This study investigated the allelopathic effect of Axonopus compressus litter on Asystasia gangetica and Pennisetum polystachion. In experiment 1 the bioassays with 0, 10, 30, and 50 g L⁻¹ of aqueous A. compressus litter leachate were conducted. Experiment 2 was carried out by incorporating 0, 10, 20, 30, 40, and 50 g L⁻¹ of A. compressus litter leachate into soil. In experiment 3, the fate of A. compressus litter leachate phenolics in the soil was investigated. A. compressus leachates did not affect the germination percentage of A. gangetica and P. polystachion, but delayed germination of A. gangetica seeds and decreased seed germination time of P. polystachion. A. compressus litter leachates affected weeds hypocotyl length. Hypocotyl length reductions of 18 and 31% were observed at the highest concentration (50 g L⁻¹) compared to the control in A. gangetica and P. polystachion, respectively. When concentration of A. compressus litter leachate-amended soil increased A. gangetica and P. polystachion seedling shoot length, root length, seedling weight and chlorophyll concentration were not affected. The 5-week decomposition study of A. compressus showed that the phenolic compounds in A. compressus litter abruptly decreased about 52% after two weeks and remained steady until the end of the incubation.
Allele Specific Amplification with four primers (External Antisense Primer, External Sense Primer, Internal Nonfragrant Sense Primer, and Internal Fragrant Antisense Primer) and sensory evaluation with leaves and grains were executed to identify aromatic rice genotypes and their F1 individuals derived from different crosses of 2 Malaysian varieties with 4 popular land races and 3 advance lines. Homozygous aromatic (fgr/fgr) F1 individuals demonstrated better aroma scores compared to both heterozygous nonaromatic (FGR/fgr) and homozygous nonaromatic (FGR/FGR) individuals, while, some F1 individuals expressed aroma in both leaf and grain aromatic tests without possessing the fgr allele. Genotypic analysis of F1 individuals for the fgr gene represented homozygous aromatic, heterozygous nonaromatic and homozygous nonaromatic genotypes in the ratio 20:19:3. Genotypic and phenotypic analysis revealed that aroma in F1 individuals was successfully inherited from the parents, but either molecular analysis or sensory evaluation alone could not determine aromatic condition completely. The integration of molecular analysis with sensory methods was observed as rapid and reliable for the screening of aromatic genotypes because molecular analysis could distinguish aromatic homozygous, nonaromatic homozygous and nonaromatic heterozygous individuals, whilst the sensory method facilitated the evaluation of aroma emitted from leaf and grain during flowering to maturity stages.
The primary focus of this investigation was to analyze sequentially coupled nonlinear thermal stress, using a three-dimensional model. It was meant to shed light on the behavior of Buckling Restraint Brace (BRB) elements with circular cross section, at elevated temperature. Such bracing systems were comprised of a cylindrical steel core encased in a strong concrete-filled steel hollow casing. A debonding agent was rubbed on the core's surface to avoid shear stress transition to the restraining system. The numerical model was verified by the analytical solutions developed by the other researchers. Performance of BRB system under seismic loading at ambient temperature has been well documented. However, its performance in case of fire has yet to be explored. This study showed that the failure of brace may be attributed to material strength reduction and high compressive forces, both due to temperature rise. Furthermore, limiting temperatures in the linear behavior of steel casing and concrete in BRB element for both numerical and analytical simulations were about 196°C and 225°C, respectively. Finally it is concluded that the performance of BRB at elevated temperatures was the same as that seen at room temperature; that is, the steel core yields prior to the restraining system.
Titanium dioxide (TiO2 ) is one of the most widely investigated metal oxides because of its extraordinary surface, electronic, and photocatalytic properties. However, the large band gap of TiO2 and the considerable recombination of photogenerated electron-hole pairs limit its photocatalytic efficiency. Therefore, research attention is being increasingly directed towards engineering the surface structure of TiO2 on the atomic level (namely morphological control of {001} facets on the micro- and nanoscale) to fine-tune its physicochemical properties; this could ultimately lead to the optimization of selectivity and reactivity. This Review encompasses the fundamental principles to enhance the photocatalytic activity by using highly reactive {001}-faceted TiO2 -based composites. The current progress of such composites, with particular emphasis on the photodegradation of pollutants and photocatalytic water splitting for hydrogen generation, is also discussed. The progresses made are thoroughly examined for achieving remarkable photocatalytic performances, with additional insights with regard to charge transfer. Finally, a summary and some perspectives on the challenges and new research directions for future exploitation in this emerging frontier are provided, which hopefully would allow for harnessing the outstanding structural and electronic properties of {001} facets for various energy- and environmental-related applications.
Matched MeSH terms: Environmental Restoration and Remediation/methods*
The characteristics of urban stormwater pollution in the tropics are still poorly understood. This issue is crucial to the tropical environment because its rainfall and runoff generation processes are so different from temperate regions. In this regard, a stormwater monitoring program was carried out at three urban catchments (e.g. residential, commercial and industrial) in the southern part of Peninsular Malaysia. A total of 51 storm events were collected at these three catchments. Samples were analyzed for total suspended solids, 5-day biochemical oxygen demand, chemical oxygen demand (COD), oil and grease, nitrate nitrogen, nitrite nitrogen, ammonia nitrogen (NH3-N), soluble reactive phosphorus and total phosphorus. Principal component analysis (PCA) and hierarchical cluster analysis were used to interpret the stormwater quality data for pattern recognition and identification of possible sources. The most likely sources of stormwater pollutants at the residential catchment were from surface soil and leachate of fertilizer from domestic lawns and gardens, whereas the most likely sources for the commercial catchment were from discharges of food waste and washing detergent. In the industrial catchment, the major sources of pollutants were discharges from workshops and factories. The PCA factors further revealed that COD and NH3-N were the major pollutants influencing the runoff quality in all three catchments.
Three-dimensional structure of thermostable lipase is much sought after nowadays as it is important for industrial application mainly found in the food, detergent, and pharmaceutical sectors. Crystallization utilizing the counter diffusion method in space was performed with the aim to obtain high resolution diffracting crystals with better internal order to improve the accuracy of the structure. Thermostable T1 lipase enzyme has been crystallized in laboratory on earth and also under microgravity condition aboard Progress spacecraft to the ISS in collaboration with JAXA (Japanese Aerospace Exploration Agency). This study is conducted with the aims of improving crystal packing and structure resolution. The diffraction data set for ground grown crystal was collected to 1.3 Å resolution and belonged to monoclinic C2 space group with unit cell parameters a = 117.40 Å, b = 80.95 Å, and c = 99.81 Å, whereas the diffraction data set for space grown crystal was collected to 1.1 Å resolution and belonged to monoclinic C2 space group with unit cell parameters a = 117.31 Å, b = 80.85 Å, and c = 99.81 Å. The major difference between the two crystal growth systems is the lack of convection and sedimentation in microgravity environment resulted in the growth of much higher quality crystals of T1 lipase.
For the first time 5-hydroxymethyl-2-furaldehyde (HMF) was separated from crude palm oil (CPO), and its authenticity was determined using an RP-HPLC method. Separation was accomplished with isocratic elution of a mobile phase comprising water and methanol (92:8 v/v) on a Purospher Star RP-18e column (250mm×4.6mm, 5.0μm). The flow rate was adjusted to 1ml/min and detection was performed at 284nm. The method was validated, and results obtained exhibit a good recovery (95.58% to 98.39%). Assessment of precision showed that the relative standard deviations (RSD%) of retention times and peak areas of spiked samples were less than 0.59% and 2.66%, respectively. Further, the limit of detection (LOD) and LOQ were 0.02, 0.05mg/kg, respectively, and the response was linear across the applied ranges. The crude palm oil samples analysed exhibited HMF content less than 2.27mg/kg.
Matched MeSH terms: Chromatography, High Pressure Liquid/methods*
Corynebacteria are used for a wide variety of industrial purposes but some species are associated with human diseases. With increasing number of corynebacterial genomes having been sequenced, comparative analysis of these strains may provide better understanding of their biology, phylogeny, virulence and taxonomy that may lead to the discoveries of beneficial industrial strains or contribute to better management of diseases. To facilitate the ongoing research of corynebacteria, a specialized central repository and analysis platform for the corynebacterial research community is needed to host the fast-growing amount of genomic data and facilitate the analysis of these data. Here we present CoryneBase, a genomic database for Corynebacterium with diverse functionality for the analysis of genomes aimed to provide: (1) annotated genome sequences of Corynebacterium where 165,918 coding sequences and 4,180 RNAs can be found in 27 species; (2) access to comprehensive Corynebacterium data through the use of advanced web technologies for interactive web interfaces; and (3) advanced bioinformatic analysis tools consisting of standard BLAST for homology search, VFDB BLAST for sequence homology search against the Virulence Factor Database (VFDB), Pairwise Genome Comparison (PGC) tool for comparative genomic analysis, and a newly designed Pathogenomics Profiling Tool (PathoProT) for comparative pathogenomic analysis. CoryneBase offers the access of a range of Corynebacterium genomic resources as well as analysis tools for comparative genomics and pathogenomics. It is publicly available at http://corynebacterium.um.edu.my/.
The study was aimed to differentiate between porcine and bovine gelatines in adulterated samples by utilising sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) combined with principal component analysis (PCA). The distinct polypeptide patterns of 6 porcine type A and 6 bovine type B gelatines at molecular weight ranged from 50 to 220 kDa were studied. Experimental samples of raw gelatine were prepared by adding porcine gelatine in a proportion ranging from 5% to 50% (v/v) to bovine gelatine and vice versa. The method used was able to detect 5% porcine gelatine added to the bovine gelatine. There were no differences in the electrophoretic profiles of the jelly samples when the proteins were extracted with an acetone precipitation method. The simple approach employing SDS-PAGE and PCA reported in this paper may provide a useful tool for food authenticity issues concerning gelatine.
BACKGROUND AND OBJECTIVE: Diabetes mellitus is commonly known to lead to life threatening complications. Among them, hypertension is one complication which may be highlighted. In modern medical society, several drugs and treatment regimen have developed to treat diabetes mellitus. Although they obtain positive impacts, yet there are certain limitations encountered in the management of the disease due to their adverse effects and non-compliance by the patients. Herbs have been valued as a supplement in treating chronic oxidative stress disorder like diabetes mellitus. In the present review, some of the herbs which possess both anti-hyperglycemic and anti-hypertensive properties are being highlighted. Potential herbs which include Andrographis Paniculata, Ammi Visnaga, Allium sativum, Phyllanthus amarus, Ginkgo biloba, Solanum tuberosum, Tuberosum L. Piper sarmentosum and Lamiaceae family are known to possess antihypertensive properties. Various researches have been conducted on these herbs and positive results have been obtained. Based on these results, the present review article discusses the alternative management of diabetic hypertension with the herbal medicine. In conclusion, the present review article stresses on the need to ensure global awareness about the traditional medicines while treating diabetic hypertension.
Wireless Body Sensor Networks (WBSNs) constitute a subset of Wireless Sensor Networks (WSNs) responsible for monitoring vital sign-related data of patients and accordingly route this data towards a sink. In routing sensed data towards sinks, WBSNs face some of the same routing challenges as general WSNs, but the unique requirements of WBSNs impose some more constraints that need to be addressed by the routing mechanisms. This paper identifies various issues and challenges in pursuit of effective routing in WBSNs. Furthermore, it provides a detailed literature review of the various existing routing protocols used in the WBSN domain by discussing their strengths and weaknesses.
A laboratory-based experiment procedure of reception plate method for structure-borne sound source characterisation is reported in this paper. The method uses the assumption that the input power from the source installed on the plate is equal to the power dissipated by the plate. In this experiment, rectangular plates having high and low mobility relative to that of the source were used as the reception plates and a small electric fan motor was acting as the structure-borne source. The data representing the source characteristics, namely, the free velocity and the source mobility, were obtained and compared with those from direct measurement. Assumptions and constraints employing this method are discussed.
While the ecological impact of anthropogenically introduced exotic species is considered a major threat for biodiversity and ecosystems functioning, it is generally not accounted for in the environmental life cycle assessment (LCA) of products. In this article, we propose a framework that includes exotic species introduction in an LCA context. We derived characterization factors for exotic fish species introduction related to the transport of goods across the Rhine-Main-Danube canal. These characterization factors are expressed as the potentially disappeared fraction (PDF) of native freshwater fish species in the rivers Rhine and Danube integrated over space and time per amount of goods transported (PDF·m(3)·yr·kg(-1)). Furthermore, we quantified the relative importance of exotic fish species introduction compared to other anthropogenic stressors in the freshwater environment (i.e., eutrophication, ecotoxicity, greenhouse gases, and water consumption) for transport of goods through the Rhine-Main-Danube waterway. We found that the introduction of exotic fish species contributed to 70-85% of the total freshwater ecosystem impact, depending on the distance that goods were transported. Our analysis showed that it is relevant and feasible to include the introduction of exotic species in an LCA framework. The proposed framework can be further extended by including the impacts of other exotic species groups, types of water bodies and pathways for introduction.
To determine the efficacy of a combination of simultaneous shock wave lithotripsy (SWL), hydration with controlled inversion therapy compared with SWL with hydration alone in patients with lower pole calyx stones.
Activated carbons are regularly used the treatment of dye wastewater. They can be produced from various organics materials having high level of carbon content. In this study, a novel Pinang frond activated carbon (PFAC) was produced at various CO₂ flow rates in the range of 150-600 mL/min at activation temperature of 800°C for 3 hours. The optimum PFAC sample is found on CO₂ flow rate of 300 mL/min which gives the highest BET surface area and pore volume of 958 m²/g and 0.5469 mL/g, respectively. This sample shows well-developed pore structure with high fixed carbon content of 79.74%. The removal of methylene blue (MB) by 95.8% for initial MB concentration of 50 mg/L and 72.6% for 500 mg/L is achieved via this sample. The PFAC is thus identified to be a suitable adsorbent for removing MB from aqueous solution.
Cryopreservation is an alternative, safe, and cost-effective method for long-term plant genetic resource conservation. This study was conducted to optimize the conditions for cryopreserving the protocorm-like bodies (PLBs) of Brassidium Shooting Star orchid with the PVS3 vitrification method. Five parameters were assessed in this study: PLB size, sucrose concentration, preculture duration, PVS3 duration, and unloading duration. The viability of the cryopreserved PLBs was determined using the triphenytetrazolium chloride assay and growth recovery assessments. The optimum condition for the cryopreservation of the PLBs of Brassidium Shooting Star orchid is based on the size range between 3 and 4 mm precultured with half-strength semi-solid MS media supplemented with 0.25 M sucrose for 24 h, followed by treatment with loading solution mixture of 2 M glycerol and 0.4 M sucrose supplemented with half-strength liquid MS media at 25 °C for 20 min. The PLBs were then dehydrated with PVS3 at 0 °C for 20 min prior to immersion in liquid nitrogen; finally, the PLBs were immersed with half-strength liquid MS media supplemented with 1.2 M sucrose for 30 min. Histological analyses displayed denser cytoplasm and voluminous nucleus in the cryopreserved PLBs of Brassidium Shooting Star orchid.
Arthroscopy uses a completely different skill set compared with open orthopedic surgery. Hitherto, arthroscopy had not been given enough emphasis in the core orthopedic curricula. Simulation has been seen as an excellent way to teach the skills required in arthroscopy. The simulators used for arthroscopy training can be broadly classified into physical simulators such as cadavers, animals, models and box trainers, virtual-reality simulators, and hybrid simulators that combine virtual-reality simulation with physical components that allow real tactile feedback. The advantages and disadvantages of each of these types have been described in this article. The factors that determine skill acquisition using these simulators have been highlighted. In conclusion, simulation seems to be a valuable tool for arthroscopy training, although further studies are needed to state whether this translates into better operative skill on real patients.
Matched MeSH terms: Internship and Residency/methods*