Displaying publications 1621 - 1640 of 3311 in total

Abstract:
Sort:
  1. Ariffin SH, Manogaran T, Abidin IZ, Wahab RM, Senafi S
    Curr Stem Cell Res Ther, 2017;12(3):247-259.
    PMID: 27784228 DOI: 10.2174/1574888X11666161026145149
    Stem cells (SCs) are capable of self-renewal and multilineage differentiation. Human mesenchymal stem cells (MSCs) and haematopoietic stem cells (HSCs) which can be obtained from multiple sources, are suitable for application in regenerative medicine and transplant therapy. The aim of this review is to evaluate the potential of genomic and proteomic profiling analysis to identify the differentiation of MSCs and HSCs towards osteoblast and odontoblast lineages. In vitro differentiation towards both of these lineages can be induced using similar differentiation factors. Gene profiling cannot be utilised to confirm the lineages of these two types of differentiated cells. Differentiated cells of both lineages express most of the same markers. Most researchers have detected the expression of genes such as ALP, OCN, OPN, BMP2 and RUNX2 in osteoblasts and the expression of the DSPP gene in odontoblasts. Based on their cell-type specific protein profiles, various proteins are differentially expressed by osteoblasts and odontoblasts, except for vimentin and heterogeneous nuclear ribonucleoprotein C, which are expressed in both cell types, and LOXL2 protein, which is expressed only in odontoblasts.
    Matched MeSH terms: Mesenchymal Stromal Cells/cytology; Mesenchymal Stromal Cells/metabolism*
  2. Bahrampour Juybari K, Kamarul T, Najafi M, Jafari D, Sharifi AM
    Cell Tissue Res, 2018 08;373(2):407-419.
    PMID: 29582166 DOI: 10.1007/s00441-018-2825-y
    Strategies based on mesenchymal stem cell (MSC) therapy for restoring injured articular cartilage are not effective enough in osteoarthritis (OA). Due to the enhanced inflammation and oxidative stress in OA microenvironment, differentiation of MSCs into chondrocytes would be impaired. This study aims to explore the effects of diallyl disulfide (DADS) on IL-1β-mediated inflammation and oxidative stress in human adipose derived mesenchymal stem cells (hADSCs) during chondrogenesis. MTT assay was employed to examine the effects of various concentrations of DADS on the viability of hADSCs at different time scales to obtain non-cytotoxic concentration range of DADS. The effects of DADS on IL-1β-induced intracellular ROS generation and lipid peroxidation were evaluated in hADSCs. Western blotting was used to analyze the protein expression levels of IκBα (np), IκBα (p), NF-κB (np) and NF-κB (p). Furthermore, the gene expression levels of antioxidant enzymes in hADSCs and chondrogenic markers at days 7, 14 and 21 of differentiation were measured using qRT-PCR. The results showed that addition of DADS significantly enhanced the mRNA expression levels of antioxidant enzymes as well as reduced ROS elevation, lipid peroxidation, IκBα activation and NF-κB nuclear translocation in hADSCs treated with IL-1β. In addition, DADS could significantly increase the expression levels of IL-1β-induced impaired chondrogenic marker genes in differentiated hADSCs. Treatment with DADS may provide an effective approach to prevent the pro-inflammatory cytokines and oxidative stress as catabolic causes of chondrocyte cell death and enhance the protective anabolic effects by promoting chondrogenesis associated gene expressions in hADSCs exposed to OA condition.
    Matched MeSH terms: Mesenchymal Stromal Cells/drug effects; Mesenchymal Stromal Cells/metabolism*
  3. Xu Z, Nan W, Zhang X, Sun Y, Yang J, Lu K, et al.
    J Mol Neurosci, 2018 Jun;65(2):222-233.
    PMID: 29845511 DOI: 10.1007/s12031-018-1075-5
    Mesenchymal stem cell (MSC) therapy is a promising prospect for the treatment of Alzheimer's disease (AD); however, the underlying mechanisms by which MSCs mediate positive effects are still unclear. We speculated that MSCs mediate microglial autophagy and enhance the clearance of Aβ. To test this hypothesis, we cultured BV2 microglial cells with umbilical cord mesenchymal stem cells conditioned medium (ucMSCs-CM) in the presence or absence of Aβ25-35 oligomers. We investigated BV2 cell proliferation, cell death, and Aβ25-35 phagocytosis as well as protein expression levels of LC3, Beclin-1, p62, insulin-degrading enzyme (IDE), and neprilysin (Nep) with western blotting. The results showed that ucMSCs-CM inhibited the proliferation and decreased cell death of BV2 cells induced by Aβ25-35. ucMSCs-CM also promoted the phagocytosis of Aβ25-35 by BV2 cells and changed the expression of autophagy-related proteins LC3, Beclin-1, and p62. Treatment also upregulated the expression of Aβ-degrading enzymes IDE and Nep. Furthermore, the culture medium in BV2 cells with Aβ25-35 and ucMSCs-CM prevented neuronal cell SH-SY5Y from cell death compared to control medium without ucMSCs-CM. Altogether, these data suggested that ucMSCs-CM protect microglial and neuronal cells from Aβ25-35-induced cell death and promote Aβ phagocytosis by modulating autophagy and enhancing the expression of Aβ-degrading enzymes in microglia.
    Matched MeSH terms: Cells, Cultured; Mesenchymal Stromal Cells/metabolism*
  4. Al-Dualimi DW, Shah Abdul Majid A, Al-Shimary SFF, Al-Saadi AA, Al Zarzour R, Asif M, et al.
    Drug Chem Toxicol, 2018 Jan;41(1):82-88.
    PMID: 28635332 DOI: 10.1080/01480545.2017.1317785
    Herbal products contain a variety of compounds which may be useful in protecting against cellular damage caused by mutagens. Orthosiphon stamineus (O.s) also known as Cat whiskers. The herb has been shown anti-oxidative properties and can modulate key cellular proteins that have cytoprotective effect. The study aimed to evaluate the effects of different doses (250, 500 and 1000 mg kg-1) of 50% ethanol extract of O.s (Et. O.s) on micro-nucleated polychromatic erythrocytes (MNPCE), Polychromatic to normachromatic erythrocytes ratio (PCE/NCE), Mitotic index (MI), and Chromosomal aberration (CA) in Bab/c mice. Moreover, these parameters were used to evaluate the anti-genotoxic and clastogenic potencies of (Et. O.s) against mitomycin c (MMC) that interact with biological molecules and induce genotoxic and clastogenic disorders in non-tumor cells. MMC (4 mg kg-1) was injected intraperitoneally (i.p.) to the mice before and after treatment with three different doses of (Et. O.s). The results indicated that the extract at different doses did not show significant (p ≥ 0.05) differences in (MNPCE), (PCE/NCE) ratios, and (CA) values. The higher doses sowed high (MI) values compared with untreated control group. MMC showed significant increase (p ≤ 0.001) in (MNPCE), (CA) and reduce (PCE/NCE) and (MI) values compared with untreated control group. Treatment with (Et. O.s) at different doses before and after MMC injection showed to modulate MNPCE, PCE/NCE ratios, CA and MI values in mice bone marrow cells suggesting genoprotective potential of this plant extract.
    Matched MeSH terms: Bone Marrow Cells/drug effects*; Bone Marrow Cells/pathology
  5. Gnanasegaran N, Govindasamy V, Mani V, Abu Kasim NH
    IUBMB Life, 2017 09;69(9):689-699.
    PMID: 28685937 DOI: 10.1002/iub.1655
    In neurodegenerative diseases, such as Alzheimer's and Parkinson's, microglial cell activation is thought to contribute to their degeneration by producing neurotoxic compounds. While dental pulp stem cells (DPSCs) have been regarded as the next possible cell source for cell replacement therapy (CRT), their actual role when exposed in such harsh environment remains elusive. In this study, the immunomodulatory behavior of DPSCs from human subjects was investigated in a coculture system consisting of neuron and microglia which were treated with 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine, which mimics the inflammatory conditions and contribute to degeneration of dopaminergic (DA-ergic) neurons. Assessments were performed on their proliferation, extent of DNA damage, productions of reactive oxygen species (ROS) and nitric oxide (NO), as well as secretion of inflammatory mediators. Notably, DPSCs were shown to attenuate their proliferation, production of ROS, and NO significantly (P 
    Matched MeSH terms: Stem Cells/immunology; Stem Cells/metabolism
  6. Yong YK, Tan HY, Saeidi A, Rosmawati M, Atiya N, Ansari AW, et al.
    Innate Immun, 2017 07;23(5):459-467.
    PMID: 28606013 DOI: 10.1177/1753425917714854
    Hepatitis B virus (HBV) infection is a major cause of chronic liver disease that may progress to liver cirrhosis and hepatocellular carcinoma. Host immune responses represent the key determinants of HBV clearance or persistence. Here, we investigated the role of the early activation marker, CD69 and effector cytokines, granzyme B (GrB) and IFN-γ in the exhaustion of innate-like TCR Vα7.2+CD4+T cells, in 15 individuals with chronic HBV (CHB) infection where six were HBV DNA+ and nine were HBV DNA-. The percentage of cytokine-producing T cells and MAIT cells were significantly perturbed in HBV patients relative to healthy controls (HCs). The intracellular expression of GrB and IFN-γ was significantly reduced in MAIT cells derived from HBV-infected patients as compared to HCs, and the levels correlated with the percentage and levels [mean fluorescence intensity (MFI)] of CD69 expression. The total expression of CD69 (iMFI) was lower in CHB patients as compared to HCs. The frequency of CD69+ cells correlated with the levels of cytokine expression (MFI), particularly in CHB patients as compared to HCs. In summary, the polyfunctionality of peripheral T cells was significantly reduced among CHB patients, especially in the TCR Vα7.2+CD4+T cells, and the levels of cytokine expression correlated with functional cytokine levels.
    Matched MeSH terms: Cells, Cultured; Mucosal-Associated Invariant T Cells/immunology*
  7. Rahman NA, Sharudin A, Diah S, Muharram SH
    Microb Pathog, 2017 Sep;110:352-358.
    PMID: 28711510 DOI: 10.1016/j.micpath.2017.07.021
    INTRODUCTION: Pneumococcal infections have caused morbidity and mortality globally. Streptococcus pneumoniae (pneumococci) are commensal bacteria that colonize the nasopharynx, asymptomatically. From there, pneumococci can spread in the lungs causing pneumonia and disseminate in the bloodstream causing bacteremia (sepsis) and reach the brain leading to meningitis. Endothelial cells are one of the most important components of the blood-brain barrier that separates the blood from the brain and plays the first protective role against pneumococcal entry. Thus this study aimed to investigate on the ability of non-meningitis pneumococcal clinical strains to adhere and invade a brain endothelium model.

    METHODS: Two pneumococcal Brunei clinical strains were serotyped by multiplex PCR method using oligonucleotide sequences derived from Centers for Disease Control and Prevention. A validated immortalised mouse brain endothelial cell line (bEnd.3) was used as a brain endothelium model for the study of the pneumococcal breach of the blood-brain barrier using an adherence and invasion assay.

    RESULTS: Both of the pneumococcal clinical strains were found to be serotype 19F, a common circulating serotype in Southeast Asia and globally and possess the ability to adhere and invade the brain endothelial cells.

    CONCLUSION: In addition, this is the first report on the serotype identification of pneumococci in Brunei Darussalam and their application on a brain endothelium model. Further studies are required to understand the virulence capabilities of the clinical strains.

    Matched MeSH terms: Endothelial Cells/metabolism; Endothelial Cells/microbiology*
  8. Chan EWL, Krishnansamy S, Wong C, Gan SY
    Neurotoxicology, 2019 01;70:91-98.
    PMID: 30408495 DOI: 10.1016/j.neuro.2018.11.001
    The cognitive impairment caused by Alzheimer's disease (AD) is associated with beta-amyloid (Aβ) and tau proteins, and is accompanied by inflammation. Recently, a novel inflammasome signaling pathway has been uncovered. Inflammasomes are implicated in the execution of inflammatory responses and pyroptotic death leading to neurodegeneration. Thus, the inflammasome signaling pathway could be a potential therapeutic target for AD. Neural stem cells (NSCs) are multipotent cells that can self-renew and differentiate into distinct neural cells. NSC therapy has been considered to be a promising therapeutic approach in protecting the central nervous system and restoring it following damage. However, the mechanisms involved remain unclear. The aims of this study were to investigate the protective effects of NE4C neural stem cells against microglia-mediated neurotoxicity and to explore molecular mechanisms mediating their actions. NE4C decreased the levels of caspase-1 and IL-1β, and attenuated the level of the NLRP3 inflammasome and its associated protein adapter, apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC) in LPS-stimulated BV2 microglial cells, possibly by regulating the phosphorylation of p38α MAPK. The conditioned media obtained from co-culture of LPS-stimulated BV2 and NE4C cells exhibited protective effects on SH-SY5Y cells against microglia-mediated neurotoxicity; this was associated with an attenuation of tau phosphorylation and amyloidogenesis and accompanied by down-regulation of GSK-3β and p38α MAPK signalling pathways. In conclusion, the present study suggested that NSC therapy could be a potential strategy against microglia-mediated neurotoxicity. NSCs regulate NLRP3 activation and IL-1β secretion, which are critical in the initiation of the inflammatory responses, hence preventing the release of neurotoxic pro-inflammatory factors by microglia. This eventually reduces tau hyperphosphylation and amyloidogenesis, possibly through the regulation of GSK-3β and p38α MAPK signalling pathways, and thus protects SH-SY5Y cells against microglia-mediated neurotoxicity.
    Matched MeSH terms: Neural Stem Cells/drug effects; Neural Stem Cells/metabolism*
  9. Dharmani M, Kamarulzaman K, Giribabu N, Choy KW, Zuhaida MZ, Aladdin NA, et al.
    Phytomedicine, 2019 Dec;65:153101.
    PMID: 31648126 DOI: 10.1016/j.phymed.2019.153101
    BACKGROUND: Oestrogen deficiency leads to metabolic disturbances such as insulin resistance and impairment of adipose tissue or lipid metabolism. Marantodes pumilum (Blume) Kuntze (Primulaceae) is believed to have phytoestrogenic properties and is claimed to have beneficial effects in the treatment of diabetes mellitus (DM), but the mechanism behind its phytoestrogenic effects on estrogen-deficient diabetic condition have not been fully examined.

    PURPOSE: The present study investigated the effects of oral treatment with M. pumilum var. alata (MPA) extracts on the estrogen receptor, metabolic characteristics and insulin signaling pathway in pancreas and liver of ovariectomised nicotidamide streptozotocin-induced diabetes in female rats.

    MATERIALS AND METHODS: Ovariectomised diabetic (OVXS) Sprague-Dawley rats were orally administered with either aqueous leaf extract and ethanol (50%) stem-root extract of MPA (50 or 100 mg/kg) respectively for 28 days. Metabolic parameters were evaluated by measuring fasting blood glucose, serum insulin, oral glucose and insulin tolerance test. Distribution and expression level of insulin, oxidative stress and inflammatory marker in the pancreatic islets and liver were evaluated by immunohistochemistry and western blot, respectively.

    RESULTS: Oral treatment with aqueous leaf and ethanol (50%) stem-root extracts of MPA (100 mg/kg) significantly reversed the elevated fasting blood glucose, impaired glucose and insulin tolerance. The protein expression of insulin, glucose transporter (GLUT-2 and GLUT-4) increased in the pancreatic islets and liver. Furthermore, marked improvement in the tissue morphology following treatment with MPA was observed. Similarly, the western blots analysis denotes improved insulin signaling in the liver and decreased reactive oxygen species producing enzymes, inflammatory and pro-apoptotic molecules with MPA treatment.

    CONCLUSIONS: Taken together, this work demonstrate that 100 mg/kg of aqueous leaf extract and ethanol (50%) stem-root extract of MPA improves β-cell function and insulin signaling in postmenopausal diabetes through attenuation of oxidative stress and partially mediated by oestrogen receptor stimulation.

    Matched MeSH terms: Insulin-Secreting Cells/drug effects*; Insulin-Secreting Cells/physiology
  10. Bai XY, Liu P, Chai YW, Wang Y, Ren SH, Li YY, et al.
    Eur J Pharmacol, 2020 May 05;874:173020.
    PMID: 32087254 DOI: 10.1016/j.ejphar.2020.173020
    Steroidal agent is a standard clinical treatment of atopic dermatitis; however, have serious side effects. Artesunate is reported to exhibit anti-inflammatory properties although its effect on atopic eczema remains unknown. We investigated the therapeutic effects and possible mechanism of systemic artesunate on DNCB-induced atopic dermatitis in a BALB/c mouse model. To ascertain artesunate (5 and 10 mg/kg) efficacy, skin dermatitis severity and ear, spleen, and lymph node weight were evaluated. Skin tissue mRNA and protein expression and serum cytokine levels were examined. Artesunate significantly improved atopic dermatitis symptoms, decreasing the dermatitis score, ear weight difference, spleen weight, and lymph node weight compared with those following DNCB treatment. Artesunate reduced ear and skin epidermal thickness and mast cell infiltration, as determined using hematoxylin-eosin and toluidine blue staining, respectively. The basal level of IgE (287.67 ± 70.41 ng/ml) and TNF-α (19.94 ± 3.98 pg/ml) were Significantly elevated by DNCB (IgE: 1273.23 ± 176.53 ng/ml; TNF-α: 57.53 ± 3.87 pg/ml), while markedly been suppressed in the treatment group (AS-L: IgE: 1100.25 ± 135.32 ng/ml; TNF-α: 38.47 ± 3.26 pg/ml; AS-H: IgE: 459.46 ± 74.75 ng/ml; TNF-α: 24.38 ± 3.85 pg/ml). Among Th17 cell-related factors, DNCB treatment increased mRNA expression of IL-6, IL-17, IL-23, STAT3, and ROR-γt, but reduced TGF-β and SOCS 3; While artesunate reverse these changes. Compared with the model group, artesunate promoted SOCS3 protein and significantly inhibited ROR-γt protein and STAT3 phosphorylation. Thus, artesunate attenuates DNCB-induced atopic dermatitis by inhibiting the release of inflammatory cytokines and downregulating Th17 cell responses in atopic dermatitis mice.
    Matched MeSH terms: Th17 Cells/drug effects*; Th17 Cells/immunology
  11. Tan KL, Chia WC, How CW, Tor YS, Show PL, Looi QHD, et al.
    Mol Biotechnol, 2021 Sep;63(9):780-791.
    PMID: 34061307 DOI: 10.1007/s12033-021-00339-2
    The objective of this study is to develop a simple protocol to isolate and characterise small extracellular vesicles (sEVs) from human umbilical cord-derived MSCs (hUC-MSCs). hUC-MSCs were characterised through analysis of morphology, immunophenotyping and multidifferentiation ability. SEVs were successfully isolated by ultrafiltration from the conditioned medium of hUC-MSCs. The sEVs' size distribution, intensity within a specific surface marker population were measured with zetasizer or nanoparticle tracking analysis. The expression of surface and internal markers of sEVs was also assessed by western blotting. Morphology of hUC-MSCs displayed as spindle-shaped, fibroblast-like adherent cells. Phenotypic analysis by flow cytometry revealed that hUC-MSCs expressed MSC surface marker, including CD90, CD73, CD105, CD44 and exhibited the capacity for osteogenic, adipogenic and chondrogenic differentiation. Populations of sEVs with CD9, CD63 and CD81 positive were detected with size distribution in the diameter of 63.2 to 162.5 nm. Typical sEVs biomarkers such as CD9, CD63, CD81, HSP70 and TSG101 were also detected with western blotting. Our study showed that sEVs from hUC-MSCs conditioned medium were successfully isolated and characterised. Downstream application of hUC-MSCs-sEVs will be further explored.
    Matched MeSH terms: Mesenchymal Stromal Cells/cytology*; Mesenchymal Stromal Cells/metabolism
  12. Danjuma L, Ling MP, Hamat RA, Higuchi A, Alarfaj AA, Marlina, et al.
    Tuberculosis (Edinb), 2017 12;107:38-47.
    PMID: 29050770 DOI: 10.1016/j.tube.2017.03.006
    Mycobacterium tuberculosis has a remarkable ability of long-term persistence despite vigorous host immunity and prolonged therapy. The bacteria persist in secure niches such as the mesenchymal stem cells in the bone marrow and reactivate the disease, leading to therapeutic failure. Many bacterial cells can remain latent within a diseased tissue so that their genetic material can be incorporated into the genetic material of the host tissue. This incorporated genetic material reproduces in a manner similar to that of cellular DNA. After the cell division, the incorporated gene is reproduced normally and distributed proportionately between the two progeny. This inherent adoption of long-term persistence and incorporating the bacterial genetic material into that of the host tissue remains and is considered imperative for microbial advancement and chemotherapeutic resistance; moreover, new evidence indicates that the bacteria might pass on genetic material to the host DNA sequence. Several studies focused on the survival mechanism of M. tuberculosis in the host immune system with the aim of helping the efforts to discover new drugs and vaccines against tuberculosis. This review explored the mechanisms through which this bacterium affects the expression of human genes. The first part of the review summarizes the current knowledge about the interactions between microbes and host microenvironment, with special reference to the M. tuberculosis neglected persistence in immune cells and stem cells. Then, we focused on how bacteria can affect human genes and their expression. Furthermore, we analyzed the literature base on the process of cell death during tuberculosis infection, giving particular emphasis to gene methylation as an inherited process in the neutralization of possibly injurious gene components in the genome. The final section discusses recent advances related to the M. tuberculosis interaction with host epigenetic circuitry.
    Matched MeSH terms: Stem Cells/immunology; Stem Cells/microbiology
  13. Boukari Y, Qutachi O, Scurr DJ, Morris AP, Doughty SW, Billa N
    J Biomater Sci Polym Ed, 2017 Nov;28(16):1966-1983.
    PMID: 28777694 DOI: 10.1080/09205063.2017.1364100
    The development of patient-friendly alternatives to bone-graft procedures is the driving force for new frontiers in bone tissue engineering. Poly (dl-lactic-co-glycolic acid) (PLGA) and chitosan are well-studied and easy-to-process polymers from which scaffolds can be fabricated. In this study, a novel dual-application scaffold system was formulated from porous PLGA and protein-loaded PLGA/chitosan microspheres. Physicochemical and in vitro protein release attributes were established. The therapeutic relevance, cytocompatibility with primary human mesenchymal stem cells (hMSCs) and osteogenic properties were tested. There was a significant reduction in burst release from the composite PLGA/chitosan microspheres compared with PLGA alone. Scaffolds sintered from porous microspheres at 37 °C were significantly stronger than the PLGA control, with compressive strengths of 0.846 ± 0.272 MPa and 0.406 ± 0.265 MPa, respectively (p 
    Matched MeSH terms: Mesenchymal Stromal Cells/cytology; Mesenchymal Stromal Cells/drug effects
  14. Wu YS, Chung I, Wong WF, Masamune A, Sim MS, Looi CY
    Biochim Biophys Acta Gen Subj, 2017 Feb;1861(2):296-306.
    PMID: 27750041 DOI: 10.1016/j.bbagen.2016.10.006
    BACKGROUND: We previously showed that pancreatic stellate cells (PSC) secreted interleukin (IL)-6 and promoted pancreatic ductal adenocarcinoma (PDAC) cell proliferation via nuclear factor erythroid 2 (Nrf2)-mediated metabolic reprogramming. Epithelial-mesenchymal transition (EMT) is a key process for the metastatic cascade. To study the mechanism of PDAC progression to metastasis, we investigated the role of PSC-secreted IL-6 in activating EMT and the involvement of Nrf2 in this process.

    METHODS: Gene expression of IL-6 and IL-6Rα in PSC and PDAC cells was measured with qRT-PCR. The role of PSC-secreted IL-6, JAK/Stat3 signaling, and Nrf2 mediation on EMT-related genes expression was also examined with qRT-PCR. EMT phenotypes were assessed with morphological change, wound healing, migration, and invasion.

    RESULTS: PSC expressed higher mRNA levels of IL-6 but lower IL-6Rα compared to PDAC cells. Neutralizing IL-6 in PSC secretion reduced mesenchymal-like morphology, migration and invasion capacity, and mesenchymal-like gene expression of N-cadherin, vimentin, fibronectin, collagen I, Sip1, Snail, Slug, and Twist2. Inhibition of JAK/Stat3 signaling induced by IL-6 repressed EMT and Nrf2 gene expression. Induction of Nrf2 activity by tert-butylhydroquinone (tBHQ) increased both EMT phenotypes and gene expression (N-cadherin, fibronectin, Twist2, Snail, and Slug) repressed by IL-6 neutralizing antibody. Simultaneous inhibition of Nrf2 expression with siRNA and Stat3 signaling further repressed EMT gene expression, indicating that Stat3/Nrf2 pathway mediates EMT induced by IL-6.

    CONCLUSIONS: IL-6 from PSC promotes EMT in PDAC cells via Stat3/Nrf2 pathway.

    GENERAL SIGNIFICANCE: Targeting Stat3/Nrf2 pathway activated by PSC-secreted IL-6 may provide a novel therapeutic option to improve the prognosis of PDAC.

    Matched MeSH terms: Pancreatic Stellate Cells/metabolism; Pancreatic Stellate Cells/pathology*
  15. Mohamed GA, Al-Abd AM, El-Halawany AM, Abdallah HM, Ibrahim SRM
    J Ethnopharmacol, 2017 Feb 23;198:302-312.
    PMID: 28108382 DOI: 10.1016/j.jep.2017.01.030
    ETHNOPHARMACOLOGICAL RELEVANCE: Cancer has proceeded to surpass one of the most chronic illnesses to be the major cause of mortality in both the developing and developed world. Garcinia mangostana L. (mangosteen, family Guttiferae) known as the queen of fruits, is one of the most popular tropical fruits. It is cultivated in Southeast Asian countries: Malaysia, Indonesia, Sri Lanka, Burma, Thailand, and Philippines. Traditionally, numerous parts of G. mangostana have been utilized to treat various ailments such as abdominal pain, haemorrhoids, food allergies, arthritis, leucorrhoea, gonorrhea, diarrhea, dysentery, wound infection, suppuration, and chronic ulcer.

    AIM OF STUDY: Although anticancer activity has been reported for the plant, the goal of the study was designed to isolate and characterize the active metabolites from G. mangostana and measure their cytotoxic properties. In this research, the mechanism of antiproliferative/cytotoxic effects of the tested compounds was investigated.

    MATERIALS AND METHODS: The CHCl3 fraction of the air-dried fruit hulls was repeatedly chromatographed on SiO2, RP18, Diaion HP-20, and polyamide columns to furnish fourteen compounds. The structures of these metabolites were proven by UV, IR, 1D, and 2D NMR measurements and HRESIMS. Additionally, the cytotoxic potential of all compounds was assessed against MCF-7, HCT-116, and HepG2 cell lines using SRB-U assay. Antiproliferative and cell cycle interference effects of potentially potent compounds were tested using DNA content flow cytometry. The mechanism of cell death induction was also studied using annexin-V/PI differential staining coupled with flow cytometry.

    RESULTS: The CHCl3 soluble fraction afforded two new xanthones: mangostanaxanthones V (1) and VI (2), along with twelve known compounds: mangostanaxanthone IV (3), β-mangostin (4), garcinone E (5), α-mangostin (6), nor-mangostin (7), garcimangosone D (8), aromadendrin-8-C-β-D-glucopyranoside (9), 1,2,4,5-tetrahydroxybenzene (10), 2,4,3`-trihydroxybenzophenone-6-O-β-glucopyranoside (11), maclurin-6-O-β-D-glucopyranoside (rhodanthenone) (12), epicatechin (13), and 2,4,6,3`,5`-pentahydroxybenzophenone (14). Only compound 5 showed considerable antiproliferative/cytotoxic effects with IC50's ranging from 15.8 to 16.7µM. Compounds 3, 4, and 6 showed moderate to weak cytotoxic effects (IC50's ranged from 45.7 to 116.4µM). Using DNA content flow cytometry, it was found that only 5 induced significant cell cycle arrest at G0/G1-phase which is indicative of its antiproliferative properties. Additionally, by using annexin V-FITC/PI differential staining, 5 induced cells killing effect via the induction of apoptosis and necrosis in both HepG2 and HCT116 cells. Compound 3 produce necrosis and apoptosis only in HCT116 cells. On contrary, 6 induced apoptosis and necrosis in HepG2 cells and moderate necrosis in HCT116 cells.

    CONCLUSION: Fourteen compounds were isolated from chloroform fraction of G. mangostana fruit hulls. Cytotoxic properties exhibited by the isolated xanthones from G. mangostana reinforce the avail of it as a natural cytotoxic agent against various cancers. These evidences could provide relevant bases for the scientific rationale of using G. mangostana in anti-cancer treatment.

    Matched MeSH terms: HCT116 Cells; Hep G2 Cells; MCF-7 Cells
  16. Lim YC, Quek H, Offenhäuser C, Fazry S, Boyd A, Lavin M, et al.
    J Neurooncol, 2018 Jul;138(3):509-518.
    PMID: 29564746 DOI: 10.1007/s11060-018-2838-0
    Glioblastoma (GBM) is a highly fatal disease with a 5 year survival rate of less than 22%. One of the most effective treatment regimens to date is the use of radiotherapy which induces lethal DNA double-strand breaks to prevent tumour growth. However, recurrence occurs in the majority of patients and is in-part a result of robust radioresistance mechanisms. In this study, we demonstrate that the multifunctional cytokine, interleukin-6 (IL-6), confers a growth advantage in GBM cells but does not have the same effect on normal neural progenitor cells. Further analysis showed IL-6 can promote radioresistance in GBM cells when exposed to ionising radiation. Ablation of the Ataxia-telangiectasia mutated serine/threonine kinase that is recruited and activated by DNA double-strand breaks reverses the effect of radioresistance and re-sensitised GBM to DNA damage thus leading to increase cell death. Our finding suggests targeting the signaling cascade of DNA damage response is a potential therapeutic approach to circumvent IL-6 from promoting radioresistance in GBM.
    Matched MeSH terms: Neural Stem Cells/metabolism; Neural Stem Cells/radiation effects
  17. Aminuddin A, Ng PY, Leong CO, Chua EW
    Sci Rep, 2020 May 12;10(1):7885.
    PMID: 32398775 DOI: 10.1038/s41598-020-64664-3
    Cisplatin is the first-line chemotherapeutic agent for the treatment of oral squamous cell carcinoma (OSCC). However, the intrinsic or acquired resistance against cisplatin remains a major obstacle to treatment efficacy in OSCC. Recently, mitochondrial DNA (mtDNA) alterations have been reported in a variety of cancers. However, the role of mtDNA alterations in OSCC has not been comprehensively studied. In this study, we evaluated the correlation between mtDNA alterations (mtDNA content, point mutations, large-scale deletions, and methylation status) and cisplatin sensitivity using two OSCC cell lines, namely SAS and H103, and stem cell-like tumour spheres derived from SAS. By microarray analysis, we found that the tumour spheres profited from aberrant lipid and glucose metabolism and became resistant to cisplatin. By qPCR analysis, we found that the cells with less mtDNA were less responsive to cisplatin (H103 and the tumour spheres). Based on the findings, we theorised that the metabolic changes in the tumour spheres probably resulted in mtDNA depletion, as the cells suppressed mitochondrial respiration and switched to an alternative mode of energy production, i.e. glycolysis. Then, to ascertain the origin of the variation in mtDNA content, we used MinION, a nanopore sequencer, to sequence the mitochondrial genomes of H103, SAS, and the tumour spheres. We found that the lower cisplatin sensitivity of H103 could have been caused by a constellation of genetic and epigenetic changes in its mitochondrial genome. Future work may look into how changes in mtDNA translate into an impact on cell function and therefore cisplatin response.
    Matched MeSH terms: Neoplastic Stem Cells/drug effects*; Neoplastic Stem Cells/metabolism
  18. Dehghan F, Hajiaghaalipour F, Yusof A, Muniandy S, Hosseini SA, Heydari S, et al.
    Sci Rep, 2016 Apr 28;6:25139.
    PMID: 27122001 DOI: 10.1038/srep25139
    Saffron is consumed as food and medicine to treat several illnesses. This study elucidates the saffron effectiveness on diabetic parameters in-vitro and combined with resistance exercise in-vivo. The antioxidant properties of saffron was examined. Insulin secretion and glucose uptake were examined by cultured RIN-5F and L6 myotubes cells. The expressions of GLUT2, GLUT4, and AMPKα were determined by Western blot. Diabetic and non-diabetic male rats were divided into: control, training, extract treatment, training + extract treatment and metformin. The exercise and 40 mg/kg/day saffron treatments were carried out for six weeks. The antioxidant capacity of saffron was higher compare to positive control (P  0.05). Serum glucose, cholesterol, triglyceride, low-density lipoprotein, very low-density lipoprotein, insulin resistance, and glycated hemoglobin levels decreased in treated rats compared to untreated (p  0.05). The findings suggest that saffron consuming alongside exercise could improve diabetic parameters through redox-mediated mechanisms and GLUT4/AMPK pathway to entrap glucose uptake.
    Matched MeSH terms: Insulin-Secreting Cells/drug effects; Insulin-Secreting Cells/metabolism
  19. Seifaddinipour M, Farghadani R, Namvar F, Mohamad J, Abdul Kadir H
    Molecules, 2018 Jan 05;23(1).
    PMID: 29303970 DOI: 10.3390/molecules23010110
    Pistachio (Pistacia vera L.) hulls (PVLH) represents a significant by-product of industrial pistachio processing that contains high amounta of phenolic and flavonoid compounds known to act as antioxidants. The current study was designed to evaluate the anti-tumor and anti-angiogenic potentials of PVLH extracts. The cytotoxic effects of hexane, ethyl acetate, methanol, and water PVLH extracts toward human colon cancer (HT-29 and HCT-116), breast adenocarcinoma (MCF-7), lung adenocarcinoma (H23), liver hepatocellular carcinoma (HepG2), cervical cancer (Ca Ski), and normal fibroblast (BJ-5ta) cells were assessed using a MTT cell viability assay. Apoptosis induction was evaluated through the different nuclear staining assays and confirmed by flow cytometry analysis. Anti-angiogenic activities were also determined using chorioallantoic membrane (CAM) assay. PVLH ethyl acetate extracts (PVLH-EAE) demonstrated a suppressive effect with an IC50 value of 21.20 ± 1.35, 23.00 ± 1.2 and 25.15 ± 1.85 µg/mL against MCF-7, HT-29 and HCT-116, respectively, after 72 h of treatment. Morphological assessment and flow cytometry analysis showed the potential of PVLH-EAE to induce apoptosis. PVLH-EAE at the highest concentration demonstrated significant inhibition of angiogenesis as comparing with control group. Also the expression of Bax increased and the expression of Bcl-2 decreased in treated MCF-7 cells. Thus, the apoptosis induction and angiogenesis potential of PVLH-EAE make it to be the most suitable for further cancer research study to deal with selective antitumor active substances to human cancers especially breast cancer.
    Matched MeSH terms: HT29 Cells; HCT116 Cells; MCF-7 Cells
  20. Hii LW, Chung FF, Soo JS, Tan BS, Mai CW, Leong CO
    Breast Cancer Res Treat, 2020 Feb;179(3):615-629.
    PMID: 31784862 DOI: 10.1007/s10549-019-05504-5
    PURPOSE: Breast cancer stem cells (CSCs) are a small subpopulation of cancer cells that have high capability for self-renewal, differentiation, and tumor initiation. CSCs are resistant to chemotherapy and radiotherapy, and are responsible for cancer recurrence and metastasis.

    METHODS: By utilizing a panel of breast cancer cells and mammospheres culture as cell-based screening platforms, we performed high-throughput chemical library screens to identify agents that are effective against breast CSCs and non-CSCs. The hit molecules were paired with conventional chemotherapy to evaluate the combinatorial treatment effects on breast CSCs and non-CSCs.

    RESULTS: We identified a total of 193 inhibitors that effectively targeting both breast CSCs and non-CSCs. We observed that histone deacetylase inhibitors (HDACi) synergized conventional chemotherapeutic agents (i.e., doxorubicin and cisplatin) in targeting breast CSCs and non-CSCs simultaneously. Further analyses revealed that quisinostat, a potent inhibitor for class I and II HDACs, potentiated doxorubicin-induced cytotoxicity in both breast CSCs and non-CSCs derived from the basal-like (MDA-MB-468 and HCC38), mesenchymal-like (MDA-MB-231), and luminal-like breast cancer (MCF-7). It was also observed that the basal-like breast CSCs and non-CSCs were more sensitive to the co-treatment of quisinostat with doxorubicin compared to that of the luminal-like breast cancer subtype.

    CONCLUSION: In conclusion, this study demonstrates the potential of HDACi as therapeutic options, either as monotherapy or in combination with chemotherapeutics against refractory breast cancer.

    Matched MeSH terms: Neoplastic Stem Cells/drug effects*; Neoplastic Stem Cells/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links