OBJECTIVE: To provide an overview of traditional medicinal claims, pharmacological properties, and phytochemical principles of P. kotschyi as a basis for its clinical applications and further research and development of new drugs.
METHODS: Through interpreting already published scientific manuscripts retrieved from different scientific search engines, namely, Medline, PubMed, EMBASE, Science Direct and Google scholar databases, an up-to-date review on the medicinal potentials of P. kotschyi from inception until September, 2020 was compiled. 'Pseudocedrela kotschyi', 'traditional uses', 'pharmacological properties' and 'chemical constituents' were used as search words.
RESULTS: At present, more than 30 chemical constituents have been isolated and identified from the root and stem bark of P. kotschyi, among which limonoids and triterpenes are the main active constituents. Based on prior research, P. kotschyi has been reported to possess anti-inflammatory, analgesic, antipyretic, anthelminthic, antimalaria, anti-leishmaniasis, anti-trypanosomiasis, hepatoprotective, antioxidant, antidiabetic, antidiarrheal, antimicrobial, and anticancer effects.
CONCLUSIONS: P. kotschyi is reported to be effective in treating a variety of diseases. Current phytochemical and pharmacological studies mainly focus on antimalaria, anti-leishmaniasis, anti-trypanosomiasis and anticancer potential of the root and stem bark of P. kotschyi. Although experimental data support the beneficial medicinal properties of this plant, there is still a paucity of information on its toxicity profile. Nonetheless, this review provides the basis for future research work.
Materials and Methods: In this study, the chewable tablets were manufactured using the melt granulation method, which resulted in tablets with a chewy texture. The tablets contained paracetamol as well as Arabic gum, starch, agar, and mannitol.
Results: The drug release profiles for the fragmented form showed that 50% of the drug was released within 4 min and 100% was released within 30 min of the dissolution process. The intact form released nearly 90% of the drug within 2 h.
Conclusion: Formulation 2 was determined as the best formulation. This tablets' formulation had passed all characterization tests and displayed a moderate hardness and chewy texture.
OBJECTIVE: This study investigates the cardioprotective effects of arjunolic acid (AA) via MyD88-dependant TLR4 downstream signaling marker expression.
MATERIALS AND METHODS: The MTT viability assay was used to assess the cytotoxicity of AA. LPS induced in vitro cardiovascular disease model was developed in H9C2 and C2C12 myotubes. The treatment groups were designed such as control (untreated), LPS control, positive control (LPS + pyrrolidine dithiocarbamate (PDTC)-25 µM), and treatment groups were co-treated with LPS and three concentrations of AA (50, 75, and 100 µM) for 24 h. The changes in the expression of TLR4 downstream signaling markers were evaluated through High Content Screening (HCS) and Western Blot (WB) analysis.
RESULTS: After 24 h of co-treatment, the expression of TLR4, MyD88, MAPK, JNK, and NF-κB markers were upregulated significantly (2-6 times) in the LPS-treated groups compared to the untreated control in both HCS and WB experiments. Evidently, the HCS analysis revealed that MyD88, NF-κB, p38, and JNK were significantly downregulated in the H9C2 myotube in the AA treated groups. In HCS, the expression of NF-κB was downregulated in C2C12. Additionally, TLR4 expression was downregulated in both H9C2 and C2C12 myotubes in the WB experiment.
DISCUSSION AND CONCLUSIONS: TLR4 marker expression in H9C2 and C2C12 myotubes was subsequently decreased by AA treatment, suggesting possible cardioprotective effects of AA.