Displaying all 13 publications

  1. Nesan D, Chan DJC
    Int J Phytoremediation, 2021;23(14):1519-1524.
    PMID: 33913777 DOI: 10.1080/15226514.2021.1915955
    One of the challenges of integrating phytoremediation into a waste treatment system is the sensitivity of plant species to fluctuations in environmental conditions and the difficulty in estimating subsequent changes to their rates of uptake. In this study, we examine a method using the exponential decay equation to approximate the median uptake rate (MUR) of nutrients for three aquatic macrophyte species, Salvinia molesta, Spirodela polyrhiza, and Lemna minor. These MUR values were then used to directly evaluate the phytoremediation performance between species and at varying levels of salinity stress. The results of this study indicate that an exponential decay relationship produced the most accurate models of the nutrient uptake profile for each species, with highest correlation values in 74.1% of tests for the three species at increasing salinity over a period of 14 d. S. polyrhiza and L. minor began to show significant reductions in nutrient uptake and growth at salinity concentration above 10 g/L. Using MUR, direct comparisons can be made between species in a time and mass-independent manner, allowing for the rapid assessment of phytoremediation performance under conditions of increasing salinity stress. Novelty statementIn this study, we propose the use of an exponential decay model and the use of median uptake rate (MUR) obtained from the model coefficients as a method for directly comparing species performance under different conditions. Subsequently, we show how the use of MUR values obtained from three species of aquatic macrophytes allows for the direct comparison of species performance under increasing salinity stress. The method proposed in this study would improve the ability for easy comparison between species performance under varying environmental conditions. Future works could further build on the parameters proposed in this study and optimize the performance of phytoremediation systems developed for nutrient-affected wastewater management. This study is especially beneficial to phytoremediation researchers and environmental engineers who are implementing or designing macrophyte phytoremediation systems.
  2. Cheah YT, Chan DJC
    Bioengineered, 2021 12;12(1):7577-7599.
    PMID: 34605338 DOI: 10.1080/21655979.2021.1980671
    In view of high energy cost and water consumption in microalgae cultivation, microalgal-biofilm-based cultivation system has been advocated as a solution toward a more sustainable and resource friendlier system for microalgal biomass production. Algal-derived extracellular polymeric substances (EPS) form cohesive network to interconnect the cells and substrates; however, their interactions within the biofilm are poorly understood. This scenario impedes the biofilm process development toward resource recovery. Herein, this review elucidates on various biofilm cultivation modes and contribution of EPS toward biofilm adhesion. Immobilized microalgae can be envisioned by the colloid interactions in terms of a balance of both dispersive and polar interactions among three interfaces (cells, mediums and substrates). Last portion of this review is dedicated to the future perspectives and challenges on the EPS; with regard to the biopolymers extraction, biopolymers' functional description and cross-referencing between model biofilms and full-scale biofilm systems are evaluated. This review will serve as an informative reference for readers having interest in microalgal biofilm phenomenon by incorporating the three main players in attached cultivation systems: microalgae, EPS and supporting materials. The ability to mass produce these miniature cellular biochemical factories via immobilized biofilm technology will lay the groundwork for a more sustainable and feasible production.
  3. Cheah YT, Chan DJC
    J Appl Microbiol, 2022 Jan 21.
    PMID: 35061929 DOI: 10.1111/jam.15455
    Biofilm secreted by microalgae are extracellular polymeric substances (EPSs) composed mainly of polysaccharides, proteins, nucleic acids and lipids. These EPSs immobilize the cells and stabilize biofilm, mediating adhesion towards solid surfaces. The EPSs valorization through industrial exploitations and scientific works is becoming more popular, but the bottleneck of such studies is the lack of consensus among researchers on the selection of detection techniques to be used, especially for novice researchers. It is a daunting task for any inexperienced researcher when they fail to identify the right tools needed for microalgal biofilm studies. In this review, a well-refined analysis protocol about microalgal biofilm and EPSs were prepared including its extraction and characterization. Pros and cons of various detection techniques were addressed and cutting-edge methods to study biofilm EPSs were highlighted. Future perspectives were also presented at the end of this review to bridge research gaps in studying biofilm adhesion via EPSs production. Ultimately, this review aims to assist novice researchers in making the right choices in their research studies on microalgal biofilms in accordance to the available technologies and needs.
  4. Ng YS, Chan DJC
    Int J Phytoremediation, 2018;20(12):1179-1186.
    PMID: 29053371 DOI: 10.1080/15226514.2017.1375895
    Macrophytes have been used to mitigate eutrophication and upgrade effluent quality via their nutrient removal capability. However, the available data are influenced by factors such as microbial activities, weather, and wastewater quality, making comparison between nutrient removal performance of different macrophytes almost impossible. In this study, phytoremediation by Spirodela polyrhiza, Salvinia molesta and Lemna sp. were carried out axenically in synthetic wastewater under controlled condition to precisely evaluate nutrient removal efficiency of NO3--N, PO43-, NH3-N, COD and pH in the water sample. The results showed that ammonia removal was rapid, significant for S. polyrhiza and Lemna sp., with efficiency of 60% and 41% respectively within 2 days. S. polyrhiza was capable of reducing 30% of the nitrate. Lemna sp. achieved the highest phosphate reduction of 86% at day 12 to mere 1.07 mg/L PO43--P. Correlation was found between COD and TC, suggesting the release of organic substances by macrophytes into the medium. All the macrophytes showed biomass increment. S. polyrhiza outperformed other macrophytes in nutrient removal despite lower biomass production. The acquired nutrient removal profiles can serve as a guideline for the selection of suitable macrophytes in wastewater treatment and to evaluate microbial activity in non-aseptic phytoremediation system.
  5. Ng YS, Chan DJC
    Mol Biotechnol, 2023 Aug 31.
    PMID: 37651079 DOI: 10.1007/s12033-023-00853-5
    Membrane distillation (MD) has lower operating temperature and potential to recycle waste heat for desalination which catches much attention of the researchers in the recent years. However, the biofouling is still a challenging hurdle to be overcome for such applications. The microbial growth rate, secretion and biofilm formation are sensitive to heat. Membrane distillation is a thermally driven separation, so the increase of temperature in the seawater feed could influence the extent of biofouling on the unit parts. In this review, we present the effect of temperature on algal growth, the range of temperature the microbes, marine algae and planktons able to survive and the changes to those planktons once exceed the critical temperature. Thermal effect on the biofilm, its composition and properties are discussed as well, with association of the biofilm secreting microbes, but the study related to membrane distillation unit seems to be lacking and MD biofouling factors are not fully understood. Characterization of the algae, biofilm and EPS that govern biofouling are discussed. This information not only will help in designing future studies to fill up the knowledge gaps in biofouling of membrane distillation, but also to some extent, assist in pointing out possible fouling factors and predicting the degree of biofouling in the membrane distillation unit.
  6. Cheah YT, Lakbir Singh HKK, Chan DJC
    Water Environ Res, 2021 Jan 23.
    PMID: 33484623 DOI: 10.1002/wer.1515
    Membrane distillation (MD) frequently deals with membrane biofouling caused by deposition of algal organic matter (AOM) from algal blooms, hampering the treatment efficiency. In this study, AOMs, which are soluble extracellular polymeric substance (sEPS), bounded EPS (bEPS), and internal organic matter (IOM) from three benthic species (Amphora coffeaeformis, Cylindrotheca fusiformis, and Navicula incerta) were exposed to a temperature range to resemble the MD process. Results showed that EPS had higher polysaccharide fraction than protein with 85.71%, 68.26%, and 71.91% for A. coffeaeformis, N. incerta, and C. fusiformis, respectively. Both the EPS polysaccharide and protein concentration linearly increase with temperature, but the opposite was true for IOM and high-molecular-weight (HMW) polysaccharide. At 80°C, 5812.94 μg/g out of 6304.28 μg/g polysaccharide in A. coffeaeformis was of low molecular weight (LMW); hence, these findings suggested that they were the major foulants to clog the narrow pores within virgin hydrophobic membrane, forming a conditioning layer followed by deposition of HMW and hydrophilic polysaccharides onto the macropores to cause irreversible fouling. Cell lysis occurring at higher temperature increases the total protein content about 25% within the EPS matrix, inducing membrane plugging via hydrophobic-hydrophobic interactions. Overall, the AOM composition at different temperatures will likely dictate the fouling severity in MD. PRACTITIONER POINTS: EPS production of three benthic diatoms was the highest at 80°C. EPS from diatoms consists of at least 75.29% of polysaccharides. Small molecular weight carbohydrates (<12 kDa) were potential foulants. Proteins of internal organic matter (>56%) give irreversible attachment towards membranes. A. coffeaeformis was considered as the most fouling diatoms with highest EPS amount of 6304.28 μg/g.
  7. Chua MX, Cheah YT, Tan WH, Chan DJC
    Environ Res, 2023 May 01;224:115544.
    PMID: 36822535 DOI: 10.1016/j.envres.2023.115544
    Conventional establishment of laboratory cultures of duckweed Lemna minor are prepared in beakers, Erlenmeyer flasks or Schott bottles. These conventional cultivation methods limit the available surface area for growth which then causes layering of fronds that reduces the efficiency of plants in sunlight capturing. Here, acrylic sheets were spray-coated with a superhydrophobic (SHP) beeswax suspension and these coated acrylic sheets were used as a novel cultivation platform for L. minor. L. minor was grown for 7 days in conventional glass jar which acted as the control and were compared to SHP coated acrylic (SHPA) and SHP coated acrylic with aluminium mesh centrally placed (SHPAM) at similar duration and cultivation conditions. Addition of mesh was to entrap the plantlets and fixed the plantlets' position on the growing platform. The effects of cultivation platforms on growth rate and biochemical compositions of L. minor were monitored. The highest biomass growth was obtained from SHPA cultivation where the relative growth rate (RGR) was 0.0909 ± 0.014 day-1 and the RGR was 2.17 times higher than the control. Moreover, L. minor harvested from SHPA displayed the highest values in total protein content, total carbohydrates content and crude lipid percentage. The values were 156.04 ± 12.13 mg/g, 94.75 ± 9.02 mg/g and 7.09 ± 1.14% respectively. However, the control showed the highest total chlorophyll content which was 0.7733 ± 0.042 mg/g FW. Although SHPA obtained a slightly lower chlorophyll content than the control, this growing platform is still promising as it displayed the highest growth rate as well as other biochemical composition. Hence, this study proved that the proposed method that applied superhydrophobic properties in cultivation of L. minor provided a larger surface area for L. minor to grow, which then resulted in a greater biomass production while simultaneously maintaining the quality of the biochemical compositions of duckweeds.
  8. Chong WH, Chan DJC, Liu CZ, Lim J
    Electrophoresis, 2023 Dec 03.
    PMID: 38044267 DOI: 10.1002/elps.202300042
    The spatiotemporal accuracy of microscale magnetophoresis has improved significantly over the course of several decades of development. However, most of the studies so far were using magnetic microbead composed of nanosphere particle for magnetophoretic actuation purpose. Here, we developed an in-house method for magnetic sample analysis called quadrupole magnetic steering control (QMSC). QMSC was used to study the magnetophoretic behavior of polystyrene microbeads decorated with iron oxide nanospheres-coated polystyrene microbeads (IONSs-PS) and iron oxide nanorods-coated polystyrene microbeads (IONRs-PS) under the influence of a quadrupole low field gradient. During a 4-s QMSC experiment, the IONSs-PS and IONRs-PS were navigated to perform 180° flip and 90° turn formations, and their kinematic results (2 s before and 2 s after the flip/turn) were measured and compared. The results showed that the IONRs-PS suffered from significant kinematic disproportion, translating a highly uneven amount of kinetic energy from the same magnitude of magnetic control. Combining the kinematic analysis, transmission electron microscopy micrographs, and vibrating sample magnetometry measurements, it was found that the IONRs-PS experienced higher fluid drag force and had lower consistency than the IONSs-PS due to its extensive open fractal nanorod structure on the bead surface and uneven magnetization, which was attributed to its ferrimagnetic nature.
  9. Jhonson P, Goh HW, Chan DJC, Juiani SF, Zakaria NA
    Environ Sci Pollut Res Int, 2023 Feb;30(9):24562-24574.
    PMID: 36336739 DOI: 10.1007/s11356-022-23605-5
    Bioretention systems are among the most popular stormwater best management practices (BMPs) for urban runoff treatment. Studies on plant performance using bioretention systems have been conducted, especially in developed countries with a temperate climate, such as the USA and Australia. However, these results might not be applicable in developing countries with tropical climates due to the different rainfall regimes and the strength of runoff pollutants. Thus, this study focuses on the performance of tropical plants in treating urban runoff polluted with greywater using a bioretention system. Ten different tropical plant species were triplicated and planted in 30 mesocosms with two control mesocosms without vegetation. One-way ANOVA was used to analyze the performance of plants, which were then ranked based on their performance in removing pollutants using the total score obtained for each water quality test. Results showed that vetiver topped the table with 86.4% of total nitrogen (TN) removal, 93.5% of total phosphorus (TP) removal, 89.8% of biological oxygen demand (BOD) removal, 90% of total suspended solids (TSS) removal, and 92.5% of chemical oxygen demand (COD) removal followed by blue porterweed, Hibiscus, golden trumpet, and tall sedge which can be recommended to be employed in future bioretention studies.
  10. Cheah YT, Ng BW, Tan TL, Chia ZS, Chan DJC
    Biotechnol Appl Biochem, 2023 Apr;70(2):568-580.
    PMID: 35767864 DOI: 10.1002/bab.2379
    Eicosapentaenoic acid (EPA) could be extracted from diatoms such as Amphora sp. present abundantly in the ecosystems. In view of the key environmental and nutritional factors governing the diatoms growth rate, culture conditions were optimized for the biomass yield, total lipid content, EPA yield, and fatty acid composition under two main cultivation regimes: photoautotrophic and heterotrophic. The fastest growth rate about 0.20 ± 0.02 g/L and the highest EPA yield about 9.19 ± 3.56 mg EPA/g biomass were obtained by adding 10 g/L glucose and sucrose, respectively. Under photoautotrophic culture conditions, Amphora sp. rendered higher EPA yield at 100 rpm and 16:8 light/dark cycle. Total fatty acids produced predominantly comprised of an approximate 40-70% of saturated fatty acids, followed by 10-27% of monounsaturated fatty acids and then 8-25% of polyunsaturated fatty acids. These findings were able to pave a way for huge-scale microalgal biomass production in commercial EPA production.
  11. Teng XJ, Ng WM, Chong WH, Chan DJC, Mohamud R, Ooi BS, et al.
    Langmuir, 2021 08 03;37(30):9192-9201.
    PMID: 34255525 DOI: 10.1021/acs.langmuir.1c01345
    The changes in the transport behavior of a microswimmer before and after cargo loading are crucial to understanding and control of the motion of a biohybrid microbot. In this work, we show the change in swimming behavior of biflagellated microalgae Chlamydomonas reinhardtii picking up a 4.5 μm polystyrene microbead upon collision. The microswimmer changed from linear forward motion into helical motion upon the attachment of the cargo and swam with a decreased swimming velocity. We revealed the helical motion of the microswimmer upon cargo loading due to suppression of flagella by image analysis of magnified time-lapse images of C. reinhardtii with one microbead attached at the anterior end (between the flagella). Furthered suppression on the flagellum imposed by the loading of the second cargo has led to increased oscillation per displacement traveled and decreased swimming velocity. Moreover, the microswimmer with a microbead attached at the posterior end swam with swimming velocity close to free swimming microalgae and did not exhibit helical swimming behavior. The experimental results and analysis showed that the loading location of the cargo has a great influence over the swimming behavior of the microswimmer. Furthermore, the work balance calculation and mathematical analysis based on Lighthill's model are well consistent with our experimental findings.
  12. Azwar E, Chan DJC, Kasan NA, Rastegari H, Yang Y, Sonne C, et al.
    J Hazard Mater, 2022 02 15;424(Pt A):127329.
    PMID: 34601414 DOI: 10.1016/j.jhazmat.2021.127329
    Aquatic weeds pose hazards to aquatic ecosystems and particularly the aquatic environment in shellfish aquaculture due to its excessive growth covering entire freshwater bodies, leading to environmental pollution particularly eutrophication intensification, water quality depletion and aquatic organism fatality. In this study, pyrolysis of six aquatic weed types (wild and cultured species of Salvinia sp., Lemna sp. and Spirodella sp.) were investigated to evaluate its potential to reduce and convert the weeds into value-added chemicals. The aquatic weeds demonstrated high fixed carbon (8.7-47.3 wt%), volatile matter content (39.0-76.9 wt%), H/C ratio (1.5-2.0) and higher heating value (6.6-18.8 MJ/kg), representing desirable physicochemical properties for conversion into biofuels. Kinetic analysis via Coats-Redfern integral method obtained different orders for chemical reaction mechanisms (n = 1, 1.5, 2, 3), activation energy (55.94-209.41 kJ/mol) and pre-exponential factor (4.08 × 104-4.20 × 1017 s-1) at different reaction zones (zone 1: 150-268 °C, zone 2: 268-409 °C, zone 3: 409-600 °C). The results provide useful information for design and optimization of the pyrolysis reactor and establishment of the process condition to dispose this environmentally harmful species.
  13. Wan Mahari WA, Wan Razali WA, Manan H, Hersi MA, Ishak SD, Cheah W, et al.
    Bioresour Technol, 2022 Nov;364:128085.
    PMID: 36220529 DOI: 10.1016/j.biortech.2022.128085
    Microalgae are known for containing high value compounds and its significant role in sequestering carbon dioxide. This review mainly focuses on the emerging microalgae cultivation technologies such as nanomaterials technology that can improve light distribution during microalgae cultivation, attached cultivation and co-cultivation approaches that can improve growth and proliferation of algal cells, biomass yield and lipid accumulation in microalgal. This review includes a comprehensive discussion on the use of microbubbles technology to enhance aerated bubble capacity in photobioreactor to improve microalgal growth. This is followed by discussion on the role of microalgae as phycoremediation agent in removal of contaminants from wastewater, leading to better water quality and high productivity of shellfish. The review also includes techno-economic assessment of microalgae biorefinery technology, which is useful for scaling up the microalgal biofuel production system or integrated microalgae-shellfish cultivation system to support circular economy.
Related Terms
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links