with fasting blood glucose ≥7mmol/l (p<0.001), high blood pressure ≥140/90mmHg (p<0.001), large DFU size ≥2cm2 (p<0.001), history of amputation (p<0.005) and plantar location of the DFU (p<0.05).

    CONCLUSION:: Large DFU size, poor glycaemic and blood pressure control are common risk factors for both DFU and DFI. Unexpected high prevalence and ethnicity risk factor for DFI urge more comprehensive primary and secondary preventative strategies to reduce its incidence.

    Matched MeSH terms: Wound Healing
  15. Muhammad Lutfi Mohamed Halim, Nora Azirah Mohd Zayi, Mohd Yusof Mohamad, Mohd Hafiz Arzmi
    MyJurnal
    Introduction: Oral cancer is the sixth most common malignancy in the world. It is a major concern in Southeast Asia primarily due to betel quid chewing, smoking, and alcohol consumption. In Malaysia, oral cancer related cases accounts for 1.55% of the cause of deaths. Despite recent advances in cancer diagnoses and therapies, the survival rate of oral cancer patients only reached 50% in the last few decades. Tissue engineering (TE) principles may pro-vide new technology platforms to study mechanisms of angiogenesis and tumour cell growth as well as potentially tumour cell spreading in cancer research. The use of biomaterial, appropriate cell source and proper signalling mol-ecules are vital components of TE. Collagen biomaterial are widely used scaffold or membrane in oral application. Nevertheless, no review has been performed on the its usage for the study of oral cancer. This study aimed to sys-tematically review the use of collagen scaffold in oral cancer application. Methods: Research articles were searched using Scopus, Pubmed and Web of Science (WOS) databases. The keywords were limited to “collagen membrane OR collagen scaffold” AND “oral cancer”. Results: Initial search yielded 61 papers (Scopus:37, Pubmed: 12, WOS: 12). Further scrutinization of the papers based on the inclusion criteria resulted total of 3 papers. Two of the papers used collagen membrane for regeneration of oral mucosal defect and increment of alveolar ridge height post-surgery. The remaining paper utilize collagen biomaterial as scaffold for the culture of adenoid cystic carcinoma (ACC) cells. All papers reported significant role of collagen biomaterial in terms of tissue formation, healing scaffold and cellular proliferation. Conclusion: Collagen utilization as biomaterial offers potential use for regeneration of oral related structures as well providing useful model for therapeutics anti-cancer research.
    Matched MeSH terms: Wound Healing
  16. Kathleen J. Jalani, Razuan Hilmi Md Sulji, Hannis Fadzillah Mohsin, Ibtisam Abdul Wahab
    ESTEEM Academic Journal, 2019;15(1):18-24.
    MyJurnal
    Aloe vera which is also known as Aloe barbadensis Miller,is a plant that is commonly used for medicinal purposes and as treatments for various health issues. It produces two substances; gel and latex, which are used for commercial household products, halal food and cosmetics. Aloe gel is the clear, jelly-like substance found in the inner part of the Aloe leaf while Aloe’s yellow latex comes from the peel. Aloe vera is able to provide therapeutic effects such as wound healing, anti-inflammatory, antioxidant, laxative and antimicrobial properties. The objective of this study was to
    investigate the extracts via spectrophotometry (λ = 200 – 400 nm) and liquid chromatography. After 21 days, the ultraviolet spectra showed the evidence of the water molecules interactions and the hydroxyl groups in hydroalcoholic extracts. Significant peaks were also observed in the chromatograms. Further studies evaluating the stability of A. vera extracts should be carried out.
    Matched MeSH terms: Wound Healing
  17. Tracey Anastacia Jeckson, Sreenivas Patro Sisinthy, Neo Yun Ping
    MyJurnal
    Introduction: Diabetic foot ulcer (DFU) is the most distressing complication of diabetes mellitus and often associated with risk of non-traumatic lower extremity amputations. Available formulations and wound dressings for DFU treatment are unfortunately less effective both on controlling and healing DFU. Issues commonly found are associated with providing an optimum environment which facilitates healing process; moist environment, effective oxygen exchange, preventing infection, controlling exudate and also patients compliance. The challenge is therefore to develop a novel drug delivery which address this unmet medical need for better wound treatment of chronic and slow healing DFU. This study aimed to develop a biomaterial based nanofibrous wound dressing formulation containing deferoxamine (DFO), which reported as a potential therapeutic approach to improve wound healing. Deferoxamine regulates the expression and increase stability of hypoxia-inducible factor-1α (HIF-1 α), growthfactor that crucial in wound repair, and thus increase neovascularization. Preparation and characterization of chosen polymers; chitosan/ alginate/polyvinyl alcohol (PVA) for nanofiber formulation will be carried out. Such biodegradable polymer nanofiber is a great benefit for drug delivery owing to its high surface area to volume ratio and high porosity which creates ideal environment to aid in wound healing. Methods: Nanofibers loaded DFO will be fabricated by electrospinning
    method that utilizes electrostatic force to produce fine fibers from the polymeric solution. Results: Various polymers concentrations and ratios are investigated to obtain the desired fibers characteristics. The selected optimized DFO nanofibers will be studied for its efficacy in wound healing through in-vivo animal studies. Conclusion: The proposed formulation would be an ideal low cost novel wound dressing with improved healing potential for efficient treatment
    of diabetic foot ulcer.
    Matched MeSH terms: Wound Healing
  18. Md Ismail, N.H., Nik Mohd Alwi N.A.
    JUMMEC, 2019;22(1):13-19.
    MyJurnal
    Oral ulcer is a lesion with multifactorial causes and occurs worldwide. The lesion usually resolved within 14
    days, but the pain may have an impact on the quality of patient’s life. Therefore, having a natural derived
    remedy that can reduce healing time would be a great advantage. This study aims to investigate histological
    sections of buccal ulcer on rats treated with aqueous extract of Piper sarmentosum (AEPS). Glacial acetic acid
    was used to induce buccal ulcer on male Sprague Dawley rats. Control group received normal saline while
    the experimental group received AEPS for treatment. On certain days of post-ulcer induction, buccal ulcer
    tissue samples were harvested, sectioned and stained with Hematoxylin and Eosin (H&E). Histological slides
    were examined for inflammation and scored. The inflammation severity reduced from day 2 to day 12. In the
    experimental group there was a statistically significant differences of inflammation score, particularly on day
    2 with a score of (2.8 + 0.2). Neutrophils were less in the experimental group and the tissue debris clearance
    was faster compared to control group. Full reepithelization was observed on both treated tissue sections on
    day 12 with less severe inflammation. Topical application of AEPS is proven to have anti-inflammatory effect
    by reducing the number of neutrophils during inflammation phase of oral ulcer healing.
    Matched MeSH terms: Wound Healing
  19. Mohamad NE, Yeap SK, Abu N, Lim KL, Zamberi NR, Nordin N, et al.
    Food Nutr Res, 2019;63.
    PMID: 30814922 DOI: 10.29219/fnr.v63.1616
    Background: Coconut water and vinegars have been reported to possess potential anti-tumour and immunostimulatory effects. However, the anti-tumour, anti-inflammatory and immunostimulatory effects of coconut water vinegar have yet to be tested.

    Objective: This study investigated the in vitro and in vivo anti-tumour effects of coconut water vinegar on 4T1 breast cancer cells.

    Methods: The 4T1 cells were treated with freeze-dried coconut water vinegar and subjected to MTT cell viability, BrdU, annexin V/PI apoptosis, cell cycle and wound healing assays for the in vitro analysis. For the in vivo chemopreventive evaluation, mice challenged with 4T1 cells were treated with 0.08or 2.00 mL/kg body weight of fresh coconut water vinegar for 28 days. Tumour weight, apoptosis of tumour cells, metastasis and immunity of untreated mice and coconut water vinegar-treated 4T1 challenged mice were compared.

    Results: Freeze-dried coconut water vinegar reduced the cell viability, induced apoptosis and delayed the wound healing effect of 4T1 cells in vitro. In vivo, coconut water vinegar delayed 4T1 breast cancer progression in mice by inducing apoptosis and delaying the metastasis. Furthermore, coconut water vinegar also promoted immune cell cytotoxicity and production of anticancer cytokines. The results indicate that coconut water vinegar delays breast cancer progression by inducing apoptosis in breast cancer cells, suppressing metastasis and activating anti-tumour immunity.

    Conclusion: Coconut water vinegar is a potential health food ingredient with a chemopreventive effect.

    Matched MeSH terms: Wound Healing
  20. Manvati S, Mangalhara KC, Kalaiarasan P, Chopra R, Agarwal G, Kumar R, et al.
    Cancer Cell Int, 2019;19:230.
    PMID: 31516387 DOI: 10.1186/s12935-019-0933-8
    Background: Despite several reports describing the dual role of miR-145 as an oncogene and a tumor suppressor in cancer, not much has been resolved and understood.

    Method: In this study, the potential targets of miR-145 were identified bio-informatically using different target prediction tools. The identified target genes were validated in vitro by dual luciferase assay. Wound healing and soft agar colony assay assessed cell proliferation and migration. miR-145 expression level was measured quantitatively by RT-PCR at different stages of breast tumor. Western blot was used to verify the role of miR-145 in EMT transition using key marker proteins.

    Result: Wound healing and soft agar colony assays, using miR-145 over-expressing stably transfected MCF7 cells, unraveled its role as a pro-proliferation candidate in cancerous cells. The association between miR-145 over-expression and differential methylation patterns in representative target genes (DR5, BCL2, TP53, RNF8, TIP60, CHK2, and DCR2) supported the inference drawn. These in vitro observations were validated in a representative set of nodal positive tumors of stage 3 and 4 depicting higher miR-145 expression as compared to early stages. Further, the role of miR-145 in epithelial-mesenchymal (EMT) transition found support through the observation of two key markers, Vimentin and ALDL, where a positive correlation with Vimentin protein and a negative correlation with ALDL mRNA expression were observed.

    Conclusion: Our results demonstrate miR-145 as a pro-cancerous candidate, evident from the phenotypes of aggressive cellular proliferation, epithelial to mesenchymal transition, hypermethylation of CpG sites in DDR and apoptotic genes and upregulation of miR-145 in later stages of tumor tissues.

    Matched MeSH terms: Wound Healing
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links