To develop a green and facile adsorbent for removing indoor polluted formaldehyde (HCHO) gas, the biomass porous nanofibrous membranes (BPNMs) derived from microcrystalline cellulose/chitosan were fabricated by electrospinning. The enhanced chemical adsorption sites with diverse oxygen (O) and nitrogen (N)-containing functional groups were introduced on the surface of BPNMs by non-thermal plasma modification under carbon dioxide (CO2) and nitrogen (N2) atmospheres. The average nanofiber diameters of nanofibrous membranes and their nanomechanical elastic modulus and hardness values decreased from 341 nm to 175-317 nm and from 2.00 GPa and 0.25 GPa to 1.70 GPa and 0.21 GPa, respectively, after plasma activation. The plasma-activated nanofibers showed superior hydrophilicity (WCA = 0°) and higher crystallinity than that of the control. The optimal HCHO adsorption capacity (134.16 mg g-1) of BPNMs was achieved under a N2 atmosphere at a plasma power of 30 W and for 3 min, which was 62.42 % higher compared with the control. Pyrrolic N, pyridinic N, CO and O-C=O were the most significant O and N-containing functional groups for the improved chemical adsorption of the BPNMs. The adsorption mechanism involved a synergistic combination of physical and chemical adsorption. This study provides a novel strategy that combines clean plasma activation with electrospinning to efficiently remove gaseous HCHO.
This critique examines a review article in this journal on adsorption techniques for removing metal ions from wastewater. The article is marred by several flaws, including tortured phrases, miscitations, incoherent statements, and factual inaccuracies. These problems weaken the article's clarity and reliability, raising doubts about the authors' understanding of the subject. As a result, the review's credibility is compromised, limiting its value as a reliable resource for researchers. This critique highlights these issues, stressing the importance of accuracy and rigor in scientific writing.
Phosphate (PO4(III)) contamination in water bodies poses significant environmental challenges, necessitating efficient and accurate methods to predict and optimize its removal. The current study addresses this issue by predicting the adsorption capacity of PO4(III) ions onto biochar-based materials using five probabilistic machine learning models: eXtreme Gradient Boosting LSS (XGBoostLSS), Natural Gradient Boosting, Bayesian Neural Networks (NN), Probabilistic NN, and Monte-Carlo Dropout NN. Utilizing a dataset of 2952 data points with 16 inputs, XGBoostLSS demonstrated the highest R2 (0.95) on new adsorbents. SHapely Additive exPlanations analysis showed that adsorption experimental conditions had the most significant impact (43%), followed by synthesis conditions (29%) and adsorbent characteristics (28%). Optimized conditions included an initial PO4(III) concentration of 125 mg/L, carbon content of 11.5%, oxygen content of 23%, a contact time of 1440 min, a heating rate of 5 °C/min, 200 rpm, and a surface area of 410 m2/g, using Ra-LDO adsorbent synthesized from rape cabbage feedstock. This study developed and presented a practical online framework for predicting PO4(III) removal onto biochar using a web-based graphical user interface.
Adsorption performance of chitosan (CS) hydrogel beads was investigated after impregnation of CS with hexadecylamine (HDA) as a cationic surfactant, for the elimination of reactive blue 4 (RB4) from wastewater. The CS/HDA beads formed with 3.8% HDA were the most effective adsorbent. The adsorption capacity was increased by 1.43 times from 317 mg/g (CS) to 454 mg/g (CS/HDA). The RB4 removal increased with decrease in the pH of dye solution from 4 to 9. The isotherm data obtained from RB4 adsorption on CS and CS/HDA are adequately described by Freundlich model (R(2)=0.946 and 0.934, χ(2)=22.414 and 64.761). The kinetic study revealed that the pseudo-second-order rate model (R(2)=0.996 and 0.997) was in better agreement with the experimental data. The negative values of ΔG° (-2.28 and -6.30 kJ/mol) and ΔH° (-172.18 and -101.62 kJ/mol) for CS beads and HDA modified CS beads, respectively; suggested a spontaneous and exothermic process for RB4 adsorption.
The present study investigated the biosorption capacity of live and dead cells of a novel Bacillus strain for chromium. The optimum biosorption condition was evaluated in various analytical parameters, including initial concentration of chromium, pH, and contact time. The Langmuir isotherm model showed an enhanced fit to the equilibrium data. Live and dead biomasses followed the monolayer biosorption of the active surface sites. The maximum biosorption capacity was 20.35 mg/g at 25 °C, with pH 3 and contact time of 50 min. Strain 139SI was an excellent host to the hexavalent chromium. The biosorption kinetics of chromium in the dead and live cells of Bacillus salmalaya (B. salmalaya) 139SI followed the pseudo second-order mechanism. Scanning electron microscopy and fourier transform infrared indicated significant influence of the dead cells on the biosorption of chromium based on cell morphological changes. Approximately 92% and 70% desorption efficiencies were achieved using dead and live cells, respectively. These findings demonstrated the high sorption capacity of dead biomasses of B. salmalaya 139SI in the biosorption process. Thermodynamic evaluation (ΔG⁰, ΔH⁰, and ΔS⁰) indicated that the mechanism of Cr(VI) adsorption is endothermic; that is, chemisorption. Results indicated that chromium accumulation occurred in the cell wall of B. salmalaya 139SI rather than intracellular accumulation.
Graphene oxide (GO) was deposited on the surface of a MnO2 air cathode by thermal evaporation at 50°C from a GO colloidal suspension. Fourier transformed infrared spectroscopy and field emission scanning electron microscopy confirmed the presence of GO on the MnO2 air cathode (GO-MnO2). Voltammetry and chrono-amperometry showed increased currents for the oxygen reduction reaction (ORR) in 6 M KOH solution for GO-MnO2 compared to the MnO2 cathode. The GO-MnO2 was used as an air cathode in an alkaline tin-air cell and produced a maximum power density of 13 mW cm(-2), in contrast to MnO2, which produced a maximum power density of 9.2 mW cm(-2). The electrochemical impedance spectroscopy results suggest that the chemical step for the ORR is the rate determining step, as proposed earlier by different researchers. It is suggested that the presence of GO and electrochemically reduced graphene oxide (ERGO) on the MnO2 surface are responsible for the increased rate of this step, whereby GO and ERGO accelerate the process of electron donation to the MnO2 and to adsorbed oxygen atoms.
Fe3O4/talc nanocomposite was used for removal of Cu(II), Ni(II), and Pb(II) ions from aqueous solutions. Experiments were designed by response surface methodology (RSM) and a quadratic model was used to predict the variables. The adsorption parameters such as adsorbent dosage, removal time, and initial ion concentration were used as the independent variables and their effects on heavy metal ion removal were investigated. Analysis of variance was incorporated to judge the adequacy of the models. Optimal conditions with initial heavy metal ion concentration of 100, 92 and 270 mg/L, 120 s of removal time and 0.12 g of adsorbent amount resulted in 72.15%, 50.23%, and 91.35% removal efficiency for Cu(II), Ni(II), and Pb(II), respectively. The predictions of the model were in good agreement with experimental results and the Fe3O4/talc nanocomposite was successfully used to remove heavy metals from aqueous solutions.
Nanoporous materials such as Mobil composite material number 41 (MCM-41) are attractive for applications such as catalysis, adsorption, supports, and carriers. Green synthesis of MCM-41 is particularly appealing because the chemical reagents are useful and valuable. We report on the eco-friendly synthesis of MCM-41 nanoporous materials via multi-cycle approach by re-using the non-reacted reagents in supernatant as mother liquor after separating the solid product. This approach was achieved via minimal requirement of chemical compensation where additional fresh reactants were added into the mother liquor followed by pH adjustment after each cycle of synthesis. The solid product of each successive batch was collected and characterized while the non-reacted reagents in supernatant can be recovered and re-used to produce subsequent cycle of MCM-41. The multi-cycle synthesis is demonstrated up to three times in this research. This approach suggests a low cost and eco-friendly synthesis of nanoporous material since less waste is discarded after the product has been collected, and in addition, product yield can be maintained at the high level.
Laboratory experiments were conducted to evaluate adsorption, desorption and mobility of metsulfuron-methyl in soils of the oil palm agroecosystem consisting of the Bernam, Selangor, Rengam and Bongor soil series. The lowest adsorption of metsulfuron-methyl occurred in the Bongor soil (0.366 ml g(-1)), and the highest in the Bemam soil (2.837 ml g(-1). The K(fads) (Freundlich) values of metsulfuron-methyl were 0.366, 0.560, 1.570 and 2.837 ml g(-1) in Bongor, Rengam, Selangor and Bemam soil, respectively. The highest K(fdes) value of metsulfuron-methyl, observed in the Bemam soil, was 2.563 indicating low desorption 0.280 (relatively strong retention). In contrast, the lowest K(fdes) value of 0.564 was observed for the Bongor soil, which had the lowest organic matter (1.43%) and clay content (13.2%). Soil organic matter and clay content were the main factors affecting the adsorption of metsulfuron-methyl. The results of the soil column leaching studies suggested that metsulfuron-methyl has a moderate potential for mobility in the Bernam and Bongor soil series with 19.3% and 39%, respectively for rainfall at 200 mm. However, since metsulfuron-methyl is applied at a very low rate (the maximum field application rate used was 30 g ha(-1)) and is susceptible to biodegradation, the potential forground water contamination is low.
The objectives of this study are to obtain the time courses of the amount of chlorophenol adsorbed onto granular activated carbon (GAC) in the simultaneous adsorption and biodegradation processes involving 4-chlorophenol (4-CP) and 2,4-dichlorophenol (2,4-DCP), respectively, and to quantify the bioregeneration efficiency of GAC loaded with 4-CP and 2,4-DCP by direct measurement of the amount of chlorophenol adsorbed onto GAC. Under abiotic and biotic conditions, the time courses of the amount of chlorophenol adsorbed onto GAC at various GAC dosages for the initial 4-CP and 2,4-DCP concentrations below and above the biomass acclimated concentrations of 300 and 150 mg/L, respectively, were determined. The results show that the highest bioregeneration efficiency was achieved provided that the initial adsorbate concentration was lower than the acclimated concentration. When the initial adsorbate concentration was higher than the acclimated concentration, the highest bioregeneration efficiency was achieved if excess adsorbent was used.
The adsorption equilibrium time and effects of pH and concentration of (14)C-labeled paraquat (1,1(')-dimethyl-4,4(')-bipyridylium dichloride) in two types of Malaysian soil were investigated. The soils used in the study were clay loam and clay soils from rice fields. Equilibrium studies of paraquat in a soil and pesticide solution were conducted. Adsorption equilibrium time was achieved within 2 h for both soil types. The amount of (14)C-labeled paraquat adsorbed onto glass surfaces increased with increasing shaking time and remained constant after 10 h. It was found that paraquat adsorbed by the two soils was very similar: 51.73 (clay loam) and 51.59 μ g g(-1) (clay) at 1 μ g/ml. The adsorption of paraquat onto both types of soil was higher at high pH, and adsorption decreased with decreasing pH. At pH 11, the amounts of (14)C-labeled paraquat adsorbed onto the clay loam and clay soil samples were 4.08 and 4.05 μ g g(-1), respectively, whereas at pH 2, the amounts adsorbed were 3.72 and 3.57 μ g g(-1), respectively. Results also suggested that paraquat sorption by soil is concentration dependent.
The capability of carbon nanotubes (CNTs) to adsorb lead (Pb) in aqueous solution was investigated. Batch mode adsorption experiment was conducted to determine the effects of pH, agitation speed, CNTs dosage and contact time. The removal of Pb(II) reached maximum value 85% or 83% at pH 5 or 40 mg/L of CNTs, respectively. Higher correlation coefficients from Langmuir isotherm model indicates the strong adsorptions of Pb(II) on the surface of CNTs (adsorption capacity Xm = 102.04 mg/g). The results indicates that the highest percentage removal of Pb (96.03%) can be achieved at pH 5, 40 mg/L of CNTs, contact time 80 min, and agitation speed 50 r/min.
A kinetic model consisting of first-order desorption and biodegradation processes was developed to describe the bioregeneration of phenol- and p-nitrophenol-loaded powdered activated carbon (PAC) and pyrolyzed rice husk (PRH), respectively. Different dosages of PAC and PRH were loaded with phenol or p-nitrophenol by contacting with the respective phenolic compound at various concentrations. The kinetic model was used to fit the phenol or p-nitrophenol concentration data in the bulk solution during the bioregeneration process to determine the rate constants of desorption, k(d), and biodegradation, k. The results showed that the kinetic model fitted relatively well (R(2)>0.9) to the experimental data for the phenol- and p-nitrophenol-loaded PAC as well as p-nitrophenol-loaded PRH. Comparison of the values of k(d) and k shows that k is much greater than k(d). This indicates clearly that the desorption process is the rate-determining step in bioregeneration and k(d) can be used to characterize the rate of bioregeneration. The trend of the variation of the k(d) values with the dosages of PAC or PRH used suggests that higher rate of bioregeneration can be achieved under non-excess adsorbent dosage condition.
Oil palm fibre was used to prepare activated carbon using physiochemical activation method which consisted of potassium hydroxide (KOH) treatment and carbon dioxide (CO(2)) gasification. The effects of three preparation variables: the activation temperature, activation time and chemical impregnation (KOH:char) ratio on methylene blue (MB) uptake from aqueous solutions and activated carbon yield were investigated. Based on the central composite design (CCD), a quadratic model and a two factor interaction (2FI) model were respectively developed to correlate the preparation variables to the MB uptake and carbon yield. From the analysis of variance (ANOVA), the significant factors on each experimental design response were identified. The optimum activated carbon prepared from oil palm fibre was obtained by using activation temperature of 862 degrees C, activation time of 1h and chemical impregnation ratio of 3.1. The optimum activated carbon showed MB uptake of 203.83 mg/g and activated carbon yield of 16.50%. The equilibrium data for adsorption of MB on the optimum activated carbon were well represented by the Langmuir isotherm, giving maximum monolayer adsorption capacity as high as 400mg/g at 30 degrees C.
The SO2 sorption capacity (SSC) of sorbents prepared from rice husk ash (RHA) with NaOH as additive was studied in a fixed-bed reactor. The sorbents were prepared using a water hydration method by slurrying RHA, CaO, and NaOH. Response surface methodology (RSM) based on four-variable central composite face centered design (CCFCD) was employed in the synthesis of the sorbents. The correlation between the sorbent SSC (as response) with four independent sorbent preparation variables, i.e. hydration period, RHA/CaO ratio, NaOH amount, and drying temperature, were presented as empirical mathematical models. Among all the variables studied, the amount of NaOH used was found to be the most significant variable affecting the SSC of the sorbents prepared. The SSC for sorbent prepared with the addition of NaOH was found to be significantly higher than sorbents prepared without NaOH. This is probably because NaOH is a deliquescent material, and its existence increases the amount of water collected on the surface of the sorbent, a condition required for sorbent-SO2 reaction to occur at low temperature. The effect of further treatment of RHA at 600 degrees C was also investigated. Although pretreated RHA sorbents demonstrated higher SSC as compared to untreated RHA sorbents, nevertheless, at optimum conditions, sorbents prepared from untreated RHA was found to be more favorable due to practical and economic concerns.
The adsorption of humic acid on crosslinked chitosan-epichlorohydrin (chitosan-ECH) beads was investigated. Chitosan-ECH beads were characterized by Fourier transform infrared spectroscopy (FTIR), surface area and pore size analyses, and scanning electron microscopy (SEM). Batch adsorption experiments were carried out and optimum humic acid adsorption on chitosan-ECH beads occurred at pH 6.0, agitation rate of 300 rpm and contact time of 50 min. Adsorption equilibrium isotherms were analyzed by Langmuir and Freundlich models. Freundlich model was found to show the best fit for experimental data while the maximum adsorption capacity determined from Langmuir model was 44.84 mg g(-1). The adsorption of humic acid on chitosan-ECH beads was best described with pseudo-first-order kinetic model. For desorption study, more than 60% of humic acid could be desorbed from the adsorbent using 1.0M HCl for 180 min.
Adsorption behaviours of butyl acetate in air have been studied over silver-loaded Y (Si/Al=40) and ZSM-5 (Si/Al=140) zeolites. The silver metal was loaded into the zeolites by ion exchange (IE) and impregnation (IM) methods. The adsorption study was mainly conducted at a gas hourly space velocity (GHSV) of 13,000 h(-1) with the organic concentration of 1000 ppm while the desorption step was carried out at a GHSV of 5000 h(-1). The impregnated silver-loaded adsorbents showed lower uptake capacity and shorter breakthrough time by about 10 min, attributed to changes in the pore characteristics and available surface for adsorption. Silver exchanged Y (AgY(IE)) with lower hydrophobicity showed higher uptake capacity of up to 35%, longer adsorbent service time and easier desorption compared to AgZSM-5(IE). The presence of water vapour in the feed suppressed the butyl acetate adsorption of AgY(IE) by 42% due to the competitive adsorption of water on the surface and the effect was more pronounced at lower GHSV. Conversely, the adsorption capacity of AgZSM-5(IE) was minimally affected, attributed to the higher hydrophobicity of the material. A mathematical model is proposed to simulate the adsorption behaviour of butyl acetate over AgY(IE) and AgZSM-5(IE). The model parameters were successfully evaluated and used to accurately predict the breakthrough curves under various process conditions with root square mean errors of between 0.05 and 0.07.
Palm shell was used to prepare activated carbon using potassium carbonate (K2CO3) as activating agent. The influence of carbonization temperatures (600-1000 degrees C) and impregnation ratios (0.5-2.0) of the prepared activated carbon on the pore development and yield were investigated. Results showed that in all cases, increasing the carbonization temperature and impregnation ratio, the yield decreased, while the adsorption of CO2 increased, progressively. Specific surface area of activated carbon was maximum about 1170 m2/g at 800 degrees C with activation duration of 2 h and at an impregnation ratio of 1.0.
The amount of lipase from Mucor miehei adsorption on ultrafiltration polysulfone hollow fiber membrane chips has been determined using different lipase concentrations at three different temperatures, namely 30, 35, and 40 degrees C. It was experimentally shown that adsorption of lipase increases with temperature. The results were used to evaluate the constants found in the Langmuir adsorption isotherm model coupled with the Van't Hoff's relationship. A temperature dependence correlation for the amount of adsorbed lipase activity, alip,ads, and that present in the supernatant solution, alip,free was determined. The effect of varying the concentration on a cross-linking agent, namely, glutaraldehyde, to the membrane chips was also tested. It was found that, under the same operating conditions, the amount of lipase adsorbed on polysulfone membranes was increased dramatically after pre-treating the membrane with 1% Glutaraldehyde. However, increasing the concentration of the cross-linking agent has a low effect on the amount of lipase adsorbed.
The sorption and desorption of cyfluthrin mixture isomers were determined using batch equilibration method and mobility was studied under laboratory conditions, using packed soil column. The soil types used in the study were clayey, clay loam and sandy clay loam obtained from three tomato farms in Cameron Highlands. A low Freundlich adsorption distribution coefficient K(ads(f)) for cyfluthrin was observed for clayey, clay loam and sandy clay loam soils (95.69, 21.64 and 8.99 l/kg, respectively). Results showed that cyfluthrin had high Freundlich organic matter (OM) distribution coefficient K(oc) values of 5799, 2278 and 1635 lkg(-1) for clayey, clay loam and sandy clay loam soils, respectively. These values indicate that cyfluthrin is considered immobile in Malaysian soils with different textures, based on the value of K(oc) by McCall. Adsorption of cyfluthrin was significantly (P < 0.05) affected with soil pH, fertilizer NPK, organic matter content and temperature. It was observed that approximately 95.8%, 93.8% and 91.8% of the adsorbed cyfluthrin remained sorbed after four successive rinses for clayey, clay loam and sandy clay loam soils. Soil column test showed that cyfluthrin was not detected in leachate. Cyfluthrin was detected in topsoil and its concentration decreased with depth. The downward movement of cyfluthrin in sandy clay loam soil was more than that in clay loam and clayey soils. Approximately, 80.9%, 77.8% and 67.3% cyfluthrin was observed at the depth of 0-5 cm (rainfall 350 mm) for clayey, clay loam and sandy clay loam soils respectively. Mobility of cyfluthrin showed that the percentage of cyfluthrin leached into soil was not affected by the amount of rainfall. The result clearly showed that cyfluthrin molecules were bound strongly to all the three Malaysian soil types.