Displaying all 16 publications

  1. Miskam M, Abu Bakar NK, Mohamad S
    Talanta, 2014 Mar;120:450-5.
    PMID: 24468395 DOI: 10.1016/j.talanta.2013.12.037
    A solid phase extraction (SPE) method has been developed using a newly synthesized titanium (IV) butoxide-cyanopropyltriethoxysilane (Ti-CNPrTEOS) sorbent for polar selective extraction of aromatic amines in river water sample. The effect of different parameters on the extraction recovery was studied using the SPE method. The applicability of the sorbents for the extraction of polar aromatic amines by the SPE was extensively studied and evaluated as a function of pH, conditioning solvent, sample loading volume, elution solvent and elution solvent volume. The optimum experimental conditions were sample at pH 7, dichloromethane as conditioning solvent, 10 mL sample loading volume and 5 mL of acetonitrile as the eluting solvent. Under the optimum conditions, the limit of detection (LOD) and limit of quantification (LOQ) for solid phase extraction using Ti-CNPrTEOS SPE sorbent (0.01-0.2; 0.03-0.61 µg L(-1)) were lower compared with those achieved using Si-CN SPE sorbent (0.25-1.50; 1.96-3.59 µg L(-1)) and C18 SPE sorbent (0.37-0.98; 1.87-2.87 µg L(-1)) with higher selectivity towards the extraction of polar aromatic amines. The optimized procedure was successfully applied for the solid phase extraction method of selected aromatic amines in river water, waste water and tap water samples prior to the gas chromatography-flame ionization detector separation.
  2. Muhamad H, Zainudin BH, Abu Bakar NK
    Food Chem, 2012 Oct 15;134(4):2489-96.
    PMID: 23442715 DOI: 10.1016/j.foodchem.2012.04.095
    Solid phase extraction (SPE) and dispersive solid-phase extraction (d-SPE) were compared and evaluated for the determination of λ-cyhalothrin and cypermethrin in palm oil matrices by gas chromatography with an electron capture detector (GC-ECD). Several SPE sorbents such as graphitised carbon black (GCB), primary secondary amine (PSA), C(18), silica, and florisil were tested in order to minimise fat residues. The results show that mixed sorbents using GCB and PSA obtained cleaner extracts than a single GCB and PSA sorbents. The average recoveries obtained for each pesticide ranged between 81% and 114% at five fortification levels with the relative standard deviation of less than 7% in all cases. The limits of detection for these pesticides were ranged between 0.025 and 0.05 μg/g. The proposed method was applied successfully for the residue determination of both λ-cyhalothrin and cypermethrin in crude palm oil samples obtained from local mills throughout Malaysia.
  3. Zain NN, Abu Bakar NK, Mohamad S, Saleh NM
    PMID: 24161875 DOI: 10.1016/j.saa.2013.09.129
    A greener method based on cloud point extraction was developed for removing phenol species including 2,4-dichlorophenol (2,4-DCP), 2,4,6-trichlorophenol (2,4,6-TCP) and 4-nitrophenol (4-NP) in water samples by using the UV-Vis spectrophotometric method. The non-ionic surfactant DC193C was chosen as an extraction solvent due to its low water content in a surfactant rich phase and it is well-known as an environmentally-friendly solvent. The parameters affecting the extraction efficiency such as pH, temperature and incubation time, concentration of surfactant and salt, amount of surfactant and water content were evaluated and optimized. The proposed method was successfully applied for removing phenol species in real water samples.
  4. Nemati K, Abu Bakar NK, Abas MR, Sobhanzadeh E
    J Hazard Mater, 2011 Aug 15;192(1):402-10.
    PMID: 21684080 DOI: 10.1016/j.jhazmat.2011.05.039
    The sequential extraction procedure proposed by the European Standard, Measurements and Testing (SM&T) program, formerly the Community Bureau of Reference (BCR), was applied for partitioning of heavy metals (HMs) in river sediments collected along the course of Sungai Buloh and the Straits of Malacca in Selangor, Malaysia. Eight elements (V, Pb, Cd, Cr, Co, Ni, Cu and Zn) from seven stations (S1-S7) and at different depths were analyzed using the modified BCR Sequential Extraction Procedure (SEP) in combination with ICP-MS to obtain the metal distribution patterns in this region. The results showed that heavy metal contaminations at S2 and S3 was more severe than at other sampling sites, especially for Zn, Cu, Ni and Pb. Nevertheless, the element concentrations from top to bottom layers decreased predominantly. The samples from the Straits of Malacca (S4-S7) the highest contamination factors obtained were for Co, Zn and Pb while the lowest were found for V and Cr, similar to Sungai Buloh sediments. The sediments showed a low risk for V, Cr, Cu and Pb with RAC values of less than 10%, but medium risk for Co, Zn (except S3), Cd at S1 and S2 and Ni at S1, S3 and S5. Zn at S3 and Cd at S3-S7 showed high risk to our sediment samples. There is not any element of very high risk conditions in the selected samples.
  5. Sobhanzadeh E, Abu Bakar NK, Bin Abas MR, Nemati K
    Environ Monit Assess, 2012 Sep;184(9):5821-8.
    PMID: 21989900 DOI: 10.1007/s10661-011-2384-0
    In this study, a rapid, specific and sensitive multi-residue method based on acetonitrile extraction followed by dispersive solid-phase extraction (d-SPE) clean-up was implemented and validated for multi-class pesticide residues determination in palm oil for the first time. Liquid-liquid extraction followed by low-temperature precipitation procedure was evaluated in order to study the freezing-out clean-up efficiency to obtain high recovery yield and low co-extract fat residue in the final extract. For clean-up step, d-SPE was carried out using a combination of anhydrous magnesium sulphate (MgSO(4)), primary secondary amine, octadecyl (C(18)) and graphitized carbon black. Recovery study was performed at two concentration levels (10 and 100 ng g(-1)), yielding recovery rates between 74.52% and 97.1% with relative standard deviation values below 10% (n = 6) except diuron. Detection and quantification limits were lower than 5 and 9 ng g(-1), respectively. In addition, soft matrix effects (≤±20%) were observed for most of the studied pesticides except malathion that indicated medium (20-50%) matrix effects. The proposed method was successfully applied to the analysis of suspected palm oil samples.
  6. Sobhanzadeh E, Abu Bakar NK, Bin Abas MR, Nemati K
    J Hazard Mater, 2011 Feb 28;186(2-3):1308-13.
    PMID: 21177032 DOI: 10.1016/j.jhazmat.2010.12.001
    A simple and effective multiresidue method based on precipitation at low temperature followed by matrix solid-phase dispersion-sonication was developed and validated to determine dimethoate, malathion, carbaryl, simazine, terbuthylazine, atrazine and diuron in palm oil using liquid chromatography time-of-flight mass spectrometry (LC-TOF-MS). Liquid-liquid extraction (LLE) followed by low temperature method were optimized by studying the effect of type and volume of organic solvent (acetonitrile, acetonitrile:n-hexane (3:2 v/v) and acetone) and time of freezing to obtain high recovery yield and low co-extract fat residue in the final extract. The optimal conditions for matrix solid-phase dispersion (MSPD) were obtained using 5 g of palm oil, 2 g of primary secondary amine (PSA) as dispersing sorbent, 1 g of graphitized carbon black (GCB) as clean-up sorbent and 15 mL of acetonitrile as eluting solvent under conditions of 15 min ultrasonication at room temperature. Method validation was performed in order to study sensitivity, linearity, precision, and accuracy. Average recoveries at three concentration levels (25, 50 and 100 μg kg(-1)) were found in the range of 72.6-91.3% with relative standard deviations between 5.3% and 14.2%. Detection and quantification limits ranged from 1.5 to 5 μg kg(-1) and from 2.5 to 9 μg kg(-1), respectively.
  7. ELTurk M, Abdullah R, Rozainah MZ, Abu Bakar NK
    Mar Pollut Bull, 2018 Nov;136:1-9.
    PMID: 30509789 DOI: 10.1016/j.marpolbul.2018.08.063
    This study was carried out to evaluate the distribution, enrichment and ecological risk of heavy metals (arsenic (As), zinc (Zn), manganese (Mn), copper (Cu) and lead (Pb)) concentration in Kuala Selangor estuary at the Kuala Selangor Nature Park. The results suggested that As and Pb in sediment were as high as the background value, suggesting the presence of anthropogenic contamination. The risk assessment of sediment Igeo, CD, and PERI, on the other hand, showed low risk of heavy metals in Kuala Selangor estuary. Meanwhile, risk assessment code (RAC) results showed that Mn, As and Zn presented medium to high level of environmental risk. The translocation factor and bioaccumulation factors of heavy metal concentration by mangrove vegetation showed a variety of trends, which indicates the different partitioning and uptake ability of heavy metal in the tissues of different mangrove species. Therefore, underscores the importance of preserving the high diversity of mangroves at securing the health and productivity of the coastal region. These results may play a critical role in facilitating decision makers in managing the sustainability of mangrove forests.
  8. Al'Abri AM, Mohamad S, Abdul Halim SN, Abu Bakar NK
    Environ Sci Pollut Res Int, 2019 Apr;26(11):11410-11426.
    PMID: 30805837 DOI: 10.1007/s11356-019-04467-w
    A novel porous coordination polymer adsorbent (BTCA-P-Cu-CP) based on a piperazine(P) as a ligand and 1,2,4,5-benzenetetracarboxylic acid (BTCA) as a linker was synthesized and magnetized to form magnetic porous coordination polymer (BTCA-P-Cu-MCP). Fourier transform infrared (FTIR), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), field emission scanning electron microscope(FESEM), energy-dispersive X-ray spectroscopy(EDS), CHN, and Brunauer-Emmett-Teller(BET) analysis were used to characterize the synthesized adsorbent. BTCA-P-Cu-MCP was used for removal and preconcentration of Pb(II) ions from environmental water samples prior to flame atomic absorption spectrometry(FAAS) analysis. The maximum adsorption capacity of BTCA-P-Cu-MCP was 582 mg g-1. Adsorption isotherm, kinetic, and thermodynamic parameters were investigated for Pb(II) ions adsorption. Magnetic solid phase extraction (MSPE) method was used for preconcentration of Pb(II) ions and the parameters influencing the preconcentration process have been examined. The linearity range of proposed method was 0.1-100 μg L-1 with a preconcentration factor of 100. The limits of detection and limits of quantification for lead were 0.03 μg L-1 and 0.11 μg L-1, respectively. The intra-day (n = 7) and inter-day (n = 3) relative standard deviations (RSDs) were 1.54 and 3.43% respectively. The recoveries from 94.75 ± 4 to 100.93 ± 1.9% were obtained for rapid extraction of trace levels of Pb(II) ions in different water samples. The results showed that the BTCA-P-Cu-MCP was steady and effective adsorbent for the decontamination and preconcentration of lead ions from the aqueous environment.
  9. Aziz AA, Nordin FNM, Zakaria Z, Abu Bakar NK
    J Cosmet Dermatol, 2022 Jan;21(1):71-84.
    PMID: 34658114 DOI: 10.1111/jocd.14402
    BACKGROUND: The use of cosmetic products is considered a necessity for beautification in our daily lives. Cosmetic products composed of natural oils or fats as a main ingredient for various beneficial properties. Fats and oils are composed of various type of fatty acids with different compositions. Hence, fatty acids profile can be an effective chemical fingerprint for authentication analysis of cosmetic products.

    OBJECTIVE: This systematic review aims to enlighten the current detection tools developing for fatty acids profile authentication analyses of cosmetic ingredients based on the effectiveness, halal status, safety, advantages and disadvantages of the methods.

    METHODOLOGY: The data were extracted from the scientific literatures published between October 2015 and 2020 in the Web of Science, Scopus and Google Scholar databases, and analyzed with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA).

    FINDINGS: Based on the systemic literature reviews, essential oil, argan oil, mineral oil, vegetable oil, and jojoba oil were among the mostly studied ingredients in cosmetics. Furthermore, a combination of more than one analytical instrument was utilized to profile fatty acids while the determination of the origin of the fatty acids is under scrutiny. The portable mass spectrometer combined with a direct inlet membrane (DIM) probe seems to be the best tool in terms of time consumption, cost, requires no sample preparation with high efficiency. The current review showed that the best cosmetic base is when the oil is composed of high concentration of fatty acids such as linoleic, oleic, stearic acid, and palmitic acids with concentration range from 19.7 - 46.30%, which offers various beneficial properties to cosmetic products.

  10. Nemati K, Abu Bakar NK, Abas MR, Sobhanzadeh E, Low KH
    Environ Monit Assess, 2011 May;176(1-4):313-20.
    PMID: 20632089 DOI: 10.1007/s10661-010-1584-3
    A study was carried out to investigate the fractionation of Cd, Cr, Cu, Fe, Mn, Pb, and Zn in shrimp aquaculture sludge from Selangor, Malaysia, using original (unmodified) and modified four-steps BCR (European Community Bureau of Reference, now known as the Standards Measurements and Testing Program) sequential extraction scheme. Step 2 of the unmodified BCR procedure (subsequently called Method A) involves treatment with 0.1 M hydroxylammonium chloride at pH 2, whereas 0.5 M hydroxylammonium chloride at pH 1.5 was used in the modified BCR procedure (subsequently called Method B). Metal analyses were carried out by flame atomic absorption spectrometry. A pseudo-total aqua-regia digest of BCR CRM 701 has also been undertaken for quality assurance purposes. The recovery of Method A for all metals studied ranges from 96.14% to 105.26%, while the recovery for Method B ranges from 95.94% to 122.40%. Our results reveal that Method A underestimated the proportion of metals bound to the easily reducible fraction except for copper. Therefore, the potential mobility of these elements is higher than others. Thus, to use this sludge as a fertilizer we have to first find a remediation for reduction of heavy metal contamination.
  11. Nemati K, Abu Bakar NK, Bin Abas MR, Sobhanzadeh E, Low KH
    J Hazard Mater, 2010 Oct 15;182(1-3):453-9.
    PMID: 20638781 DOI: 10.1016/j.jhazmat.2010.06.053
    The aim of this work was to evaluate two different digestion methods for the determination of the total concentration of metals (Zn, Cu, Cr, Ni, Pb and Cd) in shrimp sludge compost. The compost made from shrimp aquaculture sludge co-composted with organic materials (peat, crushed bark and manure) was used as an organic growing medium for crop. Open system digestion and microwave assisted digestion procedures were employed in sample preparation. Various combinations and volumes of hydrofluoric, nitric and hydrochloric acids were evaluated for the efficiency of both methods. A certified reference material (CRM 146) was used in the comparison of these two digestion methods. The results revealed a good agreement between both procedures and the certified valued. The best recoveries were found in the range between 95% and 99% for microwave assisted digestion with a mixture of 2 ml of HF, 6 ml of HNO(3) and 2 ml of HCl. This procedure was recommended as the method for digestion the compost herein based on the recovery analysis and time taken.
  12. Shabanda IS, Koki IB, Low KH, Zain SM, Khor SM, Abu Bakar NK
    Environ Sci Pollut Res Int, 2019 Dec;26(36):37193-37211.
    PMID: 31745807 DOI: 10.1007/s11356-019-06718-2
    Human health is threatened by significant emissions of heavy metals into the urban environment due to various activities. Various studies describing health risk analyses on soil and dust have been conducted previously. However, there are limited studies that have been carried out regarding the potential health risk assessment of heavy metals in urban road dust of < 63-μm diameter, via incidental ingestion, dermal contact, and inhalation exposure routes by children and adults in developing countries. Therefore, this study evaluated the health risks of heavy metal exposure via ingestion, dermal contact, and inhalation of urban dust particles in Petaling Jaya, Malaysia. Heavy metals such as lead (Pb), chromium (Cr), zinc (Zn), copper (Cu), and manganese (Mn) were measured using dust samples obtained from industrial, high-traffic, commercial, and residential areas by using inductively coupled plasma mass spectrometry (ICP-MS). The principal component and hierarchical cluster analysis showed the dominance of these metal concentrations at sites associated with anthropogenic activities. This was suggestive of industrial, traffic emissions, atmospheric depositions, and wind as the significant contributors towards urban dust contamination in the study sites. Further exploratory analysis underlined Cr, Pb, Cu, and Zn as the most representative metals in the dust samples. In accommodating the uncertainties associated with health risk calculations and simulating the reasonable maximum exposure of these metals, the related health risks were estimated at the 75th and 95th percentiles. Furthermore, assessing the exposure to carcinogenic and non-carcinogenic metals in the dust revealed that ingestion was the primary route of consumption. Children who ingested dust particles in Petaling Jaya could be more vulnerable to carcinogenic and non-carcinogenic risks, but the exposure for both children and adults showed no potential health effects. Therefore, this study serves as an important premise for a review and reformation of the existing environmental quality standards for human health safety.
  13. Dahiru M, Abu Bakar NK, Yus Off I, Low KH, Mohd MN
    Environ Monit Assess, 2020 Apr 19;192(5):294.
    PMID: 32307605 DOI: 10.1007/s10661-020-08276-4
    In an effort to determine the reason behind excellent nitrate remediation capacity at Kelantan region, a multivariate approach is employed to evaluate extent to which the influence of sea on soil geochemical composition affect variation pattern of groundwater quality. The results obtained from geochemical analysis of paleo-beach soil in coastal site at Bachok revealed multiple redox activity at different soil strata, involving both heterotrophic and autotrophic denitrification. In soil and water analysis, eight of the fourteen hydro-geochemical parameters (conductivity, temperature, soil texture, oxidation reduction potential, pH, total organic carbon, Fe, Cu, Mn, Cl-, SO42-, NO2-, NO3- and PO43-) measured using standard procedures were subjected to multivariate analysis. Evaluation of general variation pattern across the area reveals that the principal component analysis (PCA), hierarchical cluster analysis (HCA) and linear discriminant analysis (LDA) are in consonance with one another on apportioning three parameters (SO42-, Cl- and conductivity) to the coastal sites and two parameters (Fe and NH4+ or NO3-) to inland sites. The step forward analysis of LDA reveals four parameters in order of decreasing significance as Cl-, Fe and SO42-, while the two-way HCA identifies three clusters on location basis, respectively. In addition to the significant data reduction obtained, the results indicate that proximity to sea and location/geological-based influence are more significant than temporal-based influence in denitrification. By extension, the research reveals that influence of labile portion of natural resources is explorable for broader application in other remediation strategies.
  14. Nawaz N, Abu Bakar NK, Muhammad Ekramul Mahmud HN, Jamaludin NS
    Anal Biochem, 2021 10 01;630:114328.
    PMID: 34363786 DOI: 10.1016/j.ab.2021.114328
    In multiple biological processes, molecular recognition performs an integral role in detecting bio analytes. Molecular imprinted polymers (MIPs) are tailored sensing materials that can biomimic the biologic ligands and can detect specific target molecules selectively and sensitively. The formulation of molecularly imprinted polymers is followed by the formulation of a control termed as non-imprinted polymer (NIP), which, in the absence of a template, is commonly formulated to evaluate whether distinctive imprints have been produced for the template. Given the difficulties confronting bioanalytical researchers, it is inevitable that this strategy would come out as a central route of multidisciplinary studies to create extremely promising stable artificial receptors as a replacement or accelerate biological matrices. The ease of synthesis, low cost, capability to 'tailor' recognition element for analyte molecules, and stability under harsh environments make MIPs promising candidates as a recognition tool for biosensing. Compared to biological systems, molecular imprinting techniques have several advantages, including high recognition ability, long-term durability, low cost, and robustness, allowing molecularly imprinted polymers to be employed in drug delivery, biosensor technology, and nanotechnology. Molecular imprinted polymer-based sensors still have certain shortcomings in determining biomacromolecules (nucleic acid, protein, lipids, and carbohydrates), considering the vast volume of the latest literature on biomicromolecules. These potential materials are still required to address a few weaknesses until gaining their position in recognition of biomacromolecules. This review aims to highlight the current progress in molecularly imprinted polymers (MIPs)-based sensors for the determination of deoxyribonucleic acid (DNA) or nucleobases.
  15. Batool S, Shah AA, Abu Bakar AF, Maah MJ, Abu Bakar NK
    Chemosphere, 2022 Feb;289:133011.
    PMID: 34863732 DOI: 10.1016/j.chemosphere.2021.133011
    Unique zerovalent iron (Fe0) supported on biochar nanocomposite (Fe0-BRtP) was synthesized from Nephelium lappaceum (Rambutan) fruit peel waste and were applied for the simultaneous removal of 6 selected organochlorine pesticides (OCPs) from aqueous medium. During facile synthesis of Fe0-BRtP, Rambutan peel extract was used as the green reducing mediator to reduce Fe2+ to zerovalent iron (Fe0), instead of toxic sodium borohydride which were used for chemical synthesis. For comparison, chemically synthesized Fe0-BChe nanocomposite was also prepared in this work. Characterization study confirmed the successful synthesis and dispersion of Fe0 nanoparticles on biochar surface. Batch experiments revealed that Fe0-BRtP and Fe0-BChe nanocomposites combine the advantage of adsorption and dechlorination of OCPs in aqueous medium and up to 96-99% and 83-91% removal was obtained within 120 and 150 min, respectively at initial pH 4. Nevertheless, the reactivity of Fe0-BChe nanocomposite decreased 2 folds after being aged in air for one month, whilst Fe0-BRtP almost remained the same. Adsorption isotherm of OCPs were fitted well to Langmuir isotherm and then to Freundlich isotherm. The experimental kinetic data were fitted first to pseudo-second-order adsorption kinetic model and then to pseudo-first-order reduction kinetic model. The adsorption mechanism involves π-π electron-donor-acceptor interaction and adsorption is facilitated by the hydrophobic sorption and pore filling. After being reused five times, the removal efficiency of regenerated Fe0-BChe and Fe0-BRtP was 5-13% and 89-92%, respectively. The application of this Fe0-BRtP nanocomposite could represent a green and low-cost potential material for adsorption and subsequent reduction of OCPs in aquatic system.
  16. Al'Abri AM, Abdul Halim SN, Abu Bakar NK, Saharin SM, Sherino B, Rashidi Nodeh H, et al.
    J Environ Sci Health B, 2019;54(12):930-941.
    PMID: 31407615 DOI: 10.1080/03601234.2019.1652072
    This article demonstrates the first application of a copper-based porous coordination polymer (BTCA-P-Cu-CP) as a carbon paste electrode (CPE) modifier for the detection of malathion. The electrochemical behavior of BTCA-P-Cu-CP/CPE was explored using cyclic voltammetry (CV) while chrono-amperometry methods were applied for the analytical evaluation of the sensor performance. Under optimized conditions, the developed sensor exhibited high reproducibility, stability, and wide dynamic range (0.6-24 nM) with the limits of detection and sensitivity equal to 0.17 nM and 5.7 µAnMcm-1, respectively, based on inhibition signal measurement. Furthermore, the presence of common coexisting interfering species showed a minor change in signals (<4.4%). The developed sensor has been applied in the determination of malathion in spiked vegetable extracts. It exhibited promising results in term of fast and sensitive determination of malathion in real samples at trace level with recoveries of 91.0 to 104.4%. (RSDs < 5%, n = 3). A comparison of the two studied techniques showed that the HPLC technique is unable to detect malathion when the concentration is lower than 1.8 µM while 0.006 µM is detected with appropriate RSDs 0.2-5.2% (n = 3) by amperometric method. Due to the high sensitivity and selectivity, this new electrochemical sensor will be useful for monitoring trace malathion in real samples.
Related Terms
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links