Displaying publications 1821 - 1840 of 9214 in total

Abstract:
Sort:
  1. Koh CL, Kalaimathee KK, Ngeow YF
    Med J Malaysia, 1984 Dec;39(4):269-71.
    PMID: 6443581
    The plasmid profiles of 66 strains of penicillinase-producing Neisseria gonorrhoeae (PPNG), isolated in Peninsular Malaysia, were determined by agarose gel electrophoresis. All the isolates harboured two common plasmid species, a 4.4 x 10 6 Far-East type R plasmid associated with beta-lactamase production and a 2.6 x 106 plasmid of unknown function. In addition to these two plasmids, 51 (77%) PPNG isolates also carried a 24.5 x 106 conjugative plasmid.
    Matched MeSH terms: Neisseria gonorrhoeae/metabolism*
  2. Lim YS, Jegathesan M, Koay AS, Kang SH
    Med J Malaysia, 1983 Mar;38(1):27-30.
    PMID: 6633330
    Enterotoxin production by strains of Staphylococcus aureus isolated from foods unconnected with outbreaks offood poisoning was investigated. Twenty-three percent of 217 strains examined produced enterotoxins A, B, C, D or E. Enterotoxin C was found to occur most frequently. Enterotoxin A was not detected alone from any of the strains examined, but occurred together with other enterotoxins. The overall number of strains isolated from raw foods which produced one or more enterotoxins was higher than that for cooked foods. Antibiotic sensitivities were unrelated to enterotoxin production and no correlation could be found between methicillin resistance and enterotoxigenicity.
    Matched MeSH terms: Staphylococcus aureus/metabolism*
  3. Doustjalali SR, Yusof R, Yip CH, Looi LM, Pillay B, Hashim OH
    Electrophoresis, 2004 Jul;25(14):2392-401.
    PMID: 15274022
    We have analyzed unfractionated sera of newly diagnosed patients (n=10) with breast carcinoma (BC), prior to treatment, and patients (n=5) with fibrocystic disease of the breast (FDB) by two-dimensional gel electrophoresis (2-DE) and silver staining. The patients' 2-DE serum protein profiles obtained were then subjected to image analysis and compared to similar data generated from sera of normal healthy female controls (n=10) of the same range of age. The relative expression of alpha1-antichymotrypsin (ACT), clusterin, and complement factor B was significantly higher in all BC patients as compared to normal controls. However, the expression of alpha1-antitrypsin (AAT) in BC patients was apparently lower than that of the controls. Similar differential expression of ACT was detected in the FDB patients. The aberrant expression of the serum acute-phase proteins of patients with BC and FDB was confirmed by competitive enzyme-linked immunosorbent assay (ELISA). Similar altered proteins expression was also observed from immunohistochemical studies of malignant (n=5) and benign (n=5) breast lesions of the respective patients performed using antisera to the aberrantly expressed proteins. However, the malignant breast lesions were instead positively stained for AAT. The differential expression of the serum proteins was apparently abrogated when a six-month follow-up study was performed on nine of the BC patients subsequent to treatment.
    Matched MeSH terms: alpha 1-Antichymotrypsin/metabolism*; alpha 1-Antitrypsin/metabolism*; Breast Neoplasms/metabolism*; Fibrocystic Breast Disease/metabolism*; Glycoproteins/metabolism; Complement Factor B/metabolism*; Molecular Chaperones/metabolism
  4. Ampah KK, Greaves J, Shun-Shion AS, Asnawi AW, Lidster JA, Chamberlain LH, et al.
    J Cell Sci, 2018 10 22;131(20).
    PMID: 30254024 DOI: 10.1242/jcs.212498
    STX19 is an unusual Qa-SNARE as it lacks a C-terminal transmembrane domain. However, it is efficiently targeted to post-Golgi membranes. Here, we set out to determine the intracellular localisation of endogenous STX19 and elucidate the mechanism by which it is targeted to membranes. We have found that a pool of STX19 is localised to tubular recycling endosomes where it colocalises with MICAL-L1 and Rab8 (which has Rab8a and Rab8b forms). Using a combination of genetic, biochemical and cell-based approaches, we have identified that STX19 is S-acylated at its C-terminus and is a substrate for several Golgi-localised S-acyltransferases, suggesting that STX19 is initially S-acylated at the Golgi before trafficking to the plasma membrane and endosomes. Surprisingly, we have found that S-acylation is a key determinant in targeting STX19 to tubular recycling endosomes, suggesting that S-acylation may play a general role in directing proteins to this compartment. In addition, S-acylation also protects STX19 from proteosomal degradation, indicating that S-acylation regulates the function of STX19 at multiple levels.This article has an associated First Person interview with the first author of the paper.
    Matched MeSH terms: Q-SNARE Proteins/metabolism*
  5. Othman EQ, Kaur G, Mutee AF, Muhammad TS, Tan ML
    J Clin Lab Anal, 2009;23(4):249-58.
    PMID: 19623642 DOI: 10.1002/jcla.20309
    Autophagy is a protein degradation process within the cell and its deregulation has been linked to various diseases and the formation of cancer. One of the important proteins involved in the autophagy process is microtubule-associated protein 1 light chain 3 (MAP1LC3). The aims of this study were to determine the MAP1LC3A and MAP1LC3B protein expression in both normal and cancer breast tissues and to determine the relationship between the expression of these proteins and type of tissues. Immunohistochemistry assessments were carried out on tissue microarrays consisting of breast tissues. MAP1LC3A expression was detected in 52/56 of normal breast tissue cores and 65/67 of breast cancer tissue cores. MAP1LC3B expression was detected in 55/56 of normal breast tissue cores and 67/67 of breast cancer tissue cores. MAP1LC3A and MAP1LC3B protein are expressed in the majority of normal and cancer breast tissues. A large number of MAP1LC3A and MAP1LC3B positive breast cancer tissues cores have high proportion of stained cells (81-100%) as compared with normal breast tissues. However, a significantly higher number of breast cancer tissues were found to express the MAP1LC3A protein with strong immunoreactivity as compared with the normal tissues, suggesting that MAP1LC3A may play a role in breast cancer development.
    Matched MeSH terms: Adenocarcinoma/metabolism*; Breast Neoplasms/metabolism*; Carcinoma, Intraductal, Noninfiltrating/metabolism; Microtubule-Associated Proteins/metabolism*; Biomarkers, Tumor/metabolism; Carcinoma, Ductal, Breast/metabolism; Carcinoma, Medullary/metabolism
  6. Arshad ZI, Amid A, Yusof F, Jaswir I, Ahmad K, Loke SP
    Appl Microbiol Biotechnol, 2014 Sep;98(17):7283-97.
    PMID: 24965557 DOI: 10.1007/s00253-014-5889-y
    This review highlights the use of bromelain in various applications with up-to-date literature on the purification of bromelain from pineapple fruit and waste such as peel, core, crown, and leaves. Bromelain, a cysteine protease, has been exploited commercially in many applications in the food, beverage, tenderization, cosmetic, pharmaceutical, and textile industries. Researchers worldwide have been directing their interest to purification strategies by applying conventional and modern approaches, such as manipulating the pH, affinity, hydrophobicity, and temperature conditions in accord with the unique properties of bromelain. The amount of downstream processing will depend on its intended application in industries. The breakthrough of recombinant DNA technology has facilitated the large-scale production and purification of recombinant bromelain for novel applications in the future.
    Matched MeSH terms: Bromelains/metabolism*
  7. Chellappan DK, Yap WS, Bt Ahmad Suhaimi NA, Gupta G, Dua K
    Panminerva Med, 2018 Sep;60(3):117-131.
    PMID: 29696964 DOI: 10.23736/S0031-0808.18.03455-9
    The prevalence of type 2 diabetes mellitus (T2DM) has been increasing at an alarming rate. With an increased understanding of the pathophysiology and pathogenesis of T2DM, various new therapeutic options have been developed to target different key defects in T2DM. Incremental innovations of existing therapies either through unprecedented drug combinations, modified drug molecules, or improved delivery systems are capable to nullify some of the undesirable side effects of traditional therapies as well as to enhance effectiveness. The existing administration routes include inhalation, nasal, buccal, parenteral and oral. Newer drug targets such as protein kinase B (Akt/PKB), AMP-activated protein kinase (AMPK), sirtuin (SIRT), and others are novel approaches that act via different mechanisms and possibly treating T2DM of distinct variations and aetiologies. Other therapies such as endobarrier, gene therapy, and stem cell technology utilize advanced techniques to treat T2DM, and the potential of these therapies are still being explored. Gene therapy is plausible to fix the underlying pathology of T2DM instead of using traditional reactive treatments, especially with the debut of Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR associated protein9 (CRISPR-Cas9) gene editing tool. Molecular targets in T2DM are also being extensively studied as it could target the defects at the molecular level. Furthermore, antibody therapies and vaccinations are also being developed against T2DM; but the ongoing clinical trials are relatively lesser and the developmental progress is slower. Although, there are many therapies designed to cure T2DM, each of them has their own advantages and disadvantages. The preference for the treatment plan usually depends on the health status of the patient and the treatment goal. Therefore, an ideal treatment should take patient's compliance, efficacy, potency, bioavailability, and other pharmacological and non-pharmacological properties into account.
    Matched MeSH terms: Adenylate Kinase/metabolism; Fatty Acids/metabolism; Insulin/metabolism; Receptors, G-Protein-Coupled/metabolism; Proto-Oncogene Proteins c-akt/metabolism; Glucagon-Like Peptide 1/metabolism; Sirtuin 1/metabolism
  8. Abd Aziz CB, Ahmad Suhaimi SQ, Hasim H, Ahmad AH, Long I, Zakaria R
    J Integr Med, 2019 Jan;17(1):66-70.
    PMID: 30591413 DOI: 10.1016/j.joim.2018.12.002
    OBJECTIVE: This study was done to determine whether Tualang honey could prevent the altered nociceptive behaviour, with its associated changes of oxidative stress markers and morphology of the spinal cord, among the offspring of prenatally stressed rats.

    METHODS: Pregnant rats were divided into three groups: control, stress, and stress treated with Tualang honey. The stress and stress treated with Tualang honey groups were subjected to restraint stress from day 11 of pregnancy until delivery. Ten week old male offspring (n = 9 from each group) were given formalin injection and their nociceptive behaviours were recorded. After 2 h, the rats were sacrificed, and their spinal cords were removed to assess oxidative stress activity and morphology. Nociceptive behaviour was analysed using repeated measures analysis of variance (ANOVA), while the levels of oxidative stress parameters and number of Nissl-stained neurons were analysed using a one-way ANOVA.

    RESULTS: This study demonstrated that prenatal stress was associated with increased nociceptive behaviour, changes in the oxidative stress parameters and morphology of the spinal cord of offspring exposed to prenatal stress; administration of Tualang honey reduced the alteration of these parameters.

    CONCLUSION: This study provides a preliminary understanding of the beneficial effects of Tualang honey against the changes in oxidative stress and neuronal damage in the spinal cord of the offspring of prenatally stressed rats.

    Matched MeSH terms: Catalase/metabolism; Glutathione/metabolism; Malondialdehyde/metabolism; Neurons/metabolism; Prenatal Exposure Delayed Effects/metabolism; Spinal Cord/metabolism*; Superoxide Dismutase/metabolism
  9. Hor YY, Ooi CH, Khoo BY, Choi SB, Seeni A, Shamsuddin S, et al.
    J Med Food, 2019 Jan;22(1):1-13.
    PMID: 30592688 DOI: 10.1089/jmf.2018.4229
    Aging is an inevitable and ubiquitous progress that affects all living organisms. A total of 18 strains of lactic acid bacteria (LAB) were evaluated on the activation of adenosine monophosphate-activated protein kinase (AMPK), an intracellular energy sensor mediating lifespan extension. The cell-free supernatant (CFS) of Lactobacillus fermentum DR9 (LF-DR9), Lactobacillus paracasei OFS 0291 (LP-0291), and Lactobacillus helveticus OFS 1515 (LH-1515) showed the highest activation of AMPK and was further evaluated. The phosphorylation of AMPK by these three LAB strains was more evident in U2OS and C2C12 cells, compared to the other cell lines and control (P 
    Matched MeSH terms: Alkadienes/metabolism; Kidney/metabolism; Liver/metabolism; Polymers/metabolism; Muscle, Skeletal/metabolism; Lipid Metabolism; AMP-Activated Protein Kinases/metabolism
  10. Zhuravlova M, Ryndina N, Kravchun P
    PMID: 30829588
    According to literature, the presence of concomitant diabetes mellitus type 2 (DM) is associated with a high frequency of complications in patients with acute myocardial infarction (MI) due to the development of repeated episodes of myocardial ischemia, left ventricular dysfunction, life threatening rhythm disorders, and thromboembolic events Aim: to analyze the state of immuno-inflammation based on the study of calprotectin, as well as to assess the presence and nature of links with carbohydrate metabolism parameters based on the study of blood glucose, insulin and insulin resistance. Patients with AMI in combination with DM 2 were found to have a significant increase in the level of calprotectin by 25.9% (p<0.001) compared to patients with AMI without DM 2. Assessment of carbohydrate metabolism rates revealed changes in the form of statistically significant increase in the concentration of fasting glucose in patients with AMI in combination with DM 2 by 41.8% (p<0.001) when compared to patients with isolated AMI. As for serum insulin, the level of this parameter when combined with the course of AMI and DM 2 significantly exceeded those in patients with AMI without DM 2. The level of HOMA index in patients with AMI with concomitant DM 2 when compared to patients with isolated AMI was also higher (differences are statistically significant, p<0.01). The study showed a correlation between serum calprotectin and insulinemia (R=0.57; p<0.05), HOMA index (R=0.52; p<0.05), fasting glycemia (R=0.59; p<0.05) and troponin I level (R=0,64; p<0,05). The obtained results indicate that the growth of immune inflammatory activity due to the proinflammatory parameter of calprotectin is accompanied by an increase in changes in carbohydrate homeostasis in the form of an increase in the degree of insulin resistance in patients with AMI and DM 2, and severity of cardiac ischemia.
    Matched MeSH terms: Carbohydrate Metabolism*
  11. Gautam A, Paudel YN, Abidin S, Bhandari U
    Hum Exp Toxicol, 2019 Mar;38(3):356-370.
    PMID: 30526076 DOI: 10.1177/0960327118817862
    The current study investigated the role of guggulsterone (GS), a farnesoid X receptor antagonist, in the choline metabolism and its trimethylamine (TMA)/flavin monooxygenases/trimethylamine-N-oxide (TMAO) inhibiting potential in a series of in vitro and in vivo studies as determined by high-performance liquid chromatography (HPLC), mass spectroscopy (MS), and liquid chromatography (LC)-MS techniques. Atherosclerosis (AS) was successfully induced in a group of experimental animals fed with 2% choline diet for 6 weeks. Serum lipid profiles such as total cholesterol, triglycerides, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and very low-density lipoprotein cholesterol were measured. Pro-inflammatory cytokines levels, markers for a hepatic injury, and oxidative stress markers were assessed. Interestingly, GS reduced the level of TMA/TMAO in both in vitro and in vivo studies as demonstrated by the peaks obtained from HPLC, MS, and LC-MS. Furthermore, GS exhibited cardioprotective and antihyperlipidemic effects as evidenced by the attenuation of levels of several serum lipid profiles and different atherogenic risk predictor indexes. GS also prevented hepatic injury by successfully restoring the levels of hepatic injury biomarkers to normal. Similarly, GS inhibited the production of pro-inflammatory cytokines levels, as well as GS, enhanced antioxidant capacity, and reduced lipid peroxidation. Histopathological study of aortic sections demonstrated that GS maintained the normal architecture in AS-induced rats. On the basis of results obtained from current investigation, we suggest that GS might have a great therapeutic potential for the treatment of AS.
    Matched MeSH terms: Clostridium/metabolism; Escherichia/metabolism; Kidney/metabolism; Liver/metabolism; Methylamines/metabolism; Myocardium/metabolism; Atherosclerosis/metabolism
  12. Juanssilfero AB, Kahar P, Amza RL, Yopi, Sudesh K, Ogino C, et al.
    J Biosci Bioeng, 2019 Jun;127(6):726-731.
    PMID: 30642786 DOI: 10.1016/j.jbiosc.2018.12.002
    The ability of oleaginous yeast Lipomyces starkeyi to efficiently produce lipids when cultivated on sap extracted from felled oil palm trunk (OPT) as a novel inexpensive renewable carbon source was evaluated. OPT sap was found to contain approximately 98 g/L glucose and 32 g/L fructose. Batch fermentations were performed using three different OPT sap medium conditions: regular sap, enriched sap, and enriched sap at pH 5.0. Under all sap medium conditions, the cell biomass and lipid production achieved were approximately 30 g/L and 60% (w/w), respectively. L. starkeyi tolerated acidified medium (initial pH ≈ 3) and produced considerable amounts of ethanol as well as xylitol as by-products. The fatty acid profile of L. starkeyi was remarkably similar to that of palm oil, one of the most common vegetable oil feedstock used in biodiesel production with oleic acid as the major fatty acid followed by palmitic, stearic and linoleic acids.
    Matched MeSH terms: Lipomyces/metabolism*
  13. Boo SY, Tan SW, Alitheen NB, Ho CL, Omar AR, Yeap SK
    Sci Rep, 2020 10 27;10(1):18348.
    PMID: 33110122 DOI: 10.1038/s41598-020-75340-x
    The infectious bursal disease (IBD) is an acute immunosuppressive viral disease that significantly affects the economics of the poultry industry. The IBD virus (IBDV) was known to infect B lymphocytes and activate macrophage and T lymphocytes, but there are limited studies on the impact of IBDV infection on chicken intraepithelial lymphocyte natural killer (IEL-NK) cells. This study employed an mRNA sequencing approach to investigate the early regulation of gene expression patterns in chicken IEL-NK cells after infection with very virulent IBDV strain UPM0081. A total of 12,141 genes were expressed in uninfected chicken IEL-NK cells, and most of the genes with high expression were involved in the metabolic pathway, whereas most of the low expressed genes were involved in the cytokine-cytokine receptor pathway. A total of 1,266 genes were differentially expressed (DE) at 3 day-post-infection (dpi), and these DE genes were involved in inflammation, antiviral response and interferon stimulation. The innate immune response was activated as several genes involved in inflammation, antiviral response and recruitment of NK cells to the infected area were up-regulated. This is the first study to examine the whole transcriptome profile of chicken NK cells towards IBDV infection and provides better insight into the early immune response of chicken NK cells.
    Matched MeSH terms: Chickens/metabolism; Interferons/metabolism; Killer Cells, Natural/metabolism*; Poultry Diseases/metabolism; Cytokines/metabolism; Birnaviridae Infections/metabolism; Chemokines/metabolism
  14. Gordon DE, Shun-Shion AS, Asnawi AW, Peden AA
    Methods Mol Biol, 2021;2233:115-129.
    PMID: 33222131 DOI: 10.1007/978-1-0716-1044-2_8
    Constitutive secretion is predominantly measured by collecting the media from cells and performing plate-based assays. This approach is particularly sensitive to changes in cell number, and a significant amount of effort has to be spent to overcome this. We have developed a panel of quantitative flow cytometry-based assays and reporter cell lines that can be used to measure constitutive secretion. These assays are insensitive to changes in cell number making them very robust and well suited to functional genomic and chemical screens. Here, we outline the key steps involved in generating and using these assays for studying constitutive secretion.
    Matched MeSH terms: Bodily Secretions/metabolism*
  15. Anderson TR, Slotkin TA
    Biochem Pharmacol, 1975 Aug 15;24(16):1469-74.
    PMID: 7
    Matched MeSH terms: Adrenal Medulla/metabolism; Catecholamines/metabolism; Dopamine beta-Hydroxylase/metabolism; Epinephrine/metabolism; Metaraminol/metabolism; Morphine Dependence/metabolism; Tyrosine 3-Monooxygenase/metabolism
  16. Rivers C, Idris J, Scott H, Rogers M, Lee YB, Gaunt J, et al.
    BMC Biol, 2015 Dec 22;13:111.
    PMID: 26694817 DOI: 10.1186/s12915-015-0220-7
    BACKGROUND: SAFB1 is a RNA binding protein implicated in the regulation of multiple cellular processes such as the regulation of transcription, stress response, DNA repair and RNA processing. To gain further insight into SAFB1 function we used iCLIP and mapped its interaction with RNA on a genome wide level.

    RESULTS: iCLIP analysis found SAFB1 binding was enriched, specifically in exons, ncRNAs, 3' and 5' untranslated regions. SAFB1 was found to recognise a purine-rich GAAGA motif with the highest frequency and it is therefore likely to bind core AGA, GAA, or AAG motifs. Confirmatory RT-PCR experiments showed that the expression of coding and non-coding genes with SAFB1 cross-link sites was altered by SAFB1 knockdown. For example, we found that the isoform-specific expression of neural cell adhesion molecule (NCAM1) and ASTN2 was influenced by SAFB1 and that the processing of miR-19a from the miR-17-92 cluster was regulated by SAFB1. These data suggest SAFB1 may influence alternative splicing and, using an NCAM1 minigene, we showed that SAFB1 knockdown altered the expression of two of the three NCAM1 alternative spliced isoforms. However, when the AGA, GAA, and AAG motifs were mutated, SAFB1 knockdown no longer mediated a decrease in the NCAM1 9-10 alternative spliced form. To further investigate the association of SAFB1 with splicing we used exon array analysis and found SAFB1 knockdown mediated the statistically significant up- and downregulation of alternative exons. Further analysis using RNAmotifs to investigate the frequency of association between the motif pairs (AGA followed by AGA, GAA or AAG) and alternative spliced exons found there was a highly significant correlation with downregulated exons. Together, our data suggest SAFB1 will play an important physiological role in the central nervous system regulating synaptic function. We found that SAFB1 regulates dendritic spine density in hippocampal neurons and hence provide empirical evidence supporting this conclusion.

    CONCLUSIONS: iCLIP showed that SAFB1 has previously uncharacterised specific RNA binding properties that help coordinate the isoform-specific expression of coding and non-coding genes. These genes regulate splicing, axonal and synaptic function, and are associated with neuropsychiatric disease, suggesting that SAFB1 is an important regulator of key neuronal processes.

    Matched MeSH terms: Glycoproteins/metabolism; Nerve Tissue Proteins/metabolism; Receptors, Estrogen/metabolism; Antigens, CD56/metabolism; RNA, Untranslated/metabolism; Nuclear Matrix-Associated Proteins/metabolism; Matrix Attachment Region Binding Proteins/metabolism
  17. McDowell N, Allen CD, Anderson-Teixeira K, Brando P, Brienen R, Chambers J, et al.
    New Phytol, 2018 08;219(3):851-869.
    PMID: 29451313 DOI: 10.1111/nph.15027
    Tree mortality rates appear to be increasing in moist tropical forests (MTFs) with significant carbon cycle consequences. Here, we review the state of knowledge regarding MTF tree mortality, create a conceptual framework with testable hypotheses regarding the drivers, mechanisms and interactions that may underlie increasing MTF mortality rates, and identify the next steps for improved understanding and reduced prediction. Increasing mortality rates are associated with rising temperature and vapor pressure deficit, liana abundance, drought, wind events, fire and, possibly, CO2 fertilization-induced increases in stand thinning or acceleration of trees reaching larger, more vulnerable heights. The majority of these mortality drivers may kill trees in part through carbon starvation and hydraulic failure. The relative importance of each driver is unknown. High species diversity may buffer MTFs against large-scale mortality events, but recent and expected trends in mortality drivers give reason for concern regarding increasing mortality within MTFs. Models of tropical tree mortality are advancing the representation of hydraulics, carbon and demography, but require more empirical knowledge regarding the most common drivers and their subsequent mechanisms. We outline critical datasets and model developments required to test hypotheses regarding the underlying causes of increasing MTF mortality rates, and improve prediction of future mortality under climate change.
    Matched MeSH terms: Carbon Dioxide/metabolism
  18. Abdul-Hamid NA, Abas F, Maulidiani M, Ismail IS, Tham CL, Swarup S, et al.
    Anal Biochem, 2019 07 01;576:20-32.
    PMID: 30970239 DOI: 10.1016/j.ab.2019.04.001
    The variation in the extracellular metabolites of RAW 264.7 cells obtained from different passage numbers (passage 9, 12 and 14) was examined. The impact of different harvesting protocols (trypsinization and scraping) on recovery of intracellular metabolites was then assessed. The similarity and variation in the cell metabolome was investigated using 1H NMR metabolic profiling modeled using multivariate data analysis. The characterization and quantification of metabolites was performed to determine the passage-related and harvesting-dependent effects on impacted metabolic networks. The trypsinized RAW cells from lower passages gave higher intensities of most identified metabolites, including asparagine, serine and tryptophan. Principal component analysis revealed variation between cells from different passages and harvesting methods, as indicated by the formation of clusters in score plot. Analysis of S-plots revealed metabolites that acted as biomarkers in discriminating cells from different passages including acetate, serine, lactate and choline. Meanwhile lactate, glutamine and pyruvate served as biomarkers for differentiating trypsinized and scraped cells. In passage-dependent effects, glycolysis and TCA cycle were influential, whereas glycerophospholipid metabolism was affected by the harvesting method. Overall, it is proposed that typsinized RAW cells from lower passage numbers are more appropriate when conducting experiments related to NMR metabolomics.
    Matched MeSH terms: Biomarkers/metabolism
  19. Paudel YN, Angelopoulou E, Piperi C, Othman I, Shaikh MF
    Pharmacol Res, 2020 06;156:104792.
    PMID: 32278047 DOI: 10.1016/j.phrs.2020.104792
    Amyotrophic lateral sclerosis (ALS) is a devastating and rapidly progressing neurodegenerative disorder with no effective disease-modifying treatment up to date. The underlying molecular mechanisms of ALS are not yet completely understood. However, the critical role of the innate immune system and neuroinflammation in ALS pathogenesis has gained increased attention. High mobility group box 1 (HMGB1) is a typical damage-associated molecular pattern (DAMP) molecule, acting as a pro-inflammatory cytokine mainly through activation of its principal receptors, the receptor for advanced glycation end products (RAGE) and toll-like receptor 4 (TLR4) which are crucial components of the innate immune system. HMGB1 is an endogenous ligand for both RAGE and TLR4 that mediate its biological effects. Herein, on the ground of pre-clinical findings we unravel the underlying mechanisms behind the plausible contribution of HMGB1 and its receptors (RAGE and TLR4) in the ALS pathogenesis. Furthermore, we provide an account of the therapeutic outcomes associated with inhibition/blocking of HMGB1 receptor signalling in preventing motor neuron's death and delaying disease progression in ALS experimental models. There is strong evidence that HMGB1, RAGE and TLR4 signaling axes might present potential targets against ALS, opening a novel headway in ALS research that could plausibly bridge the current treatment gap.
    Matched MeSH terms: Advanced Glycosylation End Product-Specific Receptor/metabolism*; Amyotrophic Lateral Sclerosis/metabolism*; Brain/metabolism*; Motor Neurons/metabolism*; Spinal Cord/metabolism*; HMGB1 Protein/metabolism*; Toll-Like Receptor 4/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links