Displaying publications 1861 - 1880 of 9214 in total

Abstract:
Sort:
  1. Hashmi S, Khan S, Shafiq Z, Taslimi P, Ishaq M, Sadeghian N, et al.
    Bioorg Chem, 2021 02;107:104554.
    PMID: 33383322 DOI: 10.1016/j.bioorg.2020.104554
    With the fading of 'one drug-one target' approach, Multi-Target-Directed Ligands (MTDL) has become a central idea in modern Medicinal Chemistry. The present study aimed to design, develop and characterize a novel series of 4-(Diethylamino)-salicylaldehyde based thiosemicarbazones (3a-p) and evaluates their biological activity against cholinesterase, carbonic anhydrases and α-glycosidase enzymes. The hCA I isoform was inhibited by these novel 4-(diethylamino)-salicylaldehyde-based thiosemicarbazones (3a-p) in low nanomolar levels, the Ki of which differed between 407.73 ± 43.71 and 1104.11 ± 80.66 nM. Against the physiologically dominant isoform hCA II, the novel compounds demonstrated Kis varying from 323.04 ± 56.88 to 991.62 ± 77.26 nM. Also, these novel 4-(diethylamino)-salicylaldehyde based thiosemicarbazones (3a-p) effectively inhibited AChE, with Ki values in the range of 121.74 ± 23.52 to 548.63 ± 73.74 nM. For BChE, Ki values were obtained with in the range of 132.85 ± 12.53 to 618.53 ± 74.23 nM. For α-glycosidase, the most effective Ki values of 3b, 3k, and 3g were with Ki values of 77.85 ± 10.64, 96.15 ± 9.64, and 124.95 ± 11.44 nM, respectively. We have identified inhibition mechanism of 3b, 3g, 3k, and 3n on α-glycosidase AChE, hCA I, hCA II, and BChE enzyme activities. Hydrazine-1-carbothioamide and hydroxybenzylidene moieties of compounds play an important role in the inhibition of AChE, hCA I, and hCA II enzymes. Hydroxybenzylidene moieties are critical for inhibition of both BChE and α-glycosidase enzymes. The findings of in vitro and in silico evaluations indicate 4-(diethylamino)-salicylaldehyde-based thiosemicarbazone scaffold to be a promising hit for drug development for multifactorial diseases like Alzheimer's disease.
    Matched MeSH terms: Acetylcholinesterase/metabolism; Butyrylcholinesterase/metabolism; Carbonic Anhydrases/metabolism; Carbonic Anhydrase Inhibitors/metabolism; Glycoside Hydrolases/metabolism; Isoenzymes/metabolism; Thiosemicarbazones/metabolism
  2. Nakkarach A, Foo HL, Song AA, Mutalib NEA, Nitisinprasert S, Withayagiat U
    Microb Cell Fact, 2021 Feb 05;20(1):36.
    PMID: 33546705 DOI: 10.1186/s12934-020-01477-z
    BACKGROUND: Extracellular metabolites of short chain fatty acids (SCFA) excreted by gut microbiota have been reported to play an important role in the regulation of intestinal homeostasis. Apart from supplying energy, SCFA also elicit immune stimulation in animal and human cells. Therefore, an attempt was conducted to isolate SCFA producing bacteria from healthy human microbiota. The anti-cancer and anti-inflammatory effects of extracellular metabolites and individual SFCA were further investigated by using breast, colon cancer and macrophage cells. Toxin, inflammatory and anti-inflammatory cytokine gene expressions were investigated by RT-qPCR analyses in this study.

    RESULTS: Escherichia coli KUB-36 was selected in this study since it has the capability to produce seven SCFA extracellularly. It produced acetic acid as the main SCFA. It is a non-exotoxin producer and hence, it is a safe gut microbiota. The IC50 values indicated that the E. coli KUB-36 metabolites treatment elicited more potent cytotoxicity effect on MCF7 breast cancer cell as compared to colon cancer and leukemia cancer cells but exhibited little cytotoxic effects on normal breast cell. Furthermore, E. coli KUB-36 metabolites and individual SCFA could affect inflammatory responses in lipopolysaccharide-induced THP-1 macrophage cells since they suppressed inflammatory cytokines IL-1β, IL-6, IL-8 and TNF-α well as compared to the control, whilst inducing anti-inflammatory cytokine IL-10 expression.

    CONCLUSION: SCFA producing E. coli KUB-36 possessed vast potential as a beneficial gut microbe since it is a non-exotoxin producer that exhibited beneficial cytotoxic effects on cancer cells and elicited anti-inflammatory activity simultaneously. However, the probiotic characteristic of E. coli KUB-36 should be further elucidated using in vivo animal models.

    Matched MeSH terms: Neoplasms/metabolism
  3. Lane SC, Camera DM, Lassiter DG, Areta JL, Bird SR, Yeo WK, et al.
    J Appl Physiol (1985), 2015 Sep 15;119(6):643-55.
    PMID: 26112242 DOI: 10.1152/japplphysiol.00857.2014
    We determined the effects of "periodized nutrition" on skeletal muscle and whole body responses to a bout of prolonged exercise the following morning. Seven cyclists completed two trials receiving isoenergetic diets differing in the timing of ingestion: they consumed either 8 g/kg body mass (BM) of carbohydrate (CHO) before undertaking an evening session of high-intensity training (HIT) and slept without eating (FASTED), or consumed 4 g/kg BM of CHO before HIT, then 4 g/kg BM of CHO before sleeping (FED). The next morning subjects completed 2 h of cycling (120SS) while overnight fasted. Muscle biopsies were taken on day 1 (D1) before and 2 h after HIT and on day 2 (D2) pre-, post-, and 4 h after 120SS. Muscle [glycogen] was higher in FED at all times post-HIT (P < 0.001). The cycling bouts increased PGC1α mRNA and PDK4 mRNA (P < 0.01) in both trials, with PDK4 mRNA being elevated to a greater extent in FASTED (P < 0.05). Resting phosphorylation of AMPK(Thr172), p38MAPK(Thr180/Tyr182), and p-ACC(Ser79) (D2) was greater in FASTED (P < 0.05). Fat oxidation during 120SS was higher in FASTED (P = 0.01), coinciding with increases in ACC(Ser79) and CPT1 as well as mRNA expression of CD36 and FABP3 (P < 0.05). Methylation on the gene promoter for COX4I1 and FABP3 increased 4 h after 120SS in both trials, whereas methylation of the PPARδ promoter increased only in FASTED. We provide evidence for shifts in DNA methylation that correspond with inverse changes in transcription for metabolically adaptive genes, although delaying postexercise feeding failed to augment markers of mitochondrial biogenesis.
    Matched MeSH terms: Dietary Carbohydrates/metabolism*; Glycogen/metabolism; Protein Kinases/metabolism; RNA, Messenger/metabolism; Muscle, Skeletal/metabolism; p38 Mitogen-Activated Protein Kinases/metabolism; AMP-Activated Protein Kinases/metabolism
  4. Abushaala NM, Elfituri AM, Zulkifli SZ
    Open Vet J, 2021 02 08;11(1):112-120.
    PMID: 33898292 DOI: 10.4314/ovj.v11i1.17
    Background: Several types of research have been recently carried out on the biological effects of TBTs, including investigations of genitals in invertebrates in response to exposure to TBTs in marine water.

    Aim: The objective of this research was to investigate the acute effects of tributyltin chloride (TBTCl) on gonads in the adult stage of Artemia salina by use normal histology and immunohistochemistry (IHC) (Caspase 3 and HSP70) to see specific apoptosis markers.

    Methods: After exposure of A. salina to different concentrations of TBTCl (25, 50, 100, 200, and 300 ng.l-1), 50 adult A. salina (25 male and 25 female) were selected randomly from each concentration to histologically study the gonads. The gonad tissue was sectioned (5 μm) and some slides were stained with hematoxylin and eosin and others were stained with IHC avidin-biotin complex, and were examined under a light microscope.

    Results: The results showed significant differences (p < 0.05) in histological lesions between different concentrations of TBTCl. The histological lesions in the testis and ovary section were undifferentiated cells, degenerating yolk globules, and follicle cells enveloping the oocyte which was then compared with control tissue, and these effects were found to be increased in females more than in males with the highest concentration of TBTCl. Immunohistochemistry (IHC) showed that positive immunostaining was observed in the testis and ovary as brownish deposits to Caspase 3 and HSP70 antibody after exposure to TBTCl, while the testis and ovary section in control tissue had no immunoreactivity to Caspase 3 and HSP70 antibody; these effects were profoundly increased with the highest concentration of TBTCl in females more than in males. Finally, the histological lesions and IHC (Caspase 3 and HSP70) revealed that the apoptosis and immune system stress of A. salina gonad tissue damage in females were more sensitive to TBTCl toxicity as compared to white males.

    Conclusion: In general, the present study aimed to observe the effects TBTCl on A. salina gonads by using histological sections and IHC (Caspase 3 and HSP70), which were evaluated for the first time and have been proven to possess an important function in apoptosis marker and immune system stress in Artemia. Finally, the specific mechanisms through which TBTCl affects A. salina Caspase 3 and HSP70 expression need further investigation.

    Matched MeSH terms: Artemia/metabolism; Ovary/metabolism; Testis/metabolism; Biomarkers/metabolism; HSP70 Heat-Shock Proteins/metabolism; Caspase 3/metabolism; Arthropod Proteins/metabolism*
  5. Huguet G, Kadar E, Temel Y, Lim LW
    Cerebellum, 2017 04;16(2):398-410.
    PMID: 27435250 DOI: 10.1007/s12311-016-0812-y
    The electrical stimulation of specific brain targets has been shown to induce striking antidepressant effects. Despite that recent data have indicated that cerebellum is involved in emotional regulation, the mechanisms by which stimulation improved mood-related behaviors in the cerebellum remained largely obscure. Here, we investigated the stimulation effects of the ventromedial prefrontal cortex (vmPFC), nucleus accumbens (NAc), and lateral habenular nucleus on the c-Fos neuronal activity in various deep cerebellar and vestibular nuclei using the unpredictable chronic mild stress (CMS) animal model of depression. Our results showed that stressed animals had increased number of c-Fos cells in the cerebellar dentate and fastigial nuclei, as well as in the spinal vestibular nucleus. To examine the stimulation effects, we found that vmPFC stimulation significantly decreased the c-Fos activity within the cerebellar fastigial nucleus as compared to the CMS sham. Similarly, there was also a reduction of c-Fos expression in the magnocellular part of the medial vestibular nucleus in vmPFC- and NAc core-stimulated animals when compared to the CMS sham. Correlational analyses showed that the anxiety measure of home-cage emergence escape latency was positively correlated with the c-Fos neuronal activity of the cerebellar fastigial and magnocellular and parvicellular parts of the interposed nuclei in CMS vmPFC-stimulated animals. Interestingly, there was a strong correlation among activation in these cerebellar nuclei, indicating that the antidepressant-like behaviors were possibly mediated by the vmPFC stimulation-induced remodeling within the forebrain-cerebellar neurocircuitry.
    Matched MeSH terms: Cerebellar Nuclei/metabolism*; Depressive Disorder/metabolism*; Nucleus Accumbens/metabolism; Vestibular Nuclei/metabolism; Proto-Oncogene Proteins c-fos/metabolism*; Prefrontal Cortex/metabolism; Habenula/metabolism
  6. Chen YW, Lee HV, Juan JC, Phang SM
    Carbohydr Polym, 2016 Oct 20;151:1210-1219.
    PMID: 27474672 DOI: 10.1016/j.carbpol.2016.06.083
    Nanocellulose was successfully isolated from Gelidium elegans red algae marine biomass. The red algae fiber was treated in three stages namely alkalization, bleaching treatment and acid hydrolysis treatment. Morphological analysis was performed by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). TEM results revealed that the isolated nanocellulose had the average diameter and length of 21.8±11.1nm and of 547.3±23.7nm, respectively. Fourier transform infrared (FTIR) spectroscopy proved that the non-cellulosic polysaccharides components were progressively removed during the chemically treatment, and the final derived materials composed of cellulose parent molecular structure. X-ray diffraction (XRD) study showed that the crystallinity of yielded product had been improved after each successive treatments subjected to the treated fiber. The prepared nano-dimensional cellulose demonstrated a network-like structure with higher crystallinity (73%) than that of untreated fiber (33%), and possessed of good thermal stability which is suitable for nanocomposite material.
    Matched MeSH terms: Rhodophyta/metabolism*
  7. Tan ET, Al Jassim R, Cawdell-Smith AJ, Ossedryver SM, D'Arcy BR, Fletcher MT
    J Agric Food Chem, 2016 Aug 31;64(34):6622-9.
    PMID: 27477889 DOI: 10.1021/acs.jafc.6b02707
    Indospicine (l-2-amino-6-amidinohexanoic acid) is a natural hepatotoxin found in all parts of some Indigofera plants such as Indigofera linnaei and Indigofera spicata. Several studies have documented a susceptibility to this hepatotoxin in different species of animals, including cattle, sheep, dogs, and rats, which are associated with mild to severe liver disease after prolonged ingestion. However, there is little published data on the effects of this hepatotoxin in camels, even though Indigofera plants are known to be palatable to camels in central Australia. The secondary poisoning of dogs after prolonged dietary exposure to residual indospicine in camel muscle has raised additional food safety concerns. In this study, a feeding experiment was conducted to investigate the in vivo accumulation, excretion, distribution, and histopathological effects of dietary indospicine on camels. Six young camels (2-4 years old), weighing 270-390 kg, were fed daily a roughage diet consisting of Rhodes grass hay and lucerne chaff, supplemented with Indigofera and steam-flaked barley. Indigofera (I. spicata) was offered at 597 mg DM/kg body weight (bw)/day, designed to deliver 337 μg indospicine/kg bw/day, and fed for a period of 32 days. Blood and muscle biopsies were collected over the period of the study. Concentrations of indospicine in the plasma and muscle biopsy samples were quantitated by validated ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The highest concentrations in plasma (1.01 mg/L) and muscle (2.63 mg/kg fresh weight (fw)) were found at necropsy (day 33). Other tissues were also collected at necropsy, and analysis showed ubiquitous distribution of indospicine, with the highest indospicine accumulation detected in the pancreas (4.86 ± 0.56 mg/kg fw) and liver (3.60 ± 1.34 mg/kg fw), followed by the muscle, heart, and kidney. Histopathological examination of liver tissue showed multiple small foci of predominantly mononuclear inflammatory cells. After cessation of Indigofera intake, indospicine present in plasma in the remaining three camels had a longer terminal elimination half-life (18.6 days) than muscle (15.9 days), and both demonstrated monoexponential decreases.
    Matched MeSH terms: Camels/metabolism*; Kidney/metabolism; Liver/metabolism; Norleucine/metabolism; Toxins, Biological/metabolism*; Muscle, Skeletal/metabolism; Indigofera/metabolism*
  8. Basar N, Nahar L, Oridupa OA, Ritchie KJ, Talukdar AD, Stafford A, et al.
    Phytochem Anal, 2016 Sep;27(5):233-8.
    PMID: 27527356 DOI: 10.1002/pca.2616
    INTRODUCTION: Nuclear factor (erythroid-derived 2)-like factor 2 (Nrf2) is a transcription factor that regulates expression of many detoxification enzymes. Nrf2-antioxidant responsive element (Nrf2-ARE) signalling pathway can be a target for cancer chemoprevention. Glycyrrhiza glabra, common name, 'liquorice', is used as a sweetening and flavouring agent, and traditionally, to treat various ailments, and implicated to chemoprevention. However, its chemopreventive property has not yet been scientifically substantiated.

    OBJECTIVE: To assess the ability of liquorice root samples to induce Nrf2 activation correlating to their potential chemopreventive property.

    METHODS: The ability of nine methanolic extracts of liquorice root samples, collected from various geographical origins, to induce Nrf2 activation was determined by the luciferase reporter assay using the ARE-reporter cell line, AREc32. The antioxidant properties were determined by the 2,2-diphenyl-1-picryhydrazyl (DPPH) and the ferric-reducing antioxidant power (FRAP) assays.

    RESULTS: All extracts exhibited free-radical-scavenging property (RC50  = 136.39-635.66 µg/mL). The reducing capacity of ferrous ion was 214.46-465.59 μM Fe(II)/g. Nrf2 activation indicated that all extracts induced expression of ARE-driven luciferase activity with a maximum induction of 2.3 fold relative to control. These activities varied for samples from one geographical location to another.

    CONCLUSIONS: The present findings add to the existing knowledge of cancer chemoprevention by plant-derived extracts or purified phytochemicals, particularly the potential use of liquorice for this purpose. Copyright © 2016 John Wiley & Sons, Ltd.

    Matched MeSH terms: NF-E2-Related Factor 2/metabolism*
  9. Gani P, Sunar NM, Matias-Peralta H, Mohamed RMSR, Latiff AAA, Parjo UK
    Int J Phytoremediation, 2017 Jul 03;19(7):679-685.
    PMID: 28121457 DOI: 10.1080/15226514.2017.1284743
    This study was undertaken to analyze the efficiency of Botryococcus sp. in the phycoremediation of domestic wastewater and to determine the variety of hydrocarbons derived from microalgal oil after phycoremediation. The study showed a significant (p < 0.05) reduction of pollutant loads of up to 93.9% chemical oxygen demand, 69.1% biochemical oxygen demand, 59.9% total nitrogen, 54.5% total organic carbon, and 36.8% phosphate. The average dry weight biomass produce was 0.1 g/L of wastewater. In addition, the dry weight biomass of Botryococcus sp. was found to contain 72.5% of crude oil. The composition analysis using Gas Chromatogram - Mass Spectrometry (GC-MS) found that phthalic acid, 2-ethylhexyltridecyl ester (C29H48O4), contributed the highest percentage (71.6%) of the total hydrocarbon compounds to the extracted algae oil. The result of the study suggests that Botryococcus sp. can be used for effective phycoremediation, as well as to provide a sustainable hydrocarbon source as a value-added chemical for the bio-based plastic industry.
    Matched MeSH terms: Hydrocarbons/metabolism*
  10. Gan EK, Lim BS, Mahmud N
    Med J Malaysia, 1978 Sep;33(1):72-5.
    PMID: 750900
    Matched MeSH terms: Tetracyclines/metabolism*
  11. Tara HS
    Med J Malaysia, 1974 Mar;28(3):176-9.
    PMID: 4278365
    Matched MeSH terms: Ethanol/metabolism*
  12. Sandosham AA
    Med J Malaya, 1968 Mar;22(3):233.
    PMID: 4234369
    Matched MeSH terms: Nematode Infections/metabolism*
  13. Chow AY, Simpson IA
    J Trop Pediatr (Lond), 1956 Sep;2(2):69-76.
    PMID: 24544134
    (1) The effect has been studied of the oral administration of supplementary thiamine on the thiamine content of milk from sixteen women, whose initial thiamine content was low ; and of the parenteral administration of thiamine to ten women, some of whom initially showed mild, clinical symptoms of beriberi.
    (2) The response in the milk content of thiamine to supplementary thiamine, administered either orally or by injection, showed marked variation in different women. While comparatively small doses taken by mouth evoked a marked response in some women, fairly large doses administered by injection failed to produce much response in others.
    (3) In some women, a marked increase in the thiamine content of their milk occurred soon after the administration of thiamine, either orally or parenterally. In others, the response was slow and meagre.
    (4) The highest thiamine level obtained in a sample of milk was 38.9 ug./100 ml., after the injection, twice daily, of 20 mg. thiamine for six days — a total intake of 240 mg. of thiamine parenterally. The initial milk thiamine level in this case was 2.3 ug./100 ml., but had increased to 16.2ug./100 ml., by the supply of a good diet alone, before the course of injections was commenced.
    (5) It would appear, that, in cases where the thiamine content of the milk is low, initial parenteral administration of thiamine must be supplemented by a continued intake of additional thiamine, if a satisfactory level of thiamine in the milk is to be maintained.
    Matched MeSH terms: Thiamine/metabolism*
  14. Zaman V
    Med J Malaya, 1968 Mar;22(3):195-7.
    PMID: 4234355
    Matched MeSH terms: Toxoplasmosis/metabolism*
  15. Surendran A, Siddiqui Y, Saud HM, Ali NS, Manickam S
    J Appl Microbiol, 2018 Sep;125(3):876-887.
    PMID: 29786938 DOI: 10.1111/jam.13922
    AIM: Lignolytic (lignin degrading) enzyme, from oil palm pathogen Ganoderma boninense Pat. (Syn G. orbiforme (Ryvarden)), is involved in the detoxification and the degradation of lignin in the oil palm and is the rate-limiting step in the infection process of this fungus. Active inhibition of lignin-degrading enzymes secreted by G. boninense by various naturally occurring phenolic compounds and estimation of efficiency on pathogen suppression was aimed at.

    METHODS AND RESULTS: In our work, 10 naturally occurring phenolic compounds were evaluated for their inhibitory potential towards the lignolytic enzymes of G. boninense. Additionally, the lignin-degrading enzymes were characterized. Most of the peholic compounds exhibited an uncompetitive inhibition towards the lignin-degrading enzymes. Benzoic acid was the superior inhibitor to the production of lignin-degrading enzymes, when compared between the 10 phenolic compounds. The inhibitory potential of the phenolic compounds towards the lignin-degrading enzymes are higher than that of the conventional metal ion inhibitor. The lignin-degrading enzymes were stable in a wide range of pH but were sensitive to higher temperature.

    CONCLUSION: The study demonstrated the inhibitor potential of 10 naturally occurring phenolic compounds towards the lignin-degrading enzymes of G. boninense with different efficacies.

    SIGNIFICANCE AND IMPACT OF THE STUDY: The study has shed a light towards a new management strategy to control basal stem rot disease in oil palm. It serves as a replacement for the existing chemical control.

    Matched MeSH terms: Lignin/metabolism*
  16. Gan BK, Yong CY, Ho KL, Omar AR, Alitheen NB, Tan WS
    Sci Rep, 2018 05 31;8(1):8499.
    PMID: 29855618 DOI: 10.1038/s41598-018-26749-y
    Skin cancer or cutaneous carcinoma, is a pre-eminent global public health problem with no signs of plateauing in its incidence. As the most common treatments for skin cancer, surgical resection inevitably damages a patient's appearance, and chemotherapy has many side effects. Thus, the main aim of this study was to screen for a cell penetrating peptide (CPP) for the development of a targeting vector for skin cancer. In this study, we identified a CPP with the sequence NRPDSAQFWLHH from a phage displayed peptide library. This CPP targeted the human squamous carcinoma A431 cells through an interaction with the epidermal growth factor receptor (EGFr). Methyl-β-cyclodextrin (MβCD) and chlorpromazine hydrochloride (CPZ) inhibited the internalisation of the CPP into the A431 cells, suggesting the peptide entered the cells via clathrin-dependent endocytosis. The CPP displayed on hepatitis B virus-like nanoparticles (VLNPs) via the nanoglue successfully delivered the nanoparticles into A431 cells. The present study demonstrated that the novel CPP can serve as a ligand to target and deliver VLNPs into skin cancer cells.
    Matched MeSH terms: Hepatitis B/metabolism; Hepatitis B Core Antigens/metabolism; Skin Neoplasms/metabolism; Nanoparticles/metabolism*; Cell-Penetrating Peptides/metabolism*; Vaccines, Virus-Like Particle/metabolism; ErbB Receptors/metabolism
  17. Nna VU, Ujah GA, Mohamed M, Etim KB, Igba BO, Augustine ER, et al.
    Biomed Pharmacother, 2017 Oct;94:109-123.
    PMID: 28756368 DOI: 10.1016/j.biopha.2017.07.087
    This study assessed the effect of quercetin (QE) on cadmium chloride (CdCl2) - induced testicular toxicity, as well as the effect of withdrawal of CdCl2 treatment on same. Thirty male Wistar rats aged 10 weeks old and weighing 270-300g were assigned into 5 groups and used for this study. Rats in groups 1-4 were administered vehicle, CdCl2 (5mg/kg bwt), CdCl2+QE (5mg/kg bwt and 20mg/kg bwt, respectively) or QE (20mg/kg bwt) orally for 4 weeks. Group 5 rats received CdCl2, with 4 weeks recovery period. Results showed that cadmium accumulated in serum, testis and epididymis, decreased body weight, testicular and epididymal weights, sperm count, motility and viability. Cadmium decreased serum concentrations of reproductive hormones, but increased testicular glucose, lactate and lactate dehydrogenase activity. Cadmium decreased testicular enzymatic (superoxide dismutase, catalase and glutathione peroxidase) and non-enzymatic (glutathione, vitamins C and E) antioxidants, and increased malondialdehyde and hydrogen peroxide. Cadmium down-regulated Bcl-2 protein, up-regulated Bax protein, increased Bax/Bcl-2 ratio and cleaved caspase-3 activity. Histopathology of the testis showed decreased Johnsen's score and Leydig cell count. These negative effects were attenuated by QE administration, while withdrawal of CdCl2 did not appreciably reverse toxicity. We conclude that QE better protected the testis from CdCl2 toxicity than withdrawal of CdCl2 administration.
    Matched MeSH terms: Antioxidants/metabolism; Epididymis/metabolism; Glucose/metabolism; L-Lactate Dehydrogenase/metabolism; Malondialdehyde/metabolism; Semen/metabolism; Lactic Acid/metabolism
  18. Lai JKF, Sam IC, Verlhac P, Baguet J, Eskelinen EL, Faure M, et al.
    Viruses, 2017 07 04;9(7).
    PMID: 28677644 DOI: 10.3390/v9070169
    Viruses have evolved unique strategies to evade or subvert autophagy machinery. Enterovirus A71 (EV-A71) induces autophagy during infection in vitro and in vivo. In this study, we report that EV-A71 triggers autolysosome formation during infection in human rhabdomyosarcoma (RD) cells to facilitate its replication. Blocking autophagosome-lysosome fusion with chloroquine inhibited virus RNA replication, resulting in lower viral titres, viral RNA copies and viral proteins. Overexpression of the non-structural protein 2BC of EV-A71 induced autolysosome formation. Yeast 2-hybrid and co-affinity purification assays showed that 2BC physically and specifically interacted with aN-ethylmaleimide-sensitive factor attachment receptor (SNARE) protein, syntaxin-17 (STX17). Co-immunoprecipitation assay further showed that 2BC binds to SNARE proteins, STX17 and synaptosome associated protein 29 (SNAP29). Transient knockdown of STX17, SNAP29, and microtubule-associated protein 1 light chain 3B (LC3B), crucial proteins in the fusion between autophagosomes and lysosomes) as well as the lysosomal-associated membrane protein 1 (LAMP1) impaired production of infectious EV-A71 in RD cells. Collectively, these results demonstrate that the generation of autolysosomes triggered by the 2BC non-structural protein is important for EV-A71 replication, revealing a potential molecular pathway targeted by the virus to exploit autophagy. This study opens the possibility for the development of novel antivirals that specifically target 2BC to inhibit formation of autolysosomes during EV-A71 infection.
    Matched MeSH terms: Lysosomes/metabolism*; Microtubule-Associated Proteins/metabolism*; Viral Nonstructural Proteins/metabolism*; Qa-SNARE Proteins/metabolism*; Qb-SNARE Proteins/metabolism*; Qc-SNARE Proteins/metabolism*; Lysosome-Associated Membrane Glycoproteins/metabolism*
  19. Nurul Adilah Z, Liew WP, Mohd Redzwan S, Amin I
    Biomed Res Int, 2018;2018:9568351.
    PMID: 29951550 DOI: 10.1155/2018/9568351
    Probiotic Lactobacillus casei Shirota (LcS) is a potential decontaminating agent of aflatoxin B1 (AFB1). However, few studies have investigated the influence of diet, especially a high protein (HP) diet, on the binding of AFB1 by probiotics. This research was conducted to determine the effect of HP diet on the ability of LcS to bind AFB1 and reduce aflatoxin M1 (AFM1) in AFB1-induced rats. Sprague Dawley rats were randomly divided into three groups: A (HP only), B (HP + 108 CFU LcS + 25 μg AFB1/kg BW), and C (HP + 25 μg AFB1/kg BW). Levels of AST and ALP were higher in all groups but other liver function's biomarkers were in the normal range, and the liver's histology showed no structural changes. The urea level of rats in group B (10.02 ± 0.73 mmol/l) was significantly lower (p < 0.05) than that of rats in group A (10.82 ± 0.26 mmol/l). The presence of carcinoma in the small intestine and colon was more obvious in group C than in group B. Moreover, rats in group B had significantly (p < 0.05) lower AFM1 concentration (0.39 ± 0.01 ng/ml) than rats in group C (5.22 ± 0.28 ng/ml). Through these findings, LcS supplementation with HP diet alleviated the adverse effects of AFB1 by preventing AFB1 absorption in the small intestine and reducing urinary AFM1.
    Matched MeSH terms: Aflatoxin M1/metabolism*
  20. Perveen S, Safdar N, Chaudhry GE, Yasmin A
    World J Microbiol Biotechnol, 2018 Jul 14;34(8):118.
    PMID: 30008019 DOI: 10.1007/s11274-018-2500-1
    This paper describes the extracellular synthesis of silver nanoparticles from waste part of lychee fruit (peel) and their conjugation with selected antibiotics (amoxicillin, cefixim, and streptomycin). FTIR studies revealed the reduction of metallic silver and stabilization of silver nanoparticles and their conjugates due to the presence of CO (carboxyl), OH (hydroxyl) and CH (alkanes) groups. The size of conjugated nanoparticles varied ranging from 3 to 10 nm as shown by XRD. TEM image revealed the spherical shape of biosynthesized silver nanoparticles. Conjugates of amoxicillin and cefixim showed highest antibacterial activity (147.43 and 107.95%, respectively) against Gram-negative bacteria i.e. Alcaligenes faecalis in comparison with their control counterparts. The highest reduction in MIC was noted against Gram-positive strains i.e. Enterococcus faecium (75%) and Microbacterium oxydans (75%) for amoxicillin conjugates. Anova two factor followed by two-tailed t test showed non-significant results both in case of cell leakage and protein estimation between nanoparticles and conjugates of amoxicillin, cefixime and streptomycin. In case of MDA release, non-significant difference among the test samples against the selected strains. Our study found green-synthesized silver nanoparticles as effective antibacterial bullet against both Gram positive and Gram negative bacteria, but they showed a more promising effect on conjugation with selected antibiotics against Gram negative type.
    Matched MeSH terms: Amoxicillin/metabolism; Anti-Bacterial Agents/metabolism*; Fruit/metabolism; Silver/metabolism*; Streptomycin/metabolism; Cefixime/metabolism; Litchi/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links