Displaying publications 1 - 20 of 25 in total

Abstract:
Sort:
  1. Ali, N.H., Borhanuddin, M. Ali, Basir, O., Hashim, F., Othman, M.L., Aker, E.
    MyJurnal
    The unified protocols are unified in application interface, models, and seamless. They generate one
    standard protocol, one world called IEC 61850. IEC 61850 integrate the security, interoperability,
    modelling, mapping to a substation, and reliability. Presently, the more expensive fiber based Ethernet
    LAN is the most prevalent technology for medium and low voltage distribution substations. To
    circumvent this problem Wireless Local Area Network (WLAN) has been investigated for its suitability
    for applications that are compliant to IEC 61850: automation and metering; control and monitoring; and
    over-current protection. In this paper the IEEE 802.11n WLAN is studied when used in various IEC
    61850 supported applications for substation automation. It also discusses the benefits of using GOOSE
    message to protect and control applications and the use of IEC 61850.
  2. Al-Medhwahi M, Hashim F, Ali BM, Sali A
    PLoS One, 2016;11(6):e0156880.
    PMID: 27257964 DOI: 10.1371/journal.pone.0156880
    The rapid expansion of wireless monitoring and surveillance applications in several domains reinforces the trend of exploiting emerging technologies such as the cognitive radio. However, these technologies have to adjust their working concepts to consider the common characteristics of conventional wireless sensor networks (WSNs). The cognitive radio sensor network (CRSN), still an immature technology, has to deal with new networks that might have different types of data, traffic patterns, or quality of service (QoS) requirements. In this paper, we design and model a new cognitive radio-based medium access control (MAC) algorithm dealing with the heterogeneous nature of the developed networks in terms of either the traffic pattern or the required QoS for the node applications. The proposed algorithm decreases the consumed power on several fronts, provides satisfactory levels of latency and spectrum utilization with efficient scheduling, and manages the radio resources for various traffic conditions. An intensive performance evaluation is conducted to study the impact of key parameters such as the channel idle time length, node density, and the number of available channels. The performance evaluation of the proposed algorithm shows a better performance than the comparable protocols. Moreover, the results manifest that the proposed algorithm is suitable for real time monitoring applications.
  3. Mohamad MH, Sali A, Hashim F, Nordin R, Takyu O
    Sensors (Basel), 2018 Dec 10;18(12).
    PMID: 30544655 DOI: 10.3390/s18124351
    This paper investigated the throughput performance of a secondary user (SU) for a random primary user (PU) activity in a realistic experimental model. This paper proposed a sensing and frame duration of the SU to maximize the SU throughput under the collision probability constraint. The throughput of the SU and the probability of collisions depend on the pattern of PU activities. The pattern of PU activity was obtained and modelled from the experimental data that measure the wireless local area network (WLAN) environment. The WLAN signal has detected the transmission opportunity length (TOL) which was analyzed and clustered into large and small durations in the CTOL model. The performance of the SU is then analyzed and compared with static and dynamic PU models. The results showed that the SU throughput in the CTOL model was higher than the static and dynamic models by almost 45% and 12.2% respectively. Furthermore, the probability of collisions in the network and the SU throughput were influenced by the value of the minimum contention window and the maximum back-off stage. The simulation results revealed that the higher contention window had worsened the SU throughput even though the channel has a higher number of TOLs.
  4. Raouf MA, Hashim F, Liew JT, Alezabi KA
    PLoS One, 2020;15(8):e0237386.
    PMID: 32790697 DOI: 10.1371/journal.pone.0237386
    The IEEE 802.11ah standard relies on the conventional distributed coordination function (DCF) as a backoff selection method. The DCF is utilized in the contention-based period of the newly introduced medium access control (MAC) mechanism, namely restricted access window (RAW). Despite various advantages of RAW, DCF still utilizes the legacy binary exponential backoff (BEB) algorithm, which suffers from a crucial disadvantage of being prone to high probability of collisions with high number of contending stations. To mitigate this issue, this paper investigates the possibility of replacing the existing exponential sequence (i.e., as in BEB) with a better pseudorandom sequence of integers. In particular, a new backoff algorithm, namely Pseudorandom Sequence Contention Algorithm (PRSCA) is proposed to update the CW size and minimize the collision probability. In addition, the proposed PRSCA incorporates a different approach of CW freezing mechanism and backoff stage reset process. An analytical model is derived for the proposed PRSCA and presented through a discrete 2-D Markov chain model. Performance evaluation demonstrates the efficiency of the proposed PRSCA in reducing collision probability and improving saturation throughput, network throughput, and access delay performance.
  5. Rahman Z, Hashim F, Rasid MFA, Othman M
    PLoS One, 2018;13(6):e0197087.
    PMID: 29874237 DOI: 10.1371/journal.pone.0197087
    Underwater Wireless Sensor Network (UWSN) has emerged as promising networking techniques to monitor and explore oceans. Research on acoustic communication has been conducted for decades, but had focused mostly on issues related to physical layer such as high latency, low bandwidth, and high bit error. However, data gathering process is still severely limited in UWSN due to channel impairment. One way to improve data collection in UWSN is the design of routing protocol. Opportunistic Routing (OR) is an emerging technique that has the ability to improve the performance of wireless network, notably acoustic network. In this paper, we propose an anycast, geographical and totally opportunistic routing algorithm for UWSN, called TORA. Our proposed scheme is designed to avoid horizontal transmission, reduce end to end delay, overcome the problem of void nodes and maximize throughput and energy efficiency. We use TOA (Time of Arrival) and range based equation to localize nodes recursively within a network. Once nodes are localized, their location coordinates and residual energy are used as a matrix to select the best available forwarder. All data packets may or may not be acknowledged based on the status of sender and receiver. Thus, the number of acknowledgments for a particular data packet may vary from zero to 2-hop. Extensive simulations were performed to evaluate the performance of the proposed scheme for high network traffic load under very sparse and very dense network scenarios. Simulation results show that TORA significantly improves the network performance when compared to some relevant existing routing protocols, such as VBF, HHVBF, VAPR, and H2DAB, for energy consumption, packet delivery ratio, average end-to-end delay, average hop-count and propagation deviation factor. TORA reduces energy consumption by an average of 35% of VBF, 40% of HH-VBF, 15% of VAPR, and 29% of H2DAB, whereas the packet delivery ratio has been improved by an average of 43% of VBF, 26% of HH-VBF, 15% of VAPR, and 25% of H2DAB. Moreover, the average end-to-end delay has been reduced by 70% of VBF, 69% of HH-VBF, 46% of VAPR, and 73% of H2DAB. Furthermore, average hope-count has been improved by 57%, 53%, 16% and 31% as compared to VBF, HHVBF, VAPR, and H2DAB, respectively. Also, propagation delay has been reduced by 34%, 30%, 15% and 23% as compared to VBF, HHVBF, VAPR, and H2DAB, respectively.
  6. T-Johari SAT, Hashim F, Ismail WI, Ali AM
    Int J Cell Biol, 2019;2019:3059687.
    PMID: 30923553 DOI: 10.1155/2019/3059687
    Combination of natural products with chemodrugs is becoming a trend in discovering new therapeutics approach for enhancing the cancer treatment process. In the present study, we aimed to investigate the cytotoxic and apoptosis induction of Gelam honey (GH) combined with or without 5-Fluorouracil (5-FU) on HT-29 cells. The cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay to assess cytotoxicity. Morphological changes and apoptosis were determined by the inverted microscope, Annexin V-FITC, and DNA fragmentation via flow cytometric analysis, respectively. Our results demonstrate that combined treatment revealed a remarkable and concentration-dependent cytotoxic effect on HT-29 cells in comparison with GH and 5-FU alone. Flow cytometry analysis showed that early apoptosis event was more pronounced in combined treatment. In addition, compared to 5-FU alone, apoptosis of HT-29 cells treated with combinations of GH and 5-FU demonstrated increasing percentages of fragmented DNA. Our results suggest that GH has a synergistic cytotoxic effect with 5-FU in HT-29 cell lines in vitro. Although the actions of the molecular mechanisms are not yet clear, the results reveal that the combination of GH and 5-FU could have the potential as a therapeutic agent.
  7. Shaukat HR, Hashim F, Shaukat MA, Ali Alezabi K
    Sensors (Basel), 2020 Apr 17;20(8).
    PMID: 32316487 DOI: 10.3390/s20082283
    Wireless sensor networks (WSNs) are often deployed in hostile environments, where an adversary can physically capture some of the sensor nodes. The adversary collects all the nodes' important credentials and subsequently replicate the nodes, which may expose the network to a number of other security attacks, and eventually compromise the entire network. This harmful attack where a single or more nodes illegitimately claims an identity as replicas is known as the node replication attack. The problem of node replication attack can be further aggravated due to the mobile nature in WSN. In this paper, we propose an extended version of multi-level replica detection technique built on Danger Theory (DT), which utilizes a hybrid approach (centralized and distributed) to shield the mobile wireless sensor networks (MWSNs) from clone attacks. The danger theory concept depends on a multi-level of detections; first stage (highlights the danger zone (DZ) by checking the abnormal behavior of mobile nodes), second stage (battery check and random number) and third stage (inform about replica to other networks). The DT method performance is highlighted through security parameters such as false negative, energy, detection time, communication overhead and delay in detection. The proposed approach also demonstrates that the hybrid DT method is capable and successful in detecting and mitigating any malicious activities initiated by the replica. Nowadays, crimes are vastly increasing and it is crucial to modify the systems accordingly. Indeed, it is understood that the communication needs to be secured by keen observation at each level of detection. The simulation results show that the proposed approach overcomes the weaknesses of the previous and existing centralized and distributed approaches and enhances the performance of MWSN in terms of communication and memory overhead.
  8. Kusrini E, Hashim F, Azmi WN, Amin NM, Estuningtyas A
    PMID: 26474244 DOI: 10.1016/j.saa.2015.09.021
    The terbium trinitrate.trihydrate.18-crown ether-6, Tb(NO3)3(OH2)3.(18C6) complex has been characterized by elemental analysis, photoluminescence and single X-ray diffraction. The IC50 values were determined based on MTT assay while light and fluorescence microscopy imaging were employed to evaluate the cellular morphological changes. Alkaline comet assay was performed to analyze the DNA damage. The photoluminescence spectrum of the Tb complex excited at 325 nm displayed seven luminescence peaks corresponding to the (5)D4→(7)F(0, 1, 2, 3, 4, 5, 6) transitions. The cytotoxicity and genotoxicity studies indicated that the Tb(NO3)3(OH2)3.(18C6) complex and its salt form as well as the 18C6 molecule have excellent anti-amoebic activity with very low IC50 values are 7, 2.6 and 1.2 μg/mL, respectively, with significant decrease (p<0.05) in Acanthamoeba viability when the concentration was increased from 0 to 30 μg/mL. The mode of cell death in Acanthamoeba cells following treatment with the Tb complex was apoptosis. This is in contrast to the Tb(NO3)3.6H2O salt- and 18C6 molecule-treated Acanthamoeba, which exhibited necrotic type cells. The percentage of DNA damage following treatment with all the compounds at the IC25 values showed high percentage of type 1 with the % nuclei damage are 14.15±2.4; 46.00±4.2; 36.36±2.4; 45.16±0.6%, respectively for untreated, treated with Tb complex, Tb salt and 18C6 molecule. The work features promising potential of Tb(NO3)3(OH2)3.(18C6) complex as anti-amoebic agent, representing a therapeutic option for Acanthamoeba keratitis infection.
  9. T-Johari SAT, Hashim F, Ismail WIW, Ali AM
    Int J Cell Biol, 2019 07 18;2019:9050626.
    PMID: 31396280 DOI: 10.1155/2019/9050626
    [This corrects the article DOI: 10.1155/2019/3059687.].
  10. Khalid H, Hashim SJ, Ahmad SMS, Hashim F, Chaudhary MA
    Sensors (Basel), 2021 Feb 18;21(4).
    PMID: 33670675 DOI: 10.3390/s21041428
    The development of the industrial Internet of Things (IIoT) promotes the integration of the cross-platform systems in fog computing, which enable users to obtain access to multiple application located in different geographical locations. Fog users at the network's edge communicate with many fog servers in different fogs and newly joined servers that they had never contacted before. This communication complexity brings enormous security challenges and potential vulnerability to malicious threats. The attacker may replace the edge device with a fake one and authenticate it as a legitimate device. Therefore, to prevent unauthorized users from accessing fog servers, we propose a new secure and lightweight multi-factor authentication scheme for cross-platform IoT systems (SELAMAT). The proposed scheme extends the Kerberos workflow and utilizes the AES-ECC algorithm for efficient encryption keys management and secure communication between the edge nodes and fog node servers to establish secure mutual authentication. The scheme was tested for its security analysis using the formal security verification under the widely accepted AVISPA tool. We proved our scheme using Burrows Abdi Needham's logic (BAN logic) to prove secure mutual authentication. The results show that the SELAMAT scheme provides better security, functionality, communication, and computation cost than the existing schemes.
  11. Kusrini E, Sabira K, Hashim F, Abdullah NA, Usman A, Putra N, et al.
    Acta Ophthalmol, 2021 Mar;99(2):e178-e188.
    PMID: 32701190 DOI: 10.1111/aos.14541
    PURPOSE: Contact lenses have direct contact with the corneal surface and can induce sight-threatening infection of the cornea known as Acanthamoeba keratitis. The objective of this study was to evaluate the dysprosium-based nanoparticles (Dy-based NPs), namely Fe3 O4 -PEG-Dy2 O3 nanocomposites and Dy(OH)3 nanorods, as an active component against Acanthamoeba sp., as well as the possibility of their loading onto contact lenses as the drug administering vehicle to treat Acanthamoeba keratitis (AK).

    METHODS: The Dy-based NPs were synthesized, and they were loaded onto commercial contact lenses. The loading content of the NPs and their release kinetics was determined based on the absorbance of their colloidal solution before and after soaking the contact lenses. The cytotoxicity of the NPs was evaluated, and the IC50 values of their antiamoebic activity against Acanthamoeba sp. were determined by MTT colorimetric assay, followed by observation on the morphological changes by using light microscopy. The mechanism of action of the Dy-based NPs against Acanthamoeba sp. was evaluated by DNA laddering assays.

    RESULTS: The loading efficiencies of the Dy-based NPs onto the contact lens were in the range of 30.6-36.1% with respect to their initial concentration (0.5 mg ml-1 ). The Dy NPs were released with the flux approximately 5.5-11 μg cm-2  hr-1 , and the release was completed within 10 hr. The emission of the NPs consistently showed a peak at 575 nm due to Dy3+ ion, offering the possible monitoring and tracking of the NPs. The SEM images indicated the NPs are aggregated on the surface of the contact lenses. The DNA ladder assay suggested that the cells underwent DNA fragmentation, and the cell death was due most probably to necrosis, rather than apoptosis. The cytotoxicity assay of Acanthamoeba sp. suggested that Fe3 O4 -PEG, Fe3 O4 -PEG-Dy2 O3 , Dy(NO3 )3 .6H2 O and Dy(OH)3 NPs have an antiamoebic activity with the IC50 value being 4.5, 5.0, 9.5 and 22.5 μg ml-1 , respectively.

    CONCLUSIONS: Overall findings in this study suggested that the Dy-based NPs can be considered as active antiamoebic agents and possess the potential as drugs against Acanthamoeba sp. The NPs could be loaded onto the contact lenses; thus, they can be potentially utilized to treat Acanthamoeba keratitis (AK).

  12. Raja Abdullah RS, Abdul Aziz NH, Abdul Rashid NE, Ahmad Salah A, Hashim F
    Sensors (Basel), 2016 Sep 29;16(10).
    PMID: 27690051
    The passive bistatic radar (PBR) system can utilize the illuminator of opportunity to enhance radar capability. By utilizing the forward scattering technique and procedure into the specific mode of PBR can provide an improvement in target detection and classification. The system is known as passive Forward Scattering Radar (FSR). The passive FSR system can exploit the peculiar advantage of the enhancement in forward scatter radar cross section (FSRCS) for target detection. Thus, the aim of this paper is to show the feasibility of passive FSR for moving target detection and classification by experimental analysis and results. The signal source is coming from the latest technology of 4G Long-Term Evolution (LTE) base station. A detailed explanation on the passive FSR receiver circuit, the detection scheme and the classification algorithm are given. In addition, the proposed passive FSR circuit employs the self-mixing technique at the receiver; hence the synchronization signal from the transmitter is not required. The experimental results confirm the passive FSR system's capability for ground target detection and classification. Furthermore, this paper illustrates the first classification result in the passive FSR system. The great potential in the passive FSR system provides a new research area in passive radar that can be used for diverse remote monitoring applications.
  13. Abdullah NA, Zullkiflee N, Zaini SNZ, Taha H, Hashim F, Usman A
    Saudi J Biol Sci, 2020 Nov;27(11):2902-2911.
    PMID: 33100845 DOI: 10.1016/j.sjbs.2020.09.014
    The present study focused on the evaluation of phytochemical properties, essential mineral elements, and heavy metals contained in raw propolis produced by stingless bees Geniotrigona thoracica, Heterotrigona itama, and Tetrigona binghami found in the same ecological conditions and environment in Brunei Darussalam. The results indicated that propolis of the three stingless bee species mainly consisted of lipids (45.60-47.86%) and very low carbohydrate (0.17-0.48%) and protein contents (0.18-1.18%). The propolis was rich in mineral elements, thus good sources of minerals, while they contained low concentrations of all heavy metals. Propolis of the different bee species could be distinguished based on their mineral compositions. The vibrational and absorption spectra suggested that propolis contains π-conjugated aliphatic and aromatic compounds as well as aromatic acids having amine, ester, carbonyl, alkyl, and hydroxyl functional groups which might be attributed to the presence of phenolic and flavonoid compounds. The antioxidant capacity of the propolis, based on radical scavenging activity of their ethanol extract, was in line with their total phenolic content. The ethanol extract of the propolis also showed antimicrobial activities against four bacterial strains (Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa). The propolis showed slightly higher antibacterial activity against Gram-positive (B. subtilis and S. aureus) bacteria, indicating that the antimicrobial active compounds could be associated with flavonoids, which were quantified to be approximately comparable in all the propolis.
  14. Khalid H, Hashim SJ, Ahmad SMS, Hashim F, Akmal Chaudhary M
    PeerJ Comput Sci, 2021;7:e714.
    PMID: 34977343 DOI: 10.7717/peerj-cs.714
    In heterogeneous wireless networks, the industrial Internet of Things (IIoT) is an essential contributor to increasing productivity and effectiveness. However, in various domains, such as industrial wireless scenarios, small cell domains, and vehicular ad hoc networks, an efficient and stable authentication algorithm is required (VANET). Specifically, IoT vehicles deal with vast amounts of data transmitted between VANET entities in different domains in such a large-scale environment. Also, crossing from one territory to another may have the connectivity services down for a while, leading to service interruption because it is pervasive in remote areas and places with multipath obstructions. Hence, it is vulnerable to specific attacks (e.g., replay attacks, modification attacks, man-in-the-middle attacks, and insider attacks), making the system inefficient. Also, high processing data increases the computation and communication cost, leading to an increased workload in the system. Thus, to solve the above issues, we propose an online/offline lightweight authentication scheme for the VANET cross-domain system in IIoT to improve the security and efficiency of the VANET. The proposed scheme utilizes an efficient AES-RSA algorithm to achieve integrity and confidentiality of the message. The offline joining is added to avoid remote network intrusions and the risk of network service interruptions. The proposed work includes two different significant goals to achieve first, then secure message on which the data is transmitted and efficiency in a cryptographic manner. The Burrows Abdi Needham (BAN logic) logic is used to prove that this scheme is mutually authenticated. The system's security has been tested using the well-known AVISPA tool to evaluate and verify its security formally. The results show that the proposed scheme outperforms the ID-CPPA, AAAS, and HCDA schemes by 53%, 55%, and 47% respectively in terms of computation cost, and 65%, 83%, and 40% respectively in terms of communication cost.
  15. Mohammed Fitri TF, Osman AF, Alosime EM, Othman R, Hashim F, Abdullah MAA
    Polymers (Basel), 2021 Dec 12;13(24).
    PMID: 34960896 DOI: 10.3390/polym13244345
    Poly(ethylene-vinyl acetate) (PEVA) nanocomposite incorporating dual clay nanofiller (DCN) of surface modified montmorillonite (S-MMT) and bentonite (Bent) was studied for biomedical applications. In order to overcome agglomeration of the DCN, the S-MMT and Bent were subjected to a physical treatment prior to being mixed with the copolymer to form nanocomposite material. The S-MMT and Bent were physically treated to become S-MMT(P) and Bent(pH-s), respectively, that could be more readily dispersed in the copolymer matrix due to increments in their basal spacing and loosening of their tactoid structure. The biocompatibility of both nanofillers was assessed through a fibroblast cell cytotoxicity assay. The mechanical properties of the neat PEVA, PEVA nanocomposites, and PEVA-DCN nanocomposites were evaluated using a tensile test for determining the best S-MMT(P):Bent(pH-s) ratio. The results were supported by morphological studies by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Biostability evaluation of the samples was conducted by comparing the ambient tensile test data with the in vitro tensile test data (after being immersed in simulated body fluid at 37 °C for 3 months). The results were supported by surface degradation analysis. Our results indicate that the cytotoxicity level of both nanofillers reduced upon the physical treatment process, making them safe to be used in low concentration as dual nanofillers in the PEVA-DCN nanocomposite. The results of tensile testing, SEM, and TEM proved that the ratio of 4:1 (S-MMT(P):Bent(pH-s)) provides a greater enhancement in the mechanical properties of the PEVA matrix. The biostability assessment indicated that the PEVA-DCN nanocomposite can achieve much better retention in tensile strength after being subjected to the simulated physiological fluid for 3 months with less surface degradation effect. These findings signify the potential of the S-MMT(P)/Bent(pH-s) as a reinforcing DCN, with simultaneous function as biostabilizing agent to the PEVA copolymer for implant application.
  16. Yusoff M, Hassan BN, Ikhwanuddin M, Sheriff SM, Hashim F, Mustafa S, et al.
    Cryobiology, 2018 04;81:168-173.
    PMID: 29355519 DOI: 10.1016/j.cryobiol.2018.01.005
    This study developed the cryopreservation of brown-marbled grouper spermatozoa for practical application. We examined 32 cryodiluents, developed from four types of cryoprotectants [propylene glycol (PG), dimethyl-sulphoxide (Me2SO), dimethyl-acetamide (DMA) and ethylene glycol (EG)] at four concentrations of 5, 10, 15 and 20% in combination with two extenders [Fetal bovine serum (FBS) and artificial seminal plasma (ASP). Cooling rates were examined by adjusting the height of straws (2.5-12.5 cm) from the liquid nitrogen (LN) vapor and cooled for 5 min before immersion into LN. DNA laddering was used to detect DNA damage in cryopreserved sperm. In fertilization trials, 0.5 g of eggs was mixed with cryopreserved sperm stored for 30 days in LN. The best motility of post-thaw sperm was achieved using 15% PG + 85% FBS (76.7 ± 8.8%); 10% PG + 90% FBS was also effective as cryodiluent. Generally, FBS gave better post-thaw motility compared to ASP. The optimum cooling rate was at 17.6 °C min-1 obtained by freezing at the height of 7.5 cm surface of LN. The results obtained showed that cryopreserved sperm of brown-marbled grouper suffered slight DNA fragmentation, which resulted in significantly lower motility. However, the fertilization (90.9 ± 0.5%), hatching (64.5 ± 4.1%) and deformity rates (3.8 ± 0.2%) obtained from cryopreserved sperm showed no significant difference with fresh sperm. These findings show that the developed protocol for cryopreservation of brown-marbled grouper sperm was viable and will be useful for successful breeding and seed production of brown-marbled grouper.
  17. Osman AF, M Fitri TF, Rakibuddin M, Hashim F, Tuan Johari SAT, Ananthakrishnan R, et al.
    Mater Sci Eng C Mater Biol Appl, 2017 May 01;74:194-206.
    PMID: 28254285 DOI: 10.1016/j.msec.2016.11.137
    Polymer-clay based nanocomposites are among the attractive materials to be applied for various applications, including biomedical. The incorporation of the nano sized clay (nanoclay) into polymer matrices can result in their remarkable improvement in mechanical, thermal and barrier properties as long as the nanofillers are well exfoliated and dispersed throughout the matrix. In this work, exfoliation strategy through pre-dispersing process of the organically modified montmorillonite (organo-MMT) nanofiller was done to obtain ethyl vinyl acetate (EVA) nanocomposite with improved flexibility, toughness, thermal stability and biostability. Our results indicated that the degree of organo-MMT exfoliation affects its cytotoxicity level and the properties of the resulting EVA nanocomposite. The pre-dispersed organo-MMT by ultrasonication in water possesses higher degree of exfoliation as compared to its origin condition and significantly performed reduced cytotoxicity level. Beneficially, this nanofiller also enhanced the EVA flexibility, thermal stability and biostability upon the in vitro exposure. We postulated that these were due to plasticizing effect and enhanced EVA-nanofiller interactions contributing to more stable chemical bonds in the main copolymer chains. Improvement in copolymer flexibility is beneficial for close contact with human soft tissue, while enhancement in toughness and biostability is crucial to extend its life expectancy as insulation material for implantable device.
  18. Kusrini E, Hashim F, Gunawan C, Mann R, Azmi WNNWN, Amin NM
    Parasitol Res, 2018 May;117(5):1409-1417.
    PMID: 29532220 DOI: 10.1007/s00436-018-5814-x
    This work investigated the anti-amoebic activity of two samarium (Sm) complexes, the acyclic complex [bis(picrato)(pentaethylene glycol)samarium(III)] picrate-referred to as [Sm(Pic)2(EO5)](Pic)-and the cyclic complex [bis(picrato)(18-crown-6)samarium(III)] picrate-referred to as [Sm(Pic)2(18C6)](Pic). Both Sm complexes caused morphological transformation of the protozoa Acanthamoeba from its native trophozoite form carrying a spine-like structure called acanthopodia, to round-shaped cells with loss of the acanthopodia structure, a trademark response to environmental stress. Further investigation, however, revealed that the two forms of the Sm complexes exerted unique cytotoxicity characteristics. Firstly, the IC50 of the acyclic complex (0.7 μg/mL) was ~ 10-fold lower than IC50 of the cyclic Sm complex (6.5 μg/mL). Secondly, treatment of the Acanthamoeba with the acyclic complex caused apoptosis of the treated cells, while the treatment with the cyclic complex caused necrosis evident by the leakage of the cell membrane. Both treatments induced DNA damage in Acanthamoeba. Finally, a molecular docking simulation revealed the potential capability of the acyclic complex to form hydrogen bonds with profilin-a membrane protein present in eukaryotes, including Acanthamoeba, that plays important roles in the formation and degradation of actin cytoskeleton. Not found for the cyclic complex, such potential interactions could be the underlying reason, at least in part, for the much higher cytotoxicity of the acyclic complex and also possibly, for the observed differences in the cytotoxicity traits. Nonetheless, with IC50 values of
  19. Ogiemwonyi O, Alam MN, Hago IE, Azizan NA, Hashim F, Hossain MS
    Heliyon, 2023 Jun;9(6):e16524.
    PMID: 37274640 DOI: 10.1016/j.heliyon.2023.e16524
    Developing nations have motivated contemporary manufacturing companies to embrace green innovation and focus on smart technology that is sustainable to harness the growing economy and uplift the people. Although, scientific research in this direction has been neglected, and at the same time there are challenges to the attainment while meeting the need of the people. This study aims to investigate the impact of Industry 4.0, open innovation and green innovation performance on green innovation behaviour. To this end, a theoretical model was established. A quantitative research approach was applied in which survey data were utilized to capture 247 responses from different manufacturing companies in Malaysia. The model was tested using SmartPLSver3.0 to measure the structural relationship between variables. The findings indicate that Industry 4.0 and green innovation performance positively impact green innovation behaviour, compared to open innovation which has no impact. The impact of green innovation performance is found to be stronger when compared to Industry 4.0 and open innovation. Likewise, green innovation performance exhibits a substantial mediating impact between the exogenous variables and green innovation behaviour. The policy implication and conclusions are further discussed in the last section of the study.
  20. Manisekaran T, Wan M Khairul, Foong YD, Tuan Johari SAT, Hashim F, Rahamathullah R, et al.
    Chemosphere, 2024 Sep 02.
    PMID: 39233293 DOI: 10.1016/j.chemosphere.2024.143220
    The demand for developing bioindicators to assess environmental pollution has increased significantly due to the awareness of potential threats of diseases. Herein, the eukaryotic ubiquitous microorganism Acanthamoeba sp. was used as a bioindicator to explore further the influence of functionalized organic molecules containing -C≡C- and -CH=N- moieties prior application in the potential electronic components. The acetylide and hybrid acetylide-imine derivatives (FYD3A, FYD4B, and FYD4C) were tested for their cytotoxicity potentials based on dose-response analysis, morphological observation, and mode of cell death assessment on Acanthamoeba sp. (environmental-isolate). The biological activities of optimized compounds were evaluated by HOMO-LUMO energy gap and MEP analysis. The determination of the IC50 value through the MTT assay showed functionalized organic molecules of FYD3A, FYD4B, and FYD4C, revealing the inhibition growth of Acanthamoeba sp. with IC50 values in the 3.515 - 3.845 μg/mL range. Morphological observation displayed encystment with cellular agglutination and overall cell shrinkage. AO/PI-stained moieties-treated Acanthamoeba sp. cells appeared with shades of red to orange in necrotic Acanthamoeba cells whilst green to yellow apoptotic Acanthamoeba cells when compared to entirely green fluorescence untreated cells. Moreover, the results of the mitochondrial membrane potential (MMP) assay demonstrate the integrity and functionality potential of the mitochondrial membrane in cells, where a decrease in the MMP assay is linked to apoptosis. This study confirmed that the functionalized organic molecule featuring acetylide and its designated acetylide-imine moieties exhibit cytotoxicity towards the Acanthamoeba sp. by apoptotic and necrotic mode of cell death. This indicates that seeping these derivatives as electronic components can lead to the leaching of hazardous chemicals and contribute to environmental pollution that negatively affects the ecosystem. This study proposes the selection of efficient systems and elements for functionalized organic molecules that are safe to be released into the environment.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links