Displaying publications 161 - 180 of 1822 in total

Abstract:
Sort:
  1. Mursyidah AK, Hafizzudin-Fedeli M, Nor Muhammad NA, Latiff A, Firdaus-Raih M, Wan KL
    Plant Cell Physiol, 2023 Apr 17;64(4):368-377.
    PMID: 36611267 DOI: 10.1093/pcp/pcad004
    The angiosperm Rafflesia exhibits a unique biology, including a growth strategy that involves endophytic parasitism of a specific host, with only the gigantic flower externally visible. The Rafflesia possesses many unique evolutionary, developmental and morphological features that are rooted in yet-to-be-explained physiological processes. Although studies on the molecular biology of Rafflesia are limited by sampling difficulties due to its rarity in the wild and the short life span of its flower, current advances in high-throughput sequencing technology have allowed for the genome- and transcriptome-level dissection of the molecular mechanisms behind the unique characteristics of this parasitic plant. In this review, we summarize major findings on the cryptic biology of Rafflesia and provide insights into future research directions. The wealth of data obtained can improve our understanding of Rafflesia species and contribute toward the conservation strategy of this endangered plant.
    Matched MeSH terms: Phylogeny
  2. Wettewa E, Wallace LE
    Mol Phylogenet Evol, 2021 04;157:107070.
    PMID: 33421614 DOI: 10.1016/j.ympev.2021.107070
    Platanthera is one of the largest genera of temperate orchids in the Holarctic and exemplifies a lineage that has adaptively radiated into diverse habitats within North America, Asia, Europe, North Africa, Borneo, and Sarawak. Major centers of diversity in this genus are North America and eastern Asia. Despite its diversity, a thorough phylogenetic hypothesis for the genus is lacking because no studies have yet sampled taxa exhaustively or developed a robust molecular toolkit. While there is strong evidence that suggests monophyly of subgenus Limnorchis, most taxa in this group have not been included in a phylogenetic analysis. In this study, we developed a new toolkit for Platanthera consisting of genomic information from 617 low-copy nuclear loci. Using a targeted enrichment approach, we collected high-throughput sequence data in 23 accessions of nine of the 12 diploid species of subgenus Limnorchis and outgroup species across Platanthera. A maximum likelihood analysis resolved a strongly supported monophyletic clade for subgenus Limnorchis. Ancestral biogeographic reconstruction indicated that subgenus Limnorchis originated in western North America ca. 3-4.5 Mya from an ancestor that was widespread in western North America and eastern Asia and subsequently diversified in western North America, followed by dispersal of some species to eastern North America. Our results indicate complex biogeographic connections between Asia and North America, and therefore it suggests that Platanthera is a suitable system to test biogeographic hypotheses over time and space in the Holarctic. Our results are also expected to facilitate further study of diversification and biogeographic spread across Platanthera and lay the groundwork for understanding independent origins, biogeography, and morphological diversification of polyploid species within subgenus Limnorchis.
    Matched MeSH terms: Phylogeny
  3. Ballinger SW, Schurr TG, Torroni A, Gan YY, Hodge JA, Hassan K, et al.
    Genetics, 1992 Jan;130(1):139-52.
    PMID: 1346259
    Human mitochondrial DNAs (mtDNAs) from 153 independent samples encompassing seven Asian populations were surveyed for sequence variation using the polymerase chain reaction (PCR), restriction endonuclease analysis and oligonucleotide hybridization. All Asian populations were found to share two ancient AluI/DdeI polymorphisms at nps 10394 and 10397 and to be genetically similar indicating that they share a common ancestry. The greatest mtDNA diversity and the highest frequency of mtDNAs with HpaI/HincII morph 1 were observed in the Vietnamese suggesting a Southern Mongoloid origin of Asians. Remnants of the founding populations of Papua New Guinea (PNG) were found in Malaysia, and a marked frequency cline for the COII/tRNA(Lys) intergenic deletion was observed along coastal Asia. Phylogenetic analysis indicates that both insertion and deletion mutations in the COII/tRNA(Lys) region have occurred more than once.
    Matched MeSH terms: Phylogeny
  4. Sittidilokratna N, Dangtip S, Sritunyalucksana K, Babu R, Pradeep B, Mohan CV, et al.
    Dis Aquat Organ, 2009 Apr 27;84(3):195-200.
    PMID: 19565696 DOI: 10.3354/dao02059
    Laem-Singh virus (LSNV) is a positive-sense single-stranded RNA (ssRNA) virus that was recently identified in Penaeus monodon shrimp in Thailand displaying signs of slow growth syndrome. A total of 326 shrimp collected between 1998 and 2007 from countries in the Indo-Pacific region were tested by RT-PCR for evidence of LSNV infection. The samples comprised batches of whole postlarvae, and lymphoid organ, gill, muscle or pleopod tissue of juvenile, subadult and adult shrimp. LSNV was not detected in 96 P. monodon, P. japonicus or P. merguiensis from Australia or 16 P. monodon from Fiji, Philippines, Sri Lanka and Mozambique. There was no evidence of LSNV infection in 73 healthy juvenile P. vannamei collected during 2006 from ponds at 9 locations in Thailand. However, LNSV was detected in each of 6 healthy P. monodon tested from Malaysia and Indonesia, 2 of 6 healthy P. monodon tested from Vietnam and 39 of 40 P. monodon collected from slow-growth ponds in Thailand. A survey of 81 P. monodon collected in 2007 from Andhra Pradesh, India, indicated 56.8% prevalence of LSNV infection but no clear association with disease or slow growth. Phylogenetic analysis of PCR amplicons obtained from samples from India, Vietnam, Malaysia and Thailand indicated that nucleotide sequence variation was very low (>98% identity) and there was no clustering of viruses according to site of isolation or the health status of the shrimp. The data suggests that LSNV exists as a single genetic lineage and occurs commonly in healthy P. monodon in parts of Asia.
    Matched MeSH terms: Phylogeny
  5. Jusoh WFA, Ballantyne L, Lambkin CL, Hashim NR, Wahlberg N
    Zootaxa, 2018 Aug 06;4456(1):1-71.
    PMID: 30314190 DOI: 10.11646/zootaxa.4456.1.1
    The synchronous firefly genus Pteroptyx Olivier is reassessed from morphological, molecular, and habitat perspectives in Malaysia, and includes some reliably associated females described from morphological features and internal female reproductive anatomy. Phylogenetic analyses using combined morphological and molecular data (where available) for 158 taxa supported all the major features of the existing taxonomic categories within the Indopacific Luciolinae. They revealed a distinct Pteroptyx clade as a morphologically variable genus with Poluninius selangoriensis Ballantyne being newly synonymised with Luciola testacea Motschulsky, the type species, which is redescribed from the type series. Pteroptyx gelasina Ballantyne was shown to be distinct and three of the four morphological subdivisions within Pteroptyx malaccae (Gorham) considered useful. A new species Pt. balingiana Jusoh sp. nov. is described from Sarawak. A second specimen of Pt. gombakia Ballantyne is described and figured.        Some females were reliably associated with identified males by molecular data, but investigation of their morphology showed consistent features that were for the most part not useful for species delineation, which still relies on association with the males and colour patterns. All females investigated had bursa plates.Habitat details for most Pteroptyx revealed an association with a riparian environment likely to support mangroves but not necessarily an obligatory association with mangroves or any particular species. Pteroptyx galbina Jusoh was found up to 30 km from the sea, and Pt. bearni Olivier displays in a variety of flowering plants alongside rivers, including mangroves.Keys to species and diagnoses of all species with coloured plates are given.
    Matched MeSH terms: Phylogeny
  6. Azzeme AM, Abdullah SNA, Aziz MA, Wahab PEM
    Plant Physiol Biochem, 2017 Mar;112:129-151.
    PMID: 28068641 DOI: 10.1016/j.plaphy.2016.12.025
    Dehydration-responsive element binding (DREB) transcription factor plays an important role in controlling the expression of abiotic stress responsive genes. An intronless oil palm EgDREB1 was isolated and confirmed to be a nuclear localized protein. Electrophoretic mobility shift and yeast one-hybrid assays validated its ability to interact with DRE/CRT motif. Its close evolutionary relation to the dicot NtDREB2 suggests a universal regulatory role. In order to determine its involvement in abiotic stress response, functional characterization was performed in oil palm seedlings subjected to different levels of drought severity and in EgDREB1 transgenic tomato seedlings treated by abiotic stresses. Its expression in roots and leaves was compared with several antioxidant genes using quantitative real-time PCR. Early accumulation of EgDREB1 in oil palm roots under mild drought suggests possible involvement in the initiation of signaling communication from root to shoot. Ectopic expression of EgDREB1 in T1 transgenic tomato seedlings enhanced expression of DRE/CRT and non-DRE/CRT containing genes, including tomato peroxidase (LePOD), ascorbate peroxidase (LeAPX), catalase (LeCAT), superoxide dismutase (LeSOD), glutathione reductase (LeGR), glutathione peroxidase (LeGP), heat shock protein 70 (LeHSP70), late embryogenesis abundant (LeLEA), metallothionine type 2 (LeMET2), delta 1-pyrroline-5- carboxylate synthetase (LePCS), ABA-aldehyde oxidase (LeAAO) and 9-cis- Epoxycarotenoid dioxygenase (LeECD) under PEG treatment and cold stress (4 °C). Altogether, these findings suggest that EgDREB1 is a functional regulator in enhancing tolerance to drought and cold stress.
    Matched MeSH terms: Phylogeny
  7. Horn M, Fritsche TR, Linner T, Gautom RK, Harzenetter MD, Wagner M
    Int J Syst Evol Microbiol, 2002 Mar;52(Pt 2):599-605.
    PMID: 11931173 DOI: 10.1099/00207713-52-2-599
    All obligate bacterial endosymbionts of free-living amoebae currently described are affiliated with the alpha-Proteobacteria, the Chlamydiales or the phylum Cytophaga-Flavobacterium-Bacteroides. Here, six rod-shaped gram-negative obligate bacterial endosymbionts of clinical and environmental isolates of Acanthamoeba spp. from the USA and Malaysia are reported. Comparative 16S rDNA sequence analysis demonstrated that these endosymbionts form a novel, monophyletic lineage within the beta-Proteobacteria, showing less than 90% sequence similarity to all other recognized members of this subclass. 23S rDNA sequence analysis of two symbionts confirmed this affiliation and revealed the presence of uncommon putative intervening sequences of 146 bp within helix-25 that shared no sequence homology to any other bacterial rDNA. In addition, the 23S rRNA of these endosymbionts displayed one polymorphism at the target site of oligonucleotide probe BET42a that is conserved in all other sequenced beta-Proteobacteria. Intra-cytoplasmatic localization of the endosymbionts within the amoebal host cells was confirmed by electron microscopy and fluorescence in situ hybridization with a specific 16S rRNA-targeted oligonucleotide probe. Based on these findings, the provisional name 'Candidatus Procabacter acanthamoebae' is proposed for classification of a representative of the six endosymbionts of Acanthamoeba spp. studied in this report. Comparative 18S rDNA sequence analysis of the Acanthamoeba host cells revealed their membership with either Acanthamoeba 18S rDNA sequence type T5 (Acanthamoeba lenticulata) or sequence type T4, which comprises the majority of all Acanthamoeba isolates.
    Matched MeSH terms: Phylogeny
  8. Pritchard LI, Gould AR, Wilson WC, Thompson L, Mertens PP, Wade-Evans AM
    Virus Res, 1995 Mar;35(3):247-61.
    PMID: 7785314
    The nucleotide sequence of the RNA segment 3 of bluetongue virus (BTV) serotype 2 (Ona-A) from North America was determined to be 2772 nucleotides containing a single large open reading frame of 2703 nucleotides (901 amino acid). The predicted VP3 protein exhibited general physiochemical properties (including hydropathy profiles) which were very similar to those previously deduced for other BTV VP3 proteins. Partial genome segment 3 sequences, obtained by polymerase chain reaction (PCR) sequencing, of BTV isolates from the Caribbean were compared to those from North America, South Africa, India, Indonesia, Malaysia and Australia, as well as other orbiviruses, to determine the phylogenetic relationships amongst them. Three major BTV topotypes (Gould, A.R. (1987) Virus Res. 7, 169-183) were observed which had nucleotide sequences that differed by approximately 20%. At the molecular level, geographic separation had resulted in significant divergence in the BTV genome segment 3 sequences, consistent with the evolution of distinct viral populations. The close phylogenetic relationship between the BTV serotype 2 (Ona-A strain) from Florida and the BTV serotypes 1, 6 and 12 from Jamaica and Honduras, indicated that the presence of BTV serotype 2 in North America was probably due to an exotic incursion from the Caribbean region as previously proposed by Sellers and Maaroof ((1989) Can. J. Vet. Res. 53, 100-102) based on trajectory analysis. Conversely, nucleotide sequence analysis of Caribbean BTV serotype 17 isolates suggested they arose from incursions which originated in the USA, possibly from a BTV population distinct from those circulating in Wyoming.
    Matched MeSH terms: Phylogeny
  9. Khairuldin AM, Ibrahim IK, Wakiyuddin SB, Z, Wenning, AO, Lesley, SJ, Nicholas, et al.
    Ann Dent, 2014;21(2):17-26.
    MyJurnal
    The gram-positive, mesophilic and non-motile coccus Streptococcus gordonii is an important causative agent of infective endocarditis (IE). This pioneer species of dental plaque also causes bacteraemia in immune-supressed patients. In this study, we analysed the genome of a representative strain, Streptococcus gordonii SK12 that was originally isolated from the oral cavity. To gain a better understanding of the biology, virulence and phylogeny, of this potentially pathogenic organism, high-throughput Illumina HiSeq technology and different bioinformatics approaches were performed. Genome assembly of SK12 was performed using CLC Genomic Workbench 5.1.5 while RAST annotation revealed the key genomic features. The assembled draft genome of Streptococcus gordonii SK12 consists of 27 contigs, with a genome size of 2,145,851 bp and a G+C content of 40.63%. Phylogenetic inferences have confirmed that SK12 is closely related to the widely studied strain Streptococcus gordonii Challis. Interestingly, we predicted 118 potential virulence genes in SK12 genome which may contribute to bacterial pathogenicity in infective endocarditis. We also discovered an intact prophage which might be recently integrated into the SK12 genome. Examination of genes present in genomic islands revealed that this oral strain
    might has potential to acquire new phenotypes/traits including strong defence system, bacitracin
    resistance and collateral detergent sensitivity. This detailed analysis of S. gordonii SK12 further improves our understanding of the genetic make-up of S. gordonii as a whole and may help to elucidate how this species is able to transition between living as an oral commensal and potentially causing the lifethreatening condition infective endocarditis.
    Matched MeSH terms: Phylogeny
  10. Wong ML, Liew JWK, Wong WK, Pramasivan S, Mohamed Hassan N, Wan Sulaiman WY, et al.
    Parasit Vectors, 2020 Aug 12;13(1):414.
    PMID: 32787974 DOI: 10.1186/s13071-020-04277-x
    BACKGROUND: The endosymbiont bacterium Wolbachia is maternally inherited and naturally infects some filarial nematodes and a diverse range of arthropods, including mosquito vectors responsible for disease transmission in humans. Previously, it has been found infecting most mosquito species but absent in Anopheles and Aedes aegypti. However, recently these two mosquito species were found to be naturally infected with Wolbachia. We report here the extent of Wolbachia infections in field-collected mosquitoes from Malaysia based on PCR amplification of the Wolbachia wsp and 16S rRNA genes.

    METHODS: The prevalence of Wolbachia in Culicinae mosquitoes was assessed via PCR with wsp primers. For some of the mosquitoes, in which the wsp primers failed to amplify a product, Wolbachia screening was performed using nested PCR targeting the 16S rRNA gene. Wolbachia sequences were aligned using Geneious 9.1.6 software, analyzed with BLAST, and the most similar sequences were downloaded. Phylogenetic analyses were carried out with MEGA 7.0 software. Graphs were drawn with GraphPad Prism 8.0 software.

    RESULTS: A total of 217 adult mosquitoes representing 26 mosquito species were screened. Of these, infections with Wolbachia were detected in 4 and 15 mosquito species using wsp and 16S rRNA primers, respectively. To our knowledge, this is the first time Wolbachia was detected using 16S rRNA gene amplification, in some Anopheles species (some infected with Plasmodium), Culex sinensis, Culex vishnui, Culex pseudovishnui, Mansonia bonneae and Mansonia annulifera. Phylogenetic analysis based on wsp revealed Wolbachia from most of the mosquitoes belonged to Wolbachia Supergroup B. Based on 16S rRNA phylogenetic analysis, the Wolbachia strain from Anopheles mosquitoes were more closely related to Wolbachia infecting Anopheles from Africa than from Myanmar.

    CONCLUSIONS: Wolbachia was found infecting Anopheles and other important disease vectors such as Mansonia. Since Wolbachia can affect its host by reducing the life span and provide resistance to pathogen infection, several studies have suggested it as a potential innovative tool for vector/vector-borne disease control. Therefore, it is important to carry out further studies on natural Wolbachia infection in vector mosquitoes' populations as well as their long-term effects in new hosts and pathogen suppression.

    Matched MeSH terms: Phylogeny
  11. Chem YK, Chua KB, Malik Y, Voon K
    Trop Biomed, 2015 Jun;32(2):344-51.
    PMID: 26691263 MyJurnal
    Monoclonal antibody-escape variant of dengue virus type 1 (MabEV DEN-1) was discovered and isolated in an outbreak of dengue in Klang Valley, Malaysia from December 2004 to March 2005. This study was done to investigate whether DEN152 (an isolate of MabEV DEN-1) is a product of recombination event or not. In addition, the non-synonymous mutations that correlate with the monoclonal antibody-escape variant were determined in this study. The genomes of DEN152 and two new DEN-1 isolates, DENB04 and DENK154 were completely sequenced, aligned, and compared. Phylogenetic tree was plotted and the recombination event on DEN152 was investigated. DEN152 is sub-grouped under genotype I and is closely related genetically to a DEN-1 isolated in Japan in 2004. DEN152 is not a recombinant product of any parental strains. Four amino acid substitutions were unique only to DEN 152. These amino acid substitutions were (Ser)[326](Leu), (Ser)[340](Leu) at the deduced E protein, (Ile)[250](Thr) at NS1 protein, and (Thr)[41](Ser) at NS5 protein. Thus, DEN152 is an isolate of the emerging monoclonal antibody-escape variant DEN-1 that escaped diagnostic laboratory detection.
    Matched MeSH terms: Phylogeny
  12. Tan YF, Lim CY, Chong CW, Lim PKC, Yap IKS, Leong PP, et al.
    Intervirology, 2018;61(2):92-95.
    PMID: 30121676 DOI: 10.1159/000491602
    BACKGROUND: The giant amoebal viruses of Mimivirus and Marseillevirus are large DNA viruses and have been documented in water, soil, and sewage samples. The trend of discovering these giant amoebal viruses has been increasing throughout Asia with Japan, India, and Saudi Arabia being the latest countries to document the presence of these viruses. To date, there have been no reports of large amoebal viruses being isolated in South East Asia.

    OBJECTIVE: In this study, we aim to discover these viruses from soil samples in an aboriginal village (Serendah village) in Peninsular -Malaysia.

    METHOD AND RESULTS: We successfully detected and isolated both Mimivirus-like and Marseillevirus-like viruses using Acanthamoeba castellanii. Phylogeny analysis identified them as Mimivirus and Marseillevirus, respectively.

    CONCLUSION: The ubiquitous nature of both Mimivirus and Marseillevirus is further confirmed in our study as they are detected in higher quantity in soil that is near to water vicinities in an aboriginal village in Peninsular Malaysia. However, this study is limited by our inability to investigate the impact of Mimivirus and Marseillevirus on the aboriginal villagers. More studies on the potential impact of these viruses on human health, especially on the aborigines, are warranted.

    Matched MeSH terms: Phylogeny
  13. Tee KK, Chan PQ, Loh AM, Singh S, Teo CH, Iyadorai T, et al.
    J Med Virol, 2023 Feb;95(2):e28520.
    PMID: 36691929 DOI: 10.1002/jmv.28520
    Pteropine orthoreovirus (PRV), an emerging bat-borne virus, has been linked to cases of acute respiratory infections (ARI) in humans. The prevalence, epidemiology and genomic diversity of PRV among ARI of unknown origin were studied. Among 632 urban outpatients tested negative for all known respiratory viruses, 2.2% were PRV-positive. Patients mainly presented with moderate to severe forms of cough, sore throat and muscle ache, but rarely with fever. Phylogenetic analysis revealed that over 90% of patients infected with the Melaka virus (MelV)-like PRV, while one patient infected with the Pulau virus previously found only in fruit bats. Human oral keratinocytes and nasopharyngeal epithelial cells were susceptible to clinical isolates of PRV, including the newly isolated MelV-like 12MYKLU1034. Whole genome sequence of 12MYKLU1034 using Nanopore technique revealed a novel reassortant strain. Evolutionary analysis of the global PRV strains suggests the continuous evolution of PRV through genetic reassortment among PRV strains circulating in human, bats and non-human primate hosts, creating a spectrum of reassortant lineages with complex evolutionary characteristics. In summary, the role of PRV as a common etiologic agent of ARI is evident. Continuous monitoring of PRV prevalence, pathogenicity and diversity among human and animal hosts is important to trace the emergence of novel reassortants.
    Matched MeSH terms: Phylogeny
  14. Siew ZY, Lai ZJ, Ho QY, Ter HC, Ho SH, Wong ST, et al.
    Trop Biomed, 2023 Dec 01;40(4):462-470.
    PMID: 38308834 DOI: 10.47665/tb.40.4.012
    Bats are flying mammals with unique immune systems that allow them to hold many pathogens. Hence, they are recognised as the reservoir of many zoonotic pathogens. In this study, we performed molecular detection to detect coronaviruses, paramyxoviruses, pteropine orthoreoviruses and dengue viruses from samples collected from insectivorous bats in Krau Reserve Forest. One faecal sample from Rhinolophus spp. was detected positive for coronavirus. Based on BLASTN, phylogenetic analysis and pairwise alignment-based sequence identity calculation, the detected bat coronavirus is most likely to be a bat betacoronavirus lineage slightly different from coronavirus from China, Philippines, Thailand and Luxembourg. In summary, continuous surveillance of bat virome should be encouraged, as Krau Reserve Forest reported a wide spectrum of biodiversity of insectivorous and fruit bats. Moreover, the usage of primers for the broad detection of viruses should be reconsidered because geographical variations might possibly affect the sensitivity of primers in a molecular approach.
    Matched MeSH terms: Phylogeny
  15. Seltmann A, Corman VM, Rasche A, Drosten C, Czirják GÁ, Bernard H, et al.
    Ecohealth, 2017 06;14(2):272-284.
    PMID: 28500421 DOI: 10.1007/s10393-017-1245-x
    Emerging infectious diseases (EIDs) are considered a major threat to global health. Most EIDs appear to result from increased contact between wildlife and humans, especially when humans encroach into formerly pristine habitats. Habitat deterioration may also negatively affect the physiology and health of wildlife species, which may eventually lead to a higher susceptibility to infectious agents and/or increased shedding of the pathogens causing EIDs. Bats are known to host viruses closely related to important EIDs. Here, we tested in a paleotropical forest with ongoing logging and fragmentation, whether habitat disturbance influences the occurrence of astro- and coronaviruses in eight bat species. In contrast to our hypothesis, anthropogenic habitat disturbance was not associated with corona- and astrovirus detection rates in fecal samples. However, we found that bats infected with either astro- or coronaviruses were likely to be coinfected with the respective other virus. Additionally, we identified two more risk factors influencing astrovirus shedding. First, the detection rate of astroviruses was higher at the beginning of the rainy compared to the dry season. Second, there was a trend that individuals with a poor body condition had a higher probability of shedding astroviruses in their feces. The identification of risk factors for increased viral shedding that may potentially result in increased interspecies transmission is important to prevent viral spillovers from bats to other animals, including humans.
    Matched MeSH terms: Phylogeny
  16. Crampton-Platt A, Timmermans MJ, Gimmel ML, Kutty SN, Cockerill TD, Vun Khen C, et al.
    Mol Biol Evol, 2015 Sep;32(9):2302-16.
    PMID: 25957318 DOI: 10.1093/molbev/msv111
    In spite of the growth of molecular ecology, systematics and next-generation sequencing, the discovery and analysis of diversity is not currently integrated with building the tree-of-life. Tropical arthropod ecologists are well placed to accelerate this process if all specimens obtained through mass-trapping, many of which will be new species, could be incorporated routinely into phylogeny reconstruction. Here we test a shotgun sequencing approach, whereby mitochondrial genomes are assembled from complex ecological mixtures through mitochondrial metagenomics, and demonstrate how the approach overcomes many of the taxonomic impediments to the study of biodiversity. DNA from approximately 500 beetle specimens, originating from a single rainforest canopy fogging sample from Borneo, was pooled and shotgun sequenced, followed by de novo assembly of complete and partial mitogenomes for 175 species. The phylogenetic tree obtained from this local sample was highly similar to that from existing mitogenomes selected for global coverage of major lineages of Coleoptera. When all sequences were combined only minor topological changes were induced against this reference set, indicating an increasingly stable estimate of coleopteran phylogeny, while the ecological sample expanded the tip-level representation of several lineages. Robust trees generated from ecological samples now enable an evolutionary framework for ecology. Meanwhile, the inclusion of uncharacterized samples in the tree-of-life rapidly expands taxon and biogeographic representation of lineages without morphological identification. Mitogenomes from shotgun sequencing of unsorted environmental samples and their associated metadata, placed robustly into the phylogenetic tree, constitute novel DNA "superbarcodes" for testing hypotheses regarding global patterns of diversity.
    Matched MeSH terms: Phylogeny
  17. Padilla-Iglesias C, Gjesfjeld E, Vinicius L
    PLoS One, 2020;15(12):e0243171.
    PMID: 33259529 DOI: 10.1371/journal.pone.0243171
    The origins of linguistic diversity remain controversial. Studies disagree on whether group features such as population size or social structure accelerate or decelerate linguistic differentiation. While some analyses of between-group factors highlight the role of geographical isolation and reduced linguistic exchange in differentiation, others suggest that linguistic divergence is driven primarily by warfare among neighbouring groups and the use of language as marker of group identity. Here we provide the first integrated test of the effects of five historical sociodemographic and geographic variables on three measures of linguistic diversification among 50 Austronesian languages: rates of word gain, loss and overall lexical turnover. We control for their shared evolutionary histories through a time-calibrated phylogenetic sister-pairs approach. Results show that languages spoken in larger communities create new words at a faster pace. Within-group conflict promotes linguistic differentiation by increasing word loss, while warfare hinders linguistic differentiation by decreasing both rates of word gain and loss. Finally, we show that geographical isolation is a strong driver of lexical evolution mainly due to a considerable drift-driven acceleration in rates of word loss. We conclude that the motor of extreme linguistic diversity in Austronesia may have been the dispersal of populations across relatively isolated islands, favouring strong cultural ties amongst societies instead of warfare and cultural group marking.
    Matched MeSH terms: Phylogeny
  18. Rosnina AG, Tan YS, Abdullah N, Vikineswary S
    World J Microbiol Biotechnol, 2016 Feb;32(2):18.
    PMID: 26745978 DOI: 10.1007/s11274-015-1959-2
    Pleurotus citrinopileatus (yellow oyster mushroom) has an attractive shape and yellow colour but the fragile texture complicates packaging, and its strong aroma is unappealing to consumers. This study aimed to improve the characteristics and yield of P. citrinopileatus by interspecies mating between monokaryotic cultures of P. citrinopileatus and P. pulmonarius. Ten monokaryon cultures of the parental lines were crossed in all combinations to obtain hybrids. Eleven compatible mating pairs were obtained and cultivated to observe their sporophore morphology and yield. The selected hybrid, i.e. P1xC9, was beige in colour while hybrid P3xC8 was yellow in colour. Their sporophores had less offensive aroma, improved texture and higher yield. The DNA sequences of these hybrids were found to be in the same clade as the P. citrinopileatus parent with a bootstrap value of 99%. High bootstrap values indicate high genetic homology between hybrids and the P. citrinopileatus parent. The biological efficiencies of these hybrids P1xC9 (70.97%) and P3xC8 (52.14%) were also higher than the P. citrinopileatus parent (35.63%). Interspecies hybrids obtained by this mating technique can lead to better strains of mushrooms for genetic improvement of the Pleurotus species.
    Matched MeSH terms: Phylogeny
  19. Avin FA, Bhassu S, Tan YS, Shahbazi P, Vikineswary S
    ScientificWorldJournal, 2014;2014:793414.
    PMID: 24587752 DOI: 10.1155/2014/793414
    Identification of edible mushrooms particularly Pleurotus genus has been restricted due to various obstacles. The present study attempted to use the combination of two variable regions of IGS1 and ITS for classifying the economically cultivated Pleurotus species. Integration of the two regions proved a high ability that not only could clearly distinguish the species but also served sufficient intraspecies variation. Phylogenetic tree (IGS1+ITS) showed seven distinct clades, each clade belonging to a separate species group. Moreover, the species differentiation was tested by AMOVA and the results were reconfirmed by presenting appropriate amounts of divergence (91.82% among and 8.18% within the species). In spite of achieving a proper classification of species by combination of IGS1 and ITS sequences, the phylogenetic tree showed the misclassification of the species of P. nebrodensis and P. eryngii var. ferulae with other strains of P. eryngii. However, the constructed median joining (MJ) network could not only differentiate between these species but also offer a profound perception of the species' evolutionary process. Eventually, due to the sufficient variation among and within species, distinct sequences, simple amplification, and location between ideal conserved ribosomal genes, the integration of IGS1 and ITS sequences is recommended as a desirable DNA barcode.
    Matched MeSH terms: Phylogeny*
  20. Donato C, Hoi le T, Hoa NT, Hoa TM, Van Duyet L, Dieu Ngan TT, et al.
    Virology, 2016 08;495:1-9.
    PMID: 27148893 DOI: 10.1016/j.virol.2016.04.026
    BACKGROUND: Enterovirus 71 subgenogroup C4 caused the largest outbreak of Hand, Foot and Mouth Disease (HFMD) in Vietnam during 2011-2012, resulting in over 200,000 hospitalisations and 207 fatalities.

    METHODS: A total of 1917 samples with adequate volume for RT-PCR analysis were collected from patients hospitalised with HFMD throughout Vietnam and 637 were positive for EV71. VP1 gene (n=87) and complete genome (n=9) sequencing was performed. Maximum-likelihood phylogenetic analysis was performed to characterise the B5, C4 and C5 strains detected.

    RESULTS: Sequence analyses revealed that the dominant subgenogroup associated with the 2012 outbreak was C4, with B5 and C5 strains representing a small proportion of these cases.

    CONCLUSIONS: Numerous countries in the region including Malaysia, Taiwan and China have a large influence on strain diversity in Vietnam and understanding the transmission of EV71 throughout Southeast Asia is vital to inform preventative public health measures and vaccine development efforts.

    Matched MeSH terms: Phylogeny
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links