Displaying all 20 publications

Abstract:
Sort:
  1. Arzmi MH, Dashper S, McCullough M
    J Oral Pathol Med, 2019 Aug;48(7):546-551.
    PMID: 31183906 DOI: 10.1111/jop.12905
    The oral microbiome is composed of microorganisms residing in the oral cavity, which are critical components of health and disease. Disruption of the oral microbiome has been proven to influence the course of oral diseases, especially among immunocompromised patients. Oral microbiome is comprised of inter-kingdom microorganisms, including yeasts such as Candida albicans, bacteria, archaea and viruses. These microorganisms can interact synergistically, mutualistically and antagonistically, wherein the sum of these interactions dictates the composition of the oral microbiome. For instance, polymicrobial interactions can improve the ability of C albicans to form biofilm, which subsequently increases the colonisation of oral mucosa by the yeast. Polymicrobial interactions of C albicans with other members of the oral microbiome have been reported to enhance the malignant phenotype of oral cancer cells, such as the attachment to extracellular matrix molecules (ECM) and epithelial-mesenchymal transition (EMT). Polymicrobial interactions may also exacerbate an inflammatory response in oral epithelial cells, which may play a role in carcinogenesis. This review focuses on the role of polymicrobial interactions between C albicans and other oral microorganisms, including its role in promoting oral carcinogenesis.
  2. Arzmi MH, Abdul Razak F, Yusoff Musa M, Wan Harun WH
    FEMS Yeast Res., 2012 May;12(3):351-8.
    PMID: 22225549 DOI: 10.1111/j.1567-1364.2011.00786.x
    Phenotypic switching is characterized as a virulence factor of Candida spp. This study was carried out to evaluate the phenotypic switching ability of C. krusei ATCC 14243 and to determine its effect on the biological properties, adherence capacity and susceptibility towards chlorhexidine digluconate (CHX). To induce switched generations C. krusei was cultured under nitrogen-depleted growth conditions by adding phloxine B. These phenotypically switched colonies were designated as the 1st generation. Subsequent sub-culturing was performed to produce the 2nd, 3rd and 4th switched generations. The recovery of the 3rd generation was the highest at 85.7% while that of the 4th generation was lower at 70.8%, and the recovery of the 1st and 2nd generations gradually reduced to 46.6% and 36.4%, respectively. All generations of C. krusei were susceptible towards CHX. The unswitched C. krusei was the most susceptible but the least adherent to coated hard surfaces. The 2nd generation was the least susceptible, but with the highest adherent ability. The minimum inhibition concentration and minimal fungicidal concentration of C. krusei of all generations were determined at 0.4 mg mL(-1) . These observations suggest that the switching activity of C. krusei induces changes to its biological properties and susceptibility towards CHX.
  3. Arzmi MH, Dashper S, Catmull D, Cirillo N, Reynolds EC, McCullough M
    FEMS Yeast Res., 2015 Aug;15(5):fov038.
    PMID: 26054855 DOI: 10.1093/femsyr/fov038
    Microbial interactions are necessarily associated with the development of polymicrobial oral biofilms. The objective of this study was to determine the coaggregation of eight strains of Candida albicans with Actinomyces naeslundii and Streptococcus mutans. In autoaggregation assays, C. albicans strains were grown in RPMI-1640 and artificial saliva medium (ASM) whereas bacteria were grown in heart infusion broth. C. albicans, A. naeslundii and S. mutans were suspended to give 10(6), 10(7) and 10(8) cells mL(-1) respectively, in coaggregation buffer followed by a 1 h incubation. The absorbance difference at 620 nm (ΔAbs) between 0 h and 1 h was recorded. To study coaggregation, the same protocol was used, except combinations of microorganisms were incubated together. The mean ΔAbs% of autoaggregation of the majority of RPMI-1640-grown C. albicans was higher than in ASM grown. Coaggregation of C. albicans with A. naeslundii and/or S. mutans was variable among C. albicans strains. Scanning electron microscopy images showed that A. naeslundii and S. mutans coaggregated with C. albicans in dual- and triculture. In conclusion, the coaggregation of C. albicans, A. naeslundii and S. mutans is C. albicans strain dependent.
  4. Arzmi MH, John A, Rismayuddin NAR, Kenali NM, Darnis DS
    Data Brief, 2021 Apr;35:106769.
    PMID: 33537383 DOI: 10.1016/j.dib.2021.106769
    Deer antler velvet (DAV) has been traditionally used in Chinese medicine, including treatment on toothache [1]. Due to its rapid and regenerative capacity, deer antlers were proposed to be the good model for bone remodelling in mammals [2]. The data presented in this work is on the liquid chromatography and mass spectrometry (LC-MS) profile and bioactive potential of Malayan deer antler velvet (DAV) on different Candida species that has clinical importance. Aqueous extraction of DAV samples was subjected to Liquid chromatography quadrupole time of flight mass spectrometry (LC-QTOF-MS) profiling. Reverse phase (RP) separation was used due to the process extraction using water as a solvent to separate polar compound. The data was interpreted using Profile Analysis 2.1V. The DAV samples were also tested for the effect on the biofilm formation of seven Candida species in a 96 well plate [3]. The biofilms were developed for 72 h in aerobic environment. Following that, the biofilms biomass was determined using crystal violet assay.
  5. Arzmi MH, Alnuaimi AD, Dashper S, Cirillo N, Reynolds EC, McCullough M
    Med Mycol, 2016 Nov 01;54(8):856-64.
    PMID: 27354487 DOI: 10.1093/mmy/myw042
    Oral biofilms comprise of extracellular polysaccharides and polymicrobial microorganisms. The objective of this study was to determine the effect of polymicrobial interactions of Candida albicans, Actinomyces naeslundii, and Streptococcus mutans on biofilm formation with the hypotheses that biofilm biomass and metabolic activity are both C. albicans strain and growth medium dependent. To study monospecific biofilms, C. albicans, A. naeslundii, and S. mutans were inoculated into artificial saliva medium (ASM) and RPMI-1640 in separate vials, whereas to study polymicrobial biofilm formation, the inoculum containing microorganisms was prepared in the same vial prior inoculation into a 96-well plate followed by 72 hours incubation. Finally, biofilm biomass and metabolic activity were measured using crystal violet and XTT assays, respectively. Our results showed variability of monospecies and polymicrobial biofilm biomass between C. albicans strains and growth medium. Based on cut-offs, out of 32, seven RPMI-grown biofilms had high biofilm biomass (HBB), whereas, in ASM-grown biofilms, 14 out of 32 were HBB. Of the 32 biofilms grown in RPMI-1640, 21 were high metabolic activity (HMA), whereas in ASM, there was no biofilm had HMA. Significant differences were observed between ASM and RPMI-grown biofilms with respect to metabolic activity (P <01). In conclusion, biofilm biomass and metabolic activity were both C. albicans strain and growth medium dependent.
  6. Mokhtar M, Rismayuddin NAR, Mat Yassim AS, Ahmad H, Abdul Wahab R, Dashper S, et al.
    Biofouling, 2021 08;37(7):767-776.
    PMID: 34425729 DOI: 10.1080/08927014.2021.1967334
    Candida albicans causes candidiasis, particularly in immunocompromised patients. Streptococcus salivarius K12 (K12) is a probiotic isolated from a healthy oral cavity. The study aimed to determine the effect of K12 on C. albicans aggregation, biofilm formation and dimorphism. C. albicans ATCC MYA-4901, acquired immunodeficiency syndrome (AIDS) isolate (ALC2), and oral cancer isolate (ALC3) and K12 were used in the study. All C. albicans strains and K12 were grown in yeast peptone dextrose agar and brain heart infusion agar, respectively, prior to aggregation, biofilm and dimorphism assays. Auto-aggregation of C. albicans MYA-4901 and ALC2 was categorised as high, while the co-aggregation of the strains was low in the presence of K12. C. albicans total cell count decreased significantly when co-cultured with K12 compared with monocultured C. albicans biofilm (p 
  7. Al-Ahmad BEM, Kashmoola MA, Mustafa NS, Hassan H, Arzmi MH
    Eur J Dent, 2018 4 17;12(1):120-122.
    PMID: 29657536 DOI: 10.4103/ejd.ejd_322_17
    Objective: This study aimed to investigate the relationship between tooth loss and the level of blood pressure with the hypothesis that tooth loss is associated with the increase of hypertension in postmenopausal women.

    Materials and Methods: Sixty postmenopausal female patients aged 51-68 years were included in the study to assess the relationship between tooth loss and the level of blood pressure. The information including sociodemographics, last menstruation period, hypertension history, and the duration of having tooth loss was recorded. Blood pressure was measured using sphygmomanometer and the number of tooth loss was determined.

    Results: The results showed a more significant tooth loss in hypertension (median: 23 + 4; interquartile range [IQR]: 6) compared to the normotension postmenopausal women (median: 18 + 6; IQR: 12; P < 0.05). Furthermore, obese patients had more tooth loss (median: 23 + 5; IQR: 8) than the overweight patients (median: 19 + 8; IQR: 8).

    Conclusion: Tooth loss is associated with the increase of hypertension in postmenopausal women which may have a role in the development of vascular diseases.

  8. Mohd Fuad AS, Amran NA, Nasruddin NS, Burhanudin NA, Dashper S, Arzmi MH
    Probiotics Antimicrob Proteins, 2023 Oct;15(5):1298-1311.
    PMID: 36048406 DOI: 10.1007/s12602-022-09985-7
    Oral carcinogenesis is preceded by oral diseases associated with inflammation such as periodontitis and oral candidiasis, which are contributed by chronic alcoholism, smoking, poor oral hygiene, and microbial infections. Dysbiosis is an imbalance of microbial composition due to oral infection, which has been reported to contribute to oral carcinogenesis. Therefore, in this review, we summarised the role of probiotics, prebiotics, synbiotics, and postbiotics in promoting a balanced oral microbiome, which may prevent oral carcinogenesis due to oral infections. Probiotics have been shown to produce biofilm, which possesses antibacterial activity against oral pathogens. Meanwhile, prebiotics can support growth and increase the benefit of probiotics. In addition, postbiotics possess antibacterial, anticariogenic, and anticancer properties that potentially aid in oral cancer prevention and treatment. The use of probiotics, prebiotics, synbiotics, and postbiotics for oral cancer management is still limited despite their vast potential, thus, discovering their prospects could herald a novel approach to disease prevention and treatment while participating in combating antimicrobial resistance.
  9. Zaini NNM, Salleh WMNHW, Arzmi MH, Salihu AS, Ab Ghani N
    Nat Prod Res, 2023 Nov 07.
    PMID: 37933754 DOI: 10.1080/14786419.2023.2278164
    The chemical composition of the essential oil of Lindera subumbelliflora (Lauraceae) was investigated for the first time. The essential oil was obtained by hydrodistillation and fully characterised by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The antifungal activity of L. subumbelliflora essential oil was tested against Candida albicans and Streptococcus mutans using the broth microdilution assay, whereas the microbial biofilms were determined using a semi-quantitative static biofilm. A total of 28 components (99.6%) were successfully identified, which were characterised by β-eudesmol (14.6%), cis-α-bergamotene (11.0%), α-copaene (8.5%), dodecen-1-ol (8.5%), and (E)-nerolidol (8.3%). The essential oil exhibited activity against Candida albicans and Streptococcus mutans with MIC values of 250 and 500 µg/mL, respectively. The essential oil increased the biofilm of Candida albicans by 38.25%, however, decreased the biofilm of Streptococcus mutans by 47.89% when treated with 500 µg/mL. Thus, the essential oil has a promising application in dentistry via inhibition of the growth of Candida albicans and Streptococcus mutans. However, the antibiofilm activity of the essential oil is only applicable for cariogenic Streptococcus mutans.
  10. Alrashdan MS, Arzmi MH, Ahmad Kamil WN, Al Kawas S, Leao JC
    Ital J Dermatol Venerol, 2023 Oct;158(5):408-418.
    PMID: 37916401 DOI: 10.23736/S2784-8671.23.07676-4
    The oral mucosa can be involved in a wide variety of mucocutaneous conditions that may present primarily in the mouth or affect other cutaneous or mucosal sites. Many of these conditions are immune mediated and typically present as inflammatory mucosal pathology. Patients experiencing such conditions usually seek medical evaluation and treatment due to the associated pain and discomfort and occasionally taste disturbance or dysphagia and the overall deterioration in the oral health-related quality of life. These conditions share some common features and there could be some overlapping in their clinical presentation, which can lead to delays in diagnosis and proper management of patients. Clinicians dealing with such disorders, including dermatologists, need to be aware of the oral manifestations of mucocutaneous conditions, their clinical features, underlying mechanisms, diagnostic approaches, and treatment options, as well as the recent advances in the research on these conditions. This review provides a comprehensive, evidence-based reference for clinicians, with updated insights into a group of immune mediated conditions known to cause oral mucosal pathology. Part one will cover oral lichen planus, erythema multiforme and systemic lupus erythematosus, while part two will cover pemphigus vulgaris and mucous membrane pemphigoid, recurrent aphthous stomatitis, in addition to the less common disorders linear IgA disease, dermatitis herpetiformis and epidermolysis bullosa.
  11. Sayuddin ENEN, Taher M, Arzmi MH, Burhanudin NA, Rostam MA
    Arch Oral Biol, 2024 Jan;157:105841.
    PMID: 37952507 DOI: 10.1016/j.archoralbio.2023.105841
    OBJECTIVE: In this article, we review the current studies on the role of podoplanin in oral cancer and the potential application of podoplanin inhibitors as a therapeutic agent for oral cancer.

    DESIGN: The narrative review approach was conducted, providing a comprehensive perspective of related literature. Publications addressing podoplanin and its inhibitors in the context of oral cancer were retrieved from PubMed and Scopus databases.

    RESULTS: Podoplanin has emerged as a biomarker and therapeutic agent for oral cancer. Numerous studies have reported high podoplanin expression in oral cancer and pre-cancerous lesions compared to normal cells. A specific inhibitor targeting podoplanin may have the potential to prevent oral carcinogenesis via interfering with the pathway of cancerous cells involved in cell proliferation and metastasis. Antibodies, chimeric antigen receptor (CAR)-T cells, cancer-specific mAb (CasMab), synthetic molecules, and lectins are among the materials used as anticancer agents targeting podoplanin. Plant-derived lectins appear to demonstrate a unique advantage against alternative candidates.

    CONCLUSIONS: The use of podoplanin inhibitors in place of existing therapeutic approaches could be a promising and novel approach to the prevention and treatment of oral cancer. Nevertheless, further research is required to investigate the practical application of such inhibitors.

  12. Zaini NNM, Salleh WMNHW, Arzmi MH, Salihu AS, Ab Ghani N
    Nat Prod Res, 2023 Dec 26.
    PMID: 38146623 DOI: 10.1080/14786419.2023.2298720
    The chemical composition, antifungal, antibiofilm, and molecular docking studies of the essential oil obtained from Lindera caesia were investigated. A total of thirty-nine components (96.7%) were identified using gas chromatography (GC-FID) and gas chromatography-mass spectrometry (GC-MS). The major components included terpinen-4-ol (26.3%), neo-intermedeol (23.2%), eudesma-4,11-dien-3-one (10.4%), and o-cymene (5.3%). The antifungal activity was tested against Candida albicans and Streptococcus mutans using the broth microdilution assay, whereas the microbial biofilms were determined using a semi-quantitative static biofilm. The essential oil exhibited activity against C. albicans (MIC 125 µg/mL) and S. mutans (MIC 250 µg/mL), and increased the biofilm of C. albicans by 31.25% when treated with 500 µg/mL. The molecular docking study shows neo-intermedeol, eudesma-4,11-dien-3-one, α-selinene, and β-selinene as the good candidate to target Erg11 with a binding energy of -7.3 kcal/mol. These findings demonstrated that the essential oil may have potential in dental application for caries prevention.
  13. An S, Judge RB, Wong RH, Arzmi MH, Palamara JE, Dashper SG
    Aust Dent J, 2018 Jun 20.
    PMID: 29923610 DOI: 10.1111/adj.12640
    BACKGROUND: This study aimed to fabricate a denture base resin (DBR) containing phytoncide microcapsules (PTMCs) and determine the mechanical properties of the resin and antifungal activity.

    METHODS: Fifty-four heat-cured rectangular DBR specimens (64 × 10 × 3.3 ± 0.2 mm) containing nine concentrations of PTMC between 0 and 5% (wt/wt) were fabricated and subjected to a three-point bending test. A phytoncide release bioassay was developed using DBR containing 0% and 2.5% PTMCs (wt/wt) in a 24 well-plate assay with incubation of Porphyromonas gingivalis at 37 °C for 74 h. The antifungal activity of PTMCs against Candida albicans, in a pH 5.5 acidic environment was determined in a plate assay.

    RESULTS: Flexural strength decreased with increasing PTMC concentration from 97.58 ± 4.79 MPa for the DBR alone to 53.66 ± 2.46 MPa for DBR containing 5.0% PTMC. No release of phytoncide from the PTMCs in the DBR was detected at pH 7.4. The PTMCs had a minimal inhibitory concentration of 2.6% (wt/vol) against C. albicans at pH 5.5.

    CONCLUSIONS: PTMCs can be added to DBR 2.5% (wt/wt) without adversely affecting flexural strength. PTMCs released the antimicrobial agent at pH 5.5 at concentrations sufficient to inhibit the growth of the C. albicans.

  14. Anuar TAFT, Ismail A, Mohamed Suffian IF, Abdul Hamid AA, Arzmi MH, Omar MN
    Data Brief, 2021 Dec;39:107485.
    PMID: 34761082 DOI: 10.1016/j.dib.2021.107485
    The data presented here is the liquid chromatography and mass spectrometry (LC-MS) profile of phytochemical compounds in the aqueous extract of Syzygium polyanthum (Wight) Walp. leaves. This plant is consumed raw and sometimes added to local dishes of people in Southeast Asia countries. Most importantly, it has ethnomedicinal values mainly in treating diabetes and hypertension, and at the same time, this plant has anti-microbial, anti-oxidant, anti-cancer, and anti-tumor properties [1]. There are chemical composition variations reported between the same species of different geographical locations, which eventually affect the plant's therapeutic potential [2], [3]. This dataset represents the identified compounds for S. polyanthum (Wight) Walp. leaves, a variant collected from Kuantan, a city located in the Pahang state on the East Coast of Peninsular Malaysia. The leaves were then dried in an open-air at room temperature for three weeks, ground, and then macerated in water inside a bath-sonicator, freeze-dried, and then run using LCMS. The LCMS was run using the ultra-performance liquid chromatography equipped with an electrospray time-of-flight mass spectrometer detector, operated in a negative-ion mode. The mass spectral features from samples raw data were matched with Traditional Medicine (en) and Waters Screening libraries in the Waters UNIFI™ Scientific Information System software version 1.7 (Waters, USA) for compounds identification.
  15. Salihu AS, Salleh WMNHW, Barker D, Arzmi MH, Ab Ghani N, Rasol NE
    Nat Prod Res, 2024 Apr 24.
    PMID: 38657005 DOI: 10.1080/14786419.2024.2345758
    Phytochemical investigation of the leaves of Knema intermedia has led to the isolation of a new furofuran lignan, intermedianin 1 together with five known lignans, α-cubebin 2, β-cubebin 3, bicubebin A 4, bicubebin B 5, and bicubebin C 6. The characterisation and structural elucidation of the isolated compounds were established by extensive spectroscopic data analysis and comparison with literature data. The antifungal activity was tested using the broth microdilution assay, whereas the microbial biofilms were determined using a semi-quantitative static biofilm. Compound 1 exhibited activity against C. albicans, C. lusitanae, and C. auris, (each with MIC/MFC value 250 µg/mL) and increased the biofilm of C. auris (64.07 ± 3.83%) and Candida lusitanae (62.90 ± 3.41%) when treated with 500 µg/mL.
  16. Roslan M, Mohd Nisfu FR, Arzmi MH, Abdul Wahab R, Zainuddin N
    Malays J Med Sci, 2023 Aug;30(4):8-24.
    PMID: 37655145 DOI: 10.21315/mjms2023.30.4.2
    Individuals with a history of coronavirus disease 2019 (COVID-19) exhibit memory immunity acquired during natural infection. However, a decline in immunity after infection renders these individuals vulnerable to re-infection, in addition to a higher risk of infection with new variants. This systematic review examined related studies to elucidate the antibody response in these infected individuals after messenger ribonucleic acid (mRNA) vaccination. Hence, the focus of this review was to ascertain differences in the concentration of binding and neutralising antibodies of previously infected individuals in comparison to those of infection-naïve individuals after administration of two doses of mRNA vaccination through available case-control and cohort studies. Positive reverse transcriptase-polymerase chain reaction (RT-PCR) test or detectable anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies at the baseline in included studies showed categorisation of infected and uninfected individuals. This review utilised three online databases: PubMed, Scopus and Cochrane with the following keywords: (COVID-19 OR 'Coronavirus Disease 2019' OR SARS-CoV-2) AND Immun* AND (Pfizer OR BioNTech OR BNT162b2 OR Comirnaty OR Moderna OR mRNA-1273) from January 2019 to July 2021. Following the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocol (PRISMA-P) 2020 guidelines and assessment based on the Crowe Critical Appraisal Tool (CCAT), we included 13 related qualified papers of observational studies discerning the binding and neutralising antibody concentrations of infected and uninfected individuals after administration of mRNA vaccines, such as the BNT162b2 and mRNA-1273 vaccine. The mRNA vaccines induced robust binding and neutralising antibody responses in both groups. However, infected individuals showed induction of higher antibody responses in a shorter time compared to uninfected individuals. Hence, a single dose of mRNA vaccination for infected individuals may be sufficient to reach the same level of antibody concentration as that observed in uninfected individuals after receiving two doses of vaccination.
  17. Arzmi MH, Cirillo N, Lenzo JC, Catmull DV, O'Brien-Simpson N, Reynolds EC, et al.
    Carcinogenesis, 2019 03 12;40(1):184-193.
    PMID: 30428016 DOI: 10.1093/carcin/bgy137
    Microbial infection has been shown to involve in oral carcinogenesis; however, the underlying mechanisms remain poorly understood. The present study aimed to characterize the growth of oral microorganisms as both monospecies and polymicrobial biofilms and determine the effects of their products on oral keratinocytes. Candida albicans (ALC3), Actinomyces naeslundii (AN) and Streptococcus mutans (SM) biofilms or a combination of these (TRI) were grown in flow-cell system for 24 h. The biofilms were subjected to fluorescent in situ hybridization using species-specific probes and analysed using confocal laser scanning microscopy. The effluent derived from each biofilm was collected and incubated with malignant (H357) and normal (OKF6) oral keratinocytes to assess extracellular matrix adhesion, epithelial-mesenchymal transition (EMT) and cytokines expression. Incubation of OKF6 with ALC3 and TRI effluent significantly decreased adhesion of the oral keratinocyte to collagen I, whereas incubation of H357 with similar effluent increased adhesion of the oral keratinocyte to laminin I, significantly when compared with incubation with artificial saliva containing serum-free medium (NE; P < 0.05). In OKF6, changes in E-cadherin and vimentin expression were not consistent with EMT although there was evidence of a mesenchymal to epithelial transition in malignant oral keratinocytes incubated with AN and SM effluent. A significant increase of pro-inflammatory cytokines expression, particularly interleukin (IL)-6 and IL-8, was observed when H357 was incubated with all biofilm effluents after 2- and 24-h incubation when compared with NE (P < 0.05). In conclusion, C.albicans, A.naeslundii and S.mutans form polymicrobial biofilms which differentially modulate malignant phenotype of oral keratinocytes.
  18. Wan Mohd Kamaluddin WNF, Rismayuddin NAR, Ismail AF, Mohamad Aidid E, Othman N, Mohamad NAH, et al.
    Arch Oral Biol, 2020 Oct;118:104855.
    PMID: 32801092 DOI: 10.1016/j.archoralbio.2020.104855
    OBJECTIVES: This systematic review aimed to investigate the effects if probiotics can inhibit oral carcinogenesis.

    DESIGN: PubMed, Web of Science, Scopus, and PLOS databases were searched up to February 2020 to identify randomised controlled trials that fulfilled the eligibility criteria. Joanna Briggs Institute (JBI) Critical Appraisal Tool was used for quality assessment of articles. This review was performed according to the Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA-P) 2015 protocol guidelines.

    RESULT: The initial search retrieved 774 articles. Of these, only five articles were included in the qualitative synthesis. Two out of the five papers were further analysed for quantitative synthesis in meta-analysis. The majority of the included studies were found to be of "moderate quality". The qualitative synthesis found four probiotics that exhibited potential therapeutic effects in oral carcinogenesis, includingAcetobacter syzygii, AJ2, Lactobacillus plantarum, and Lactobacillus salivarius REN. Among them, the application of L. salivarius REN resulted in a 95 % lower risk for developing oral cancer (p 

  19. Roslan MAM, Omar MN, Sharif NAM, Raston NHA, Arzmi MH, Neoh HM, et al.
    NPJ Biofilms Microbiomes, 2023 Dec 08;9(1):95.
    PMID: 38065982 DOI: 10.1038/s41522-023-00463-8
    The human microbiome has emerged as a key player in maintaining skin health, and dysbiosis has been linked to various skin disorders. Amidst growing concerns regarding the side effects of antibiotic treatments, the potential of live biotherapeutic products (LBPs) in restoring a healthy microbiome has garnered significant attention. This review aims to evaluate the current state of the art of the genetically or metabolically engineered LBPs, termed single-cell engineered LBPs (eLBPs), for skin repair and disease treatment. While some studies demonstrate promising outcomes, the translation of eLBPs into clinical applications remains a significant hurdle. Substantial concerns arise regarding the practical implementation and scalability of eLBPs, despite the evident potential they hold in targeting specific cells and delivering therapeutic agents. This review underscores the need for further research, robust clinical trials, and the exploration of current advances in eLBP-based bioengineered bacterial chassis and new outlooks to substantiate the viability and effectiveness of eLBPs as a transformative approach in skin repair and disease intervention.
  20. Engku Nasrullah Satiman EAF, Ahmad H, Ramzi AB, Abdul Wahab R, Kaderi MA, Wan Harun WHA, et al.
    J Oral Pathol Med, 2020 Oct;49(9):835-841.
    PMID: 32170981 DOI: 10.1111/jop.13014
    Oral squamous cell carcinoma is associated with many known risk factors including tobacco smoking, chronic alcoholism, poor oral hygiene, unhealthy dietary habits and microbial infection. Previous studies have highlighted Candida albicans host tissue infection as a risk factor in the initiation and progression of oral cancer. C albicans invasion induces several cancerous hallmarks, such as activation of proto-oncogenes, induction of DNA damage and overexpression of inflammatory signalling pathways. However, the molecular mechanisms behind these responses remain unclear. A recently discovered fungal toxin peptide, candidalysin, has been reported as an essential molecule in epithelial damage and host recognition of C albicans infection. Candidalysin has a clear role in inflammasome activation and induction of cell damage. Several inflammatory molecules such as IL-6, IL-17, NLRP3 and GM-CSF have been linked to carcinogenesis. Candidalysin is encoded by the ECE1 gene, which has been linked to virulence factors of C albicans such as adhesion, biofilm formation and filamentation properties. This review discusses the recent epidemiological burden of oral cancer and highlights the significance of the ECE1 gene and the ECE1 protein breakdown product, candidalysin in oral malignancy. The immunological and molecular mechanisms behind oral malignancy induced by inflammation and the role of the toxic fungal peptide candidalysin in oral carcinogenesis are explored. With increasing evidence associating C albicans with oral carcinoma, identifying the possible fungal pathogenicity factors including the role of candidalysin can assist in efforts to understand the link between C albicans infection and carcinogenesis, and pave the way for research into therapeutic potentials.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links