Displaying publications 141 - 160 of 899 in total

Abstract:
Sort:
  1. Tantowi NACA, Mohamed S, Lau SF, Hussin P
    Daru, 2020 Dec;28(2):443-453.
    PMID: 32388789 DOI: 10.1007/s40199-020-00343-y
    BACKGROUND: Osteoporotic-osteoarthritis is an incapacitating musculoskeletal illness of the aged.

    OBJECTIVES: The anti-inflammatory and anti-catabolic actions of Diclofenac were compared with apigenin-C-glycosides rich Clinacanthus nutans (CN) leaf extract in osteoporotic-osteoarthritis rats.

    METHODS: Female Sprague Dawley rats were randomized into five groups (n = 6). Four groups were bilateral ovariectomised for osteoporosis development, and osteoarthritis were induced by intra-articular injection of monosodium iodoacetate (MIA) into the right knee joints. The Sham group was sham-operated, received saline injection and deionized drinking water. The treatment groups were orally given 200 or 400 mg extract/kg body weight or 5 mg diclofenac /kg body weight daily for 28 days. Articular cartilage and bone changes were monitored by gross and histological structures, micro-CT analysis, serum protein biomarkers, and mRNA expressions for inflammation and catabolic protease genes.

    RESULTS: HPLC analysis confirmed that apigenin-C-glycosides (shaftoside, vitexin, and isovitexin) were the major compounds in the extract. The extract significantly and dose-dependently reduced cartilage erosion, bone loss, cartilage catabolic changes, serum osteoporotic-osteoarthritis biomarkers (procollagen-type-II-N-terminal-propeptide PIINP; procollagen-type-I-N-terminal-propeptide PINP; osteocalcin), inflammation (IL-1β) and mRNA expressions for nuclear-factor-kappa-beta NF-κβ, interleukin-1-beta IL-1β, cyclooxygenase-2; and matrix-metalloproteinase-13 MMP13 activities, in osteoporotic-osteoarthritis rats comparable to Diclofenac.

    CONCLUSION: This study demonstrates that apigenin-C-glycosides at 400 mg CN extract/kg (about 0.2 mg apigenin-equivalent/kg) is comparable to diclofenac in suppressing inflammation and catabolic proteases for osteoporotic-osteoarthritis prevention. Graphical abstract.

    Matched MeSH terms: Plant Extracts/chemistry
  2. Salahuddin MAH, Ismail A, Kassim NK, Hamid M, Ali MSM
    Food Chem, 2020 Nov 30;331:127240.
    PMID: 32585546 DOI: 10.1016/j.foodchem.2020.127240
    The present study focused on the phytochemical profiling along with evaluation of in vitro antioxidant, α-glucosidase and α-amylase inhibitory activities of various crudes and fractions obtained from Lepisanthes fruticosa (Roxb) Leenh fruit. Ethanolic seed crude extract exhibited the strongest radical scavenging, β-carotene bleaching activity, α-glucosidase inhibition and the highest total phenolic content (TPC). Column chromatography afforded various fractions with fraction M4 being the most potent due to the strongest radical scavenging, β-carotene bleaching, α-glucosidase inhibition and greatest amount of TPC. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of ethanolic seed crude extract and fraction M4 showed the presence of various phytochemicals with antioxidant and antidiabetic properties, which include mostly flavonoids and tannins. The results may suggest that the ethanolic crude seed extract and its fraction could be an excellent source of bioactive phytochemicals with antioxidant and antidiabetic potential.
    Matched MeSH terms: Plant Extracts/chemistry*
  3. Tan DC, Quek A, Kassim NK, Ismail IS, Lee JJ
    Molecules, 2020 Nov 06;25(21).
    PMID: 33171900 DOI: 10.3390/molecules25215162
    Scopoletin has previously been reported as a biomarker for the standardization of Paederia foetida twigs. This study is the first report on the determination and quantification of scopoletin using quantitative nuclear magnetic resonance (qNMR) in the different extracts of Paederia foetida twigs. The validated qNMR method showed a good linearity (r2 = 0.9999), limit of detection (LOD) (0.009 mg/mL), and quantification (LOQ) (0.029 mg/mL), together with high stability (relative standard deviation (RSD) = 0.022%), high precision (RSD < 1%), and good recovery (94.08-108.45%). The quantification results of scopoletin concentration in chloroform extract using qNMR and microplate ultraviolet-visible (UV-vis) spectrophotometer was almost comparable. Therefore, the qNMR method is deemed accurate and reliable for quality control of Paederia foetida and other medicinal plants without extensive sample preparation.
    Matched MeSH terms: Plant Extracts/chemistry
  4. Aladdin NA, Husain K, Jalil J, Sabandar CW, Jamal JA
    BMC Complement Med Ther, 2020 Oct 27;20(1):324.
    PMID: 33109178 DOI: 10.1186/s12906-020-03119-8
    BACKGROUND: In traditional Malay medicine, Marantodes pumilum (Blume) Kuntze (family Primulaceae) is commonly used by women to treat parturition, flatulence, dysentery, dysmenorrhea, gonorrhea, and bone diseases. Preliminary screening of some Primulaceae species showed that they possess xanthine oxidase inhibitory activity. Thus, this study aimed to investigate the xanthine oxidase inhibitory activity of three varieties of M. pumilum and their phytochemical compounds.

    METHOD: Dichloromethane, methanol, and water extracts of the leaves and roots of M. pumilum var. alata, M. pumilum var. pumila, and M. pumilum var. lanceolata were tested using an in vitro xanthine oxidase inhibitory assay. Bioassay-guided fractionation and isolation were carried out on the most active extract using chromatographic techniques. The structures of the isolated compounds were determined using spectroscopic techniques.

    RESULTS: The most active dichloromethane extract of M. pumilum var. pumila leaves (IC50 = 161.6 μg/mL) yielded one new compound, 3,7-dihydroxy-5-methoxy-4,8-dimethyl-isocoumarin (1), and five known compounds, viz. ardisiaquinone A (2), maesanin (3), stigmasterol (4), tetracosane (5), and margaric acid (6). The new compound was found to be the most active xanthine oxidase inhibitor with an IC50 value of 0.66 ± 0.01 μg/mL, which was not significantly different (p > 0.05) from that of the positive control, allopurinol (IC50 = 0.24 ± 0.00 μg/mL).

    CONCLUSION: This study suggests that the new compound 3,7-dihydroxy-5-methoxy-4,8-dimethyl-isocoumarin (1), which was isolated from the dichloromethane extract of M. pumilum var. pumila leaves, could be a potential xanthine oxidase inhibitor.

    Matched MeSH terms: Plant Extracts/chemistry*
  5. Mahmod II, Ismail IS, Alitheen NB, Normi YM, Abas F, Khatib A, et al.
    BMC Complement Med Ther, 2020 Oct 22;20(1):320.
    PMID: 33092571 DOI: 10.1186/s12906-020-03067-3
    BACKGROUND: Clinacanthus nutans (C. nutans) Lind. locally known as Belalai Gajah or Sabah snake grass is a medicinal plant belonging to Acanthaceae family. In Asia, this plant is traditionally used for treating skin rashes, insects and snake bites, diabetes mellitus, fever and for diuretic effect. C. nutans has been reported to possess biological activities including anti-oxidant, anti-inflammation, anti-cancer, anti-diabetic and anti-viral activities.

    METHODS: Proton Nuclear Magnetic Resonance (1H NMR) and Liquid Chromatography Mass Spectroscopy (LCMS) coupled with multivariate data analysis were employed to characterize the metabolic variations of intracellular metabolites and the compositional changes of the corresponding culture media in rat renal proximal tubular cells (NRK-52E).

    RESULTS: NMR and LCMS analysis highlighted choline, creatine, phosphocholine, valine, acetic acid, phenylalanine, leucine, glutamic acid, threonine, uridine and proline as the main metabolites which differentiated the cisplatin-induced group of NRK-52E from control cells extract. The corresponding media exhibited lactic acid, glutamine, glutamic acid and glucose-1-phosphate as the varied metabolites. The altered pathways perturbed by cisplatin nephrotoxic on NRK-52E cells included changes in amino acid metabolism, lipid metabolism and glycolysis.

    CONCLUSION: The C. nutans aqueous extract (1000 μg/mL) exhibited the most potential nephroprotective effect against cisplatin toxicity on NRK-52E cell lines at 89% of viability. The protective effect could be seen through the changes of the metabolites such as choline, alanine and valine in the C. nutans pre-treated samples with those of the cisplatin-induced group.

    Matched MeSH terms: Plant Extracts/chemistry
  6. Abu Zarin M, Tan JS, Murugan P, Ahmad R
    BMC Complement Med Ther, 2020 Oct 19;20(1):317.
    PMID: 33076892 DOI: 10.1186/s12906-020-03113-0
    BACKGROUND: The banana or scientifically referred to as Musa sp., is one of the most popular fruits all over the world. Almost all parts of a banana tree, including the fruits, stem juice, and flowers are commonly used as traditional medicine for treating diarrhoea (unripe), menorrhagia, diabetes, dysentery, and antiulcerogenic, hypoglycemic, antilithic, hypolipidemic conditions, plus antioxidant actions, inflammation, pains and even snakebites. The study carried out was to evaluate in vitro anti-urolithiatic activity from different types of Musa pseudo-stems.

    METHODS: Observing anti-urolithiathic activity via in vitro nucleation and aggregation assay using a spectrophotometer followed by microscopic observation. A total of 12 methanolic extracts were tested to determine the potential extracts in anti-urolithiasis activities. Cystone was used as a positive control.

    RESULTS: The results manifested an inhibition of nucleation activity (0.11 ± 2.32% to 55.39 ± 1.01%) and an aggregation activity (4.34 ± 0.68% to 58.78 ± 1.81%) at 360 min of incubation time. The highest inhibition percentage in nucleation assay was obtained by the Musa acuminate x balbiciana Colla cv "Awak Legor" methanolic pseudo-stem extract (2D) which was 55.39 ± 1.01%at 60 min of incubation time compared to the cystone at 30.87 ± 0.74%. On the other hand,the Musa acuminate x balbiciana Colla cv "Awak Legor" methanolic bagasse extract (3D) had the highest inhibition percentage in the aggregation assay incubated at 360 min which was obtained at 58.78 ± 1.8%; 5.53% higher than the cystone (53.25%).The microscopic image showed a great reduction in the calcium oxalate (CaOx) crystals formation and the size of crystals in 2D and 3D extracts, respectively, as compared to negative control.

    CONCLUSIONS: The results obtained from this study suggest that the extracts are potential sources of alternative medicine for kidney stones disease.

    Matched MeSH terms: Plant Extracts/chemistry*
  7. Ali JS, Saleem H, Mannan A, Zengin G, Mahomoodally MF, Locatelli M, et al.
    BMC Complement Med Ther, 2020 Oct 16;20(1):313.
    PMID: 33066787 DOI: 10.1186/s12906-020-03093-1
    BACKGROUND: Ethnobotanical and plant-based products allow for the isolation of active constituents against a number of maladies. Monotheca buxifolia is used by local communities due to its digestive and laxative properties, as well as its ability to cure liver, kidney, and urinary diseases. There is a need to explore the biological activities and chemical constituents of this medicinal plant.

    METHODS: In this work, the biochemical potential of M. buxifolia (Falc.) A. DC was explored and linked with its biological activities. Methanol and chloroform extracts from leaves and stems were investigated for total phenolic and flavonoid contents. Ultrahigh-performance liquid chromatography coupled with mass spectrometry (UHPLC-MS) was used to determine secondary-metabolite composition, while high-performance liquid chromatography coupled with photodiode array detection (HPLC-PDA) was used for polyphenolic quantification. In addition, we carried out in vitro assays to determine antioxidant potential and the enzyme-inhibitory response of M. buxifolia extracts.

    RESULTS: Phenolics (91 mg gallic-acid equivalent (GAE)/g) and flavonoids (48.86 mg quercetin equivalent (QE)/g) exhibited their highest concentration in the methanol extract of stems and the chloroform extract of leaves, respectively. UHPLC-MS analysis identified a number of important phytochemicals, belonging to the flavonoid, phenolic, alkaloid, and terpenoid classes of secondary metabolites. The methanol extract of leaves contained a diosgenin derivative and polygalacin D, while kaempferol and robinin were most abundant in the chloroform extract. The methanol extract of stems contained a greater peak area for diosgenin and kaempferol, whereas this was true for lucidumol A and 3-O-cis-coumaroyl maslinic acid in the chloroform extract. Rutin, epicatechin, and catechin were the main phenolics identified by HPLC-PDA analysis. The methanol extract of stems exhibited significant 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical-scavenging activities (145.18 and 279.04 mmol Trolox equivalent (TE)/g, respectively). The maximum cupric reducing antioxidant capacity (CUPRAC) (361.4 mg TE/g), ferric-reducing antioxidant power (FRAP) (247.19 mg TE/g), and total antioxidant potential (2.75 mmol TE/g) were depicted by the methanol extract of stems. The methanol extract of leaves exhibited stronger inhibition against acetylcholinesterase (AChE) and glucosidase, while the chloroform extract of stems was most active against butyrylcholinesterase (BChE) (4.27 mg galantamine equivalent (GALAE)/g). Similarly, the highest tyrosinase (140 mg kojic-acid equivalent (KAE)/g) and amylase (0.67 mmol acarbose equivalent (ACAE)/g) inhibition was observed for the methanol extract of stems.

    CONCLUSIONS: UHPLC-MS analysis and HPLC-PDA quantification identified a number of bioactive secondary metabolites of M. buxifolia, which may be responsible for its antioxidant potential and enzyme-inhibitory response. M. buxifolia can be further explored for the isolation of its active components to be used as a drug.

    Matched MeSH terms: Plant Extracts/chemistry*
  8. Hariono M, Rollando R, Karamoy J, Hariyono P, Atmono M, Djohan M, et al.
    Molecules, 2020 Oct 14;25(20).
    PMID: 33066411 DOI: 10.3390/molecules25204691
    Matrix metalloproteinase9 (MMP9) is known to be highly expressed during metastatic cancer where most known potential inhibitors failed in the clinical trials. This study aims to select local plants in our state, as anti-breast cancer agent with hemopexin-like domain of MMP9 (PEX9) as the selective protein target. In silico screening for PEX9 inhibitors was performed from our in house-natural compound database to identify the plants. The selected plants were extracted using methanol and then a step-by-step in vitro screening against MMP9 was performed from its crude extract, partitions until fractions using FRET-based assay. The partitions were obtained by performing liquid-liquid extraction on the methanol extract using n-hexane, ethylacetate, n-butanol, and water representing nonpolar to polar solvents. The fractions were made from the selected partition, which demonstrated the best inhibition percentage toward MMP9, using column chromatography. Of the 200 compounds screened, 20 compounds that scored the binding affinity -11.2 to -8.1 kcal/mol toward PEX9 were selected as top hits. The binding of these hits were thoroughly investigated and linked to the plants which they were reported to be isolated from. Six of the eight crude extracts demonstrated inhibition toward MMP9 with the IC50 24 to 823 µg/mL. The partitions (1 mg/mL) of Ageratum conyzoides aerial parts and Ixora coccinea leaves showed inhibition 94% and 96%, whereas their fractions showed IC50 43 and 116 µg/mL, respectively toward MMP9. Using MTT assay, the crude extract of Ageratum exhibited IC50 22 and 229 µg/mL against 4T1 and T47D cell proliferations, respectively with a high safety index concluding its potential anti-breast cancer from herbal.
    Matched MeSH terms: Plant Extracts/chemistry*
  9. Azman NAN, Alhawarri MB, Rawa MSA, Dianita R, Gazzali AM, Nogawa T, et al.
    Molecules, 2020 Oct 04;25(19).
    PMID: 33020403 DOI: 10.3390/molecules25194545
    Seventeen methanol extracts from different plant parts of five different Cassia species, including C. timorensis, C. grandis, C. fistula, C. spectabilis, and C. alata were screened against acetylcholinesterase (AChE). C. timorensis extracts were found to exhibit the highest inhibition towards AChE whereby the leaf, stem, and flower methanol extracts showed 94-97% inhibition. As far as we are aware, C. timorensis is one of the least explored Cassia spp. for bioactivity. Further fractionation led to the identification of six compounds, isolated for the first time from C. timorensis: 3-methoxyquercetin (1), benzenepropanoic acid (2), 9,12,15-octadecatrienoic acid (3), β-sitosterol (4), stigmasterol (5), and 1-octadecanol (6). Compound 1 showed moderate inhibition towards AChE (IC50: 83.71 μM), while the other compounds exhibited poor to slightly moderate AChE inhibitory activity. Molecular docking revealed that the methoxy substitution of 1 formed a hydrogen bond with TYR121 at the peripheral anionic site (PAS) and the hydroxyl group at C5 formed a covalent hydrogen bond with ASP72. Additionally, the OH group at the C3' position formed an interaction with the protein at the acyl pocket (PHE288). This possibly explains the activity of 1 in blocking the entry of acetylcholine (ACh, the neurotransmitter), thus impeding the hydrolysis of ACh.
    Matched MeSH terms: Plant Extracts/chemistry*
  10. Abd Ghafar SZ, Mediani A, Maulidiani M, Rudiyanto R, Mohd Ghazali H, Ramli NS, et al.
    Food Res Int, 2020 10;136:109312.
    PMID: 32846521 DOI: 10.1016/j.foodres.2020.109312
    Proton nuclear magnetic resonance (1H NMR)- and ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS)-based analytical tools are frequently used in metabolomics studies. These complementary metabolomics platforms were applied to identify and quantify the metabolites in Phyllanthus acidus extracted with different ethanol concentrations. In total, 38 metabolites were tentatively identified by 1H NMR and 39 via UHPLC-MS, including 30 compounds are reported for the first time from this plant. The partial least square analysis (PLS) revealed the metabolites that contributed to α-glucosidase and nitric oxide (NO) inhibitory activities, including kaempferol, quercetin, myricetin, phyllanthusol A, phyllanthusol B, chlorogenic, catechin, cinnamic coumaric, caffeic, quinic, citric, ellagic and malic acids. This study shows the significance of combining 1H NMR- and UHPLC-MS-based metabolomics as the best strategies in identifying metabolites in P. acidus extracts and establishing an extract with potent antioxidant, anti-diabetic, and anti-inflammatory properties.
    Matched MeSH terms: Plant Extracts/chemistry*
  11. Zulkifli NI, Muhamad M, Mohamad Zain NN, Tan WN, Yahaya N, Bustami Y, et al.
    Molecules, 2020 Sep 22;25(18).
    PMID: 32971740 DOI: 10.3390/molecules25184332
    A bottom-up approach for synthesizing silver nanoparticles (AgNPs-GA) phytomediated by Garcinia atroviridis leaf extract is described. Under optimized conditions, the AgNPs-GA were synthesized at a concentration of 0.1 M silver salt and 10% (w/v) leaf extract, 1:4 mixing ratio of reactants, pH 3, temperature 32 °C and 72 h reaction time. The AgNPs-GA were characterized by various analytical techniques and their size was determined to be 5-30 nm. FTIR spectroscopy indicates the role of phenolic functional groups in the reduction of silver ions into AgNPs-GA and in supporting their subsequent stability. The UV-Visible spectrum showed an absorption peak at 450 nm which reflects the surface plasmon resonance (SPR) of AgNPs-GA and further supports the stability of these biosynthesized nanoparticles. SEM, TEM and XRD diffractogram analyses indicate that AgNPs-GA were spherical and face-centered-cubic in shape. This study also describes the efficacy of biosynthesized AgNPs-GA as anti-proliferative agent against human breast cancer cell lines, MCF-7 and MCF-7/TAMR-1. Our findings indicate that AgNPs-GA possess significant anti-proliferative effects against both the MCF-7 and MCF-7/TAMR-1 cell lines, with inhibitory concentration at 50% (IC50 values) of 2.0 and 34.0 µg/mL, respectively, after 72 h of treatment. An induction of apoptosis was evidenced by flow cytometry using Annexin V-FITC and propidium iodide staining. Therefore, AgNPs-GA exhibited its anti-proliferative activity via apoptosis on MCF-7 and MCF-7/TAMR-1 breast cancer cells in vitro. Taken together, the leaf extract from Garcinia atroviridis was found to be highly capable of producing AgNPs-GA with favourable physicochemical and biological properties.
    Matched MeSH terms: Plant Extracts/chemistry
  12. Nipun TS, Khatib A, Ahmed QU, Redzwan IE, Ibrahim Z, Khan AYF, et al.
    Molecules, 2020 Sep 11;25(18).
    PMID: 32932994 DOI: 10.3390/molecules25184161
    The plant Psychotria malayana Jack belongs to the Rubiaceae family and is known in Malaysia as "meroyan sakat/salung". A rapid analytical technique to facilitate the evaluation of the P. malayana leaves' quality has not been well-established yet. This work aimed therefore to develop a validated analytical technique in order to predict the alpha-glucosidase inhibitory action (AGI) of P. malayana leaves, applying a Fourier Transform Infrared Spectroscopy (FTIR) fingerprint and utilizing an orthogonal partial least square (OPLS). The dried leaf extracts were prepared by sonication of different ratios of methanol-water solvent (0, 25, 50, 75, and 100% v/v) prior to the assessment of alpha-glucosidase inhibition (AGI) and the following infrared spectroscopy. The correlation between the biological activity and the spectral data was evaluated using multivariate data analysis (MVDA). The 100% methanol extract possessed the highest inhibitory activity against the alpha-glucosidase (IC50 2.83 ± 0.32 μg/mL). Different bioactive functional groups, including hydroxyl (O-H), alkenyl (C=C), methylene (C-H), carbonyl (C=O), and secondary amine (N-H) groups, were detected by the multivariate analysis. These functional groups actively induced the alpha-glucosidase inhibition effect. This finding demonstrated the spectrum profile of the FTIR for the natural herb P. malayana Jack, further confirming its medicinal value. The developed validated model can be used to predict the AGI of P. malayana, which will be useful as a tool in the plant's quality control.
    Matched MeSH terms: Plant Extracts/chemistry*
  13. Saleem H, Htar TT, Naidu R, Zengin G, Ahmad I, Ahemad N
    Nat Prod Res, 2020 Sep;34(18):2602-2606.
    PMID: 30600720 DOI: 10.1080/14786419.2018.1543684
    In this study, phytochemical composition, antioxidant, enzyme inhibition and cytotoxic activities of methanol and dichloromethane (DCM) extracts of Bougainvillea glabra (B. glabra) flowers were investigated. Methanol extract was found to have higher total bioactive contents and UHPLC-MS analysis of methanol extract revealed the presence of well-known phenolic and flavonoid compounds. Antioxidant activities were performed by radical scavenging (DPPH and ABTS), reducing power (FRAP and CUPRAC), phosphomolybdenum (TAC) and metal chelating assays. From our result, we observed that methanol extract had many antioxidant compounds. The DCM extract exhibited higher cholinesterases and α-glucosidase enzyme inhibition, while methanol extract showed significant urease inhibition. Both extracts exhibited strong to moderate cytotoxicity against MCF-7, MDA-MB-231, CaSki, DU-145 and SW-480 cancer cells with IC50 values ranging from 88.49 to 304.7 µg/mL. The findings showed the B. glabra to possess considerable antioxidant, enzyme inhibition and cytotoxic potentials and therefore has potential to discover novel bioactive molecules.
    Matched MeSH terms: Plant Extracts/chemistry
  14. Azhar NA, Ghozali SZ, Abu Bakar SA, Lim V, Ahmad NH
    Toxicol In Vitro, 2020 Sep;67:104910.
    PMID: 32526345 DOI: 10.1016/j.tiv.2020.104910
    Application of silver nanoparticles serves as a new approach in cancer treatment due to its unique features. Biosynthesis of silver nanoparticles using plant is advantageous since they are easily accessible, nontoxic and produce quicker reaction compared to other methods. To evaluate the cytotoxicity, mechanism of cell death and DNA damage of biosynthesized Catharanthus roseus-silver nanoparticles on human liver cancer (HepG2) cells. The antiproliferative activity of Catharanthus roseus‑silver nanoparticles was measured using MTT assay. The cytotoxic effects were further evaluated by measuring nitric oxide and reactive oxygen species (ROS). The mechanism of cell death was determined by annexin-FITC/propidium iodide, mitochondrial membrane potential (MMP) and cell cycle assays. The assessment of DNA damage was evaluated using Comet assay method. The uptake of the nanoparticles were evaluated by Transmission Electron Microscopy (TEM). Catharanthus roseus‑silver nanoparticles has inhibited the proliferation of HepG2 cells in a time-dependent manner with a median IC50 value of 3.871 ± 0.18 μg/mL. The concentration of nitrite and ROS were significantly higher than control. The cell death was due to apoptosis associated with MMP loss, cell cycle arrest, and extensive DNA damage. TEM analysis indicated the presence of free nanoparticles and endosomes containing the nanoparticles. The findings show that Catharanthus roseus‑silver nanoparticles have produced cytotoxic effects on HepG2 cells and thus may have a potential to be used as an anticancer treatment, particularly for hepatocellular carcinoma.
    Matched MeSH terms: Plant Extracts/chemistry
  15. Mohammad Noor HS, Ismail NH, Kasim N, Mediani A, Mohd Zohdi R, Ali AM, et al.
    Appl Biochem Biotechnol, 2020 Sep;192(1):1-21.
    PMID: 32215848 DOI: 10.1007/s12010-020-03304-y
    Patients are turning into herbs for the management of diabetes, which cause increasing in the demand of plant-based alternative medicines. Ficus deltoidea or locally known as "Mas Cotek" in Malaysia is a famous herbal plant. However, many varieties of F. deltoidea existed with varied antidiabetic activities inspire us to evaluate in vivo antidiabetic activity of the most available varieties of F. deltoidea. Therefore, antihyperglycemic effect of different varieties of F. deltoidea at dose 250 mg/kg was evaluated on streptozotocin-nicotinamide-induced diabetic rats and further assessed their urinary metabolites using proton nuclear magnetic resonance (1H-NMR). The hyperglycemic blood level improved towards normoglycemic state after 30 days of treatment with standardized extracts of F. deltoidea var. trengganuensis, var. kunstleri, and var. intermedia. The extracts also significantly managed the biochemical parameters in diabetic rats. Metabolomics results showed these varieties were able to manage the altered metabolites of diabetic rats by shifting some of the metabolites back to their normal state. This knowledge might be very important in suggesting the use of these herbs in long-term treatment for diabetes. The most potential variety can be recommended, which may be useful for further pharmacological studies and herbal authentication processes.
    Matched MeSH terms: Plant Extracts/chemistry
  16. Assaw S, Mohd Amir MIH, Khaw TT, Bakar K, Mohd Radzi SA, Mazlan NW
    Nat Prod Res, 2020 Aug;34(16):2403-2406.
    PMID: 30600710 DOI: 10.1080/14786419.2018.1538220
    Mangrove plants are endowed with various biologically active compounds which have potent antibacterial and antioxidant properties. In present study, a bioactivity-guided fractionation for antibacterial and antioxidant active metabolites from the twigs of Avicennia officinalis collected from Kuala Selangor Nature Park, Selangor, Malaysia gave 13 major fractions. The antibacterial activity of A. officinalis fractions using well-diffusion showed strong selectivity on the Gram-positive bacteria (Staphylococcus epidermidis, S. aureus and Bacillus subtilis) with minimum inhibition concentration (MIC) values of 0.156-5.00 mg/mL. However, no antibacterial activities were observed on the Gram-negative bacteria (Vibrio cholera, Enterobacter cloacae and Escherichia coli). The active antibacterial fractions were further isolated using several chromatographic techniques to give two naphthofuranquinones, namely, avicenol C (1) and stenocarpoquinone B (2). Meanwhile, the antioxidant activity of A. officinalis fractions were evaluated using DPPH radical scavenging assay exhibited low antioxidant activities. Molecular structure of the naphthofuranquinones was elucidated using 1 D and 2 D NMR spectroscopy.
    Matched MeSH terms: Plant Extracts/chemistry*
  17. Jusril NA, Muhamad Juhari ANN, Abu Bakar SI, Md Saad WM, Adenan MI
    Molecules, 2020 Jul 24;25(15).
    PMID: 32721993 DOI: 10.3390/molecules25153353
    Alzheimer's disease (AD) is a neurodegenerative disease and the most cause of dementia in elderly adults. Acetylcholinesterase (AChE) is an important beneficial target for AD to control cholinergic signaling deficit. Centella asiatica (CA) has proven to be rich with active ingredients for memory enhancement. In the present study, the chemical profiling of three accession extracts of CA namely SECA-K017, SECA-K018, and, SECA-K019 were performed using high-performance liquid chromatography (HPLC). Four biomarker triterpene compounds were detected in all CA accessions. Quantitative analysis reveals that madecassoside was the highest triterpene in all the CA accessions. The biomarker compounds and the ethanolic extracts of three accessions were investigated for their acetylcholinesterase (AChE) inhibitory activity using Ellman's spectrophotometer method. The inhibitory activity of the triterpenes and accession extracts was compared with the standard AChE inhibitor eserine. The results from the in vitro study showed that the triterpene compounds exhibited an AChE inhibitory activity with the half-maximal inhibitory concentration (IC50) values between 15.05 ± 0.05 and 59.13 ± 0.18 µg/mL. Asiatic acid was found to possess strong AChE inhibitory activity followed by madecassic acid. Among the CA accession extracts, SECA-K017 and SECA-K018 demonstrated a moderate AChE inhibitory activity with an IC50 value of 481.5 ± 0.13 and 763.5 ± 0.16 µg/mL, respectively from the in silico docking studies, it is observed that asiatic acid and madecassic acid showed very good interactions with the active sites and fulfilled docking parameters against AChE. The present study suggested that asiatic acid and madecassic acid in the CA accessions could be responsible for the AChE inhibitory action and could be used as markers to guide further studies on CA as potential natural products for the treatment of AD.
    Matched MeSH terms: Plant Extracts/chemistry
  18. Wong PL, Fauzi NA, Mohamed Yunus SN, Abdul Hamid NA, Abd Ghafar SZ, Azizan A, et al.
    Molecules, 2020 Jul 06;25(13).
    PMID: 32640504 DOI: 10.3390/molecules25133067
    Plants and plant-based products have been used for a long time for medicinal purposes. This study aimed to determine the antioxidant and anti-α-glucosidase activities of eight selected underutilized plants in Malaysia: Leucaena leucocephala, Muntingia calabura, Spondias dulcis, Annona squamosa, Ardisia elliptica, Cynometra cauliflora, Ficus auriculata, and Averrhoa bilimbi. This study showed that the 70% ethanolic extract of all plants exhibited total phenolic content (TPC) ranging from 51 to 344 mg gallic acid equivalent (GAE)/g dry weight. A. elliptica showed strong 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide (NO) scavenging activities, with half maximal inhibitory concentration (IC50) values of 2.17 and 49.43 μg/mL, respectively. Most of the tested plant extracts showed higher inhibition of α-glucosidase enzyme activity than the standard, quercetin, particularly A. elliptica, F. auriculata, and M. calabura extracts with IC50 values of 0.29, 0.36, and 0.51 μg/mL, respectively. A total of 62 metabolites including flavonoids, triterpenoids, benzoquinones, and fatty acids were tentatively identified in the most active plant, i.e., A. elliptica leaf extract, by using ultra-high-performance liquid chromatography (UHPLC)-electrospray ionization (ESI) Orbitrap MS. This study suggests a potential natural source of antioxidant and α-glucosidase inhibitors from A. elliptica.
    Matched MeSH terms: Plant Extracts/chemistry*
  19. Kam WJ, Abas F, Hussain N, Mirhosseini H
    Nat Prod Res, 2020 Jul;34(13):1937-1941.
    PMID: 30691284 DOI: 10.1080/14786419.2018.1564296
    The objective of this study was to compare the antioxidant activity and cytotoxicity of Durio zibethinus M. (Durian) leaf extract from two extraction methods. Ultrasound-assisted extraction and Accelerated-solvent extraction were used to produce crude extract. The results revealed that UAE achieved 3× higher in total phenolic content in the leaf extract compared to ASE. DPPH radical scavenging activity was 4.6× higher in leaf extract from ASE. No significant differences reported in ferric reducing power, and total flavonoid content of the leaf extract between the two methods. Cytotoxicity via MTT assay demonstrated no significant differences in cell viability upon exposure to the leaf extract from both methods. This suggested that they were appropriate in producing Durio zibethinus M. leaf extract for end use application in food related product. Both ensured similar level of safety in Durio zibethinus M. leaf extract as a new potential ingredient for the food industry.
    Matched MeSH terms: Plant Extracts/chemistry*
  20. Prasher P, Sharma M, Mehta M, Paudel KR, Satija S, Chellappan DK, et al.
    Chem Biol Interact, 2020 Jul 01;325:109125.
    PMID: 32376238 DOI: 10.1016/j.cbi.2020.109125
    The apparent predicament of the representative chemotherapy for managing respiratory distress calls for an obligatory deliberation for identifying the pharmaceuticals that effectively counter the contemporary intricacies associated with target disease. Multiple, complex regulatory pathways manifest chronic pulmonary disorders, which require chemotherapeutics that produce composite inhibitory effect. The cost effective natural product based molecules hold a high fervor to meet the prospects posed by current respiratory-distress therapy by sparing the tedious drug design and development archetypes, present a robust standing for the possible replacement of the fading practice of poly-pharmacology, and ensure the subversion of a potential disease relapse. This study summarizes the experimental evidences on natural products moieties and their components that illustrates therapeutic efficacy on respiratory disorders.
    Matched MeSH terms: Plant Extracts/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links