Displaying publications 1 - 20 of 42 in total

Abstract:
Sort:
  1. Sivasothy Y, Loo KY, Leong KH, Litaudon M, Awang K
    Phytochemistry, 2016 Feb;122:265-269.
    PMID: 26712615 DOI: 10.1016/j.phytochem.2015.12.007
    A dimeric acylphenol and a potent α-glucosidase inhibitor, giganteone D (IC50 5.05μM), was isolated and characterized from the bark of Myristica cinnamomea King. The bark also yielded an acylphenol with an unprecedented skeleton for which the name cinnamomeone A (IC50 358.80μM) was proposed. Their structures were established by means of NMR and MS spectrometric analyses. The Lineweaver-Burk plot of giganteone D indicated that it was a mixed-type inhibitor. This is the first report on the α-glucosidase inhibiting potential of acylphenols.
  2. Leong KH, Tan LL, Mustafa AM
    Chemosphere, 2007 Jan;66(6):1153-9.
    PMID: 17027062
    In Malaysia, rivers are the main source of public water supplies. This study was conducted from 2002 to 2003 to determine the levels of selected organochlorine and organophosphate pesticides in the Selangor River in Malaysia. Surface water samples have been collected seasonally from nine sites along the river. A liquid-liquid extraction followed by gas chromatography-mass spectrometry technique was used to determine the trace levels of these pesticide residues. The organochlorine pesticides detected were lindane, heptachlor, endosulfan, dieldrin, endosulfan sulfate, o,p'-DDT, p,p'-DDT, o,p'-DDE and p,p'-DDE whereas for organophosphate pesticides, they were chlorpyrifos and diazinon. At the river upstream where a dam is located for public water supply, incidents of pesticide levels exceeding the European Economic Community Directive of water quality standards have occurred. Furthermore, the wetland ecosystems located at the downstream of the river which houses the fireflies community is being threatened by occasional pesticide levels above EPA limits for freshwater aquatic organisms. The occurrence of these residual pesticides in the Selangor River can be attributed to the intense agriculture and urban activity.
  3. Leong KH, Chu HY, Ibrahim S, Saravanan P
    Beilstein J Nanotechnol, 2015;6:428-37.
    PMID: 25821683 DOI: 10.3762/bjnano.6.43
    Freely assembled palladium nanoparticles (Pd NPs) on titania (TiO2) nano photocatalysts were successfully synthesized through a photodeposition method using natural sunlight. This synthesized heterogeneous photocatalyst (Pd/TiO2) was characterized through field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), BET surface area, UV-vis diffuse reflectance spectra (UV-DRS), Raman and photoluminescence (PL) analyses. The simple and smart synthesis anchored well the deposition with controlled Pd NPs size ranging between 17 and 29 nm onto the surface of TiO2. Thus, it gives the characteristic for Pd NPs to absorb light in the visible region obtained through localized surface plasmon resonance (LSPRs). Apparently, the photocatalytic activity of the prepared photocatalysts was evaluated by degrading the endocrine disrupting compound (EDC) amoxicillin (AMX) excited under an artificial visible light source. In the preliminary run, almost complete degradation (97.5%) was achieved in 5 h with 0.5 wt % Pd loading and the degradation followed pseudo-first-order kinetics. The reusability trend proved the photostability of the prepared photocatalysts. Hence, the study provides a new insight about the modification of TiO2 with noble metals in order to enhance the absorption in the visible-light region for superior photocatalytic performance.
  4. Koh ET, Seow A, Leong KH, Chng HH
    Lupus, 1997;6(1):27-31.
    PMID: 9116715 DOI: 10.1177/096120339700600104
    We analysed the causes of 67 deaths, over a 4 y period, in our oriental population with systemic lupus erythematosus (SLE). The median disease duration was 48 +/- 60.5 months (range 1-250 months). The mean age at diagnosis and death were 30 and 35.1 y respectively. SLE alone accounted for death in 30 patients (44.8%), infection in 27 (40.3%), pulmonary embolism in 5 (7.5%), malignancy in 4 (5.9%) and rheumatic heart disease in 1 (1.5%). The major organ involvement in those with active disease at death were SLE related thrombocytopenia (n = 23/44, 52.3%), nephritis (n = 21/44), 47.7%), cerebral lupus (n = 16/44, 36.4%), and pulmonary haemorrhage (n = 12/44, 27.3%). As in other series, SLE and infection were the principal causes of death in our population. During this 4 y period, there was no late death due to atherosclerosis.
    Study site: Tan Tock Seng Hospital (TTSH), Singapore
  5. Usuda S, Masukawa N, Leong KH, Okada K, Onuki Y
    Chem Pharm Bull (Tokyo), 2021;69(9):896-904.
    PMID: 34470954 DOI: 10.1248/cpb.c21-00427
    This study investigated the effect of manufacturing process variables of mini-tablets, in particular, the effect of process variables concerning fluidized bed granulation on tablet weight variation. Test granules were produced with different granulation conditions according to a definitive screening design (DSD). The five evaluated factors assigned to DSD were: the grinding speed of the sample mill at the grinding process of the active pharmaceutical ingredient (X1), microcrystalline cellulose content in granules (X2), inlet air temperature (X3), binder concentration (X4) and the spray speed of the binder solution (X5) at the granulation process. First, the relationships between the evaluated factors and the granule properties were investigated. As a result of the DSD analysis, the mode of action of granulation parameters on the granule properties was fully characterized. Subsequently, the variation in tablet weight was examined. In addition to mini-tablets (3 mm diameter), this experiment assessed regular tablets (8 mm diameter). From the results for regular tablets, the variation in tablet weight was affected by the flowability of granules. By contrast, regarding the mini-tablets, no significant effect on the variation of tablet weight was found from the evaluated factors. From this result, this study further focused on other important factors besides the granulation process, and then the effect of the die-hole position of the multiple-tip tooling on tablet weight variation was proven to be significant. Our findings provide a better understanding of manufacturing mini-tablets.
  6. Loo KY, Leong KH, Sivasothy Y, Ibrahim H, Awang K
    Chem Biodivers, 2019 Jun;16(6):e1900032.
    PMID: 30957403 DOI: 10.1002/cbdv.201900032
    The inhibition of carbohydrate-hydrolyzing enzymes in human digestive organs is crucial in controlling blood sugar levels, which is important in treating type 2 diabetes. In the current study, pahangensin A (1), a bis-labdanic diterpene characterized previously in the rhizomes of Alpinia pahangensis Ridl., was identified as an active dual inhibitor for α-amylase (IC50 =114.80 μm) and α-glucosidase (IC50 =153.87 μm). This is the first report on the dual α-amylase and α-glucosidase inhibitory activities of a bis-labdanic diterpene. The Lineweaver-Burk plots of compound 1 indicate that it is a mixed-type inhibitor with regard to both enzymes. Based on molecular docking studies, compound 1 docked in a non-active site of both enzymes. The dual inhibitory activity of compound 1 makes it a suitable natural alternative in the treatment of type 2 diabetes.
  7. Awang K, Loong XM, Leong KH, Supratman U, Litaudon M, Mukhtar MR, et al.
    Fitoterapia, 2012 Dec;83(8):1391-5.
    PMID: 23098876 DOI: 10.1016/j.fitote.2012.10.004
    A study on the leaves of Aglaia exima led to the isolation of one new and seven known compounds: six triterpenoids and two steroids. Their structures were elucidated and analyzed mainly by using spectroscopic methods; 1D and 2D NMR, mass spectrometry, UV spectrometry and X-ray. All the triterpenoids and steroids were measured in vitro for their cytotoxic activities against eight cancer cell lines; lung (A549), prostate (DU-145), skin (SK-MEL-5), pancreatic (BxPC-3), liver (Hep G2), colon (HT-29), breast (MCF-7) and (MDA-MB-231). The new cycloartane triterpenoid, 24(E)-cycloart-24-ene-26-ol-3-one 1, showed potent cytotoxic activity against colon (HT-29) cancer cell line (IC(50) 11.5μM).
  8. Thumboo J, Fong KY, Chan SP, Leong KH, Feng PH, Thio ST, et al.
    Lupus, 1999;8(7):514-20.
    PMID: 10483028 DOI: 10.1191/096120399678840747
    OBJECTIVE: To validate the Medical Outcomes Study Family and Marital Functioning Measures (FMM and MFM) in a multi-ethnic, urban Asian population in Singapore.
    METHODS: English speaking Chinese, Malay or Indian SLE patients (n=120) completed a self-administered questionnaire containing the FFM and MFM at baseline, after 2 weeks and after 6 months. Lupus activity, disease-related damage and quality of life were assessed using the British Isles Lupus Assessment Group (BILAG), Systemic Lupus International Collaborating Clinics/American College of Rheumatology (SLICC/ACR) Damage Index and SF-36 Health Survey respectively. Scale psychometric properties were assessed through factor analysis, Cronbach's alpha, quantifying test-retest differences and known-groups construct validity.
    RESULTS: Factor analysis of scores obtained at baseline and after 6 months identified 3 factors corresponding to the FFM (1 factor) and the MFM (2 factors). Both scales showed acceptable internal consistency, with Cronbach's alpha of 0.95 for the FFM and 0.70 for the MFM. Mean (s.d.) test-retest differences were -0.31 (3.82) points for the FFM and -0.70 (4.26) points for the MFM. Eleven out of 13 a priori hypotheses relating both the FFM and MFM to demographic, disease and quality of life variables were confirmed, supporting the construct validity of these scales.
    CONCLUSION: The FFM and MFM are valid and reliable measures of family and marital functioning in a multi-ethnic cohort of Asian SLE patients in Singapore.
  9. Koh LK, Saw SM, Lee JJ, Leong KH, Lee J, National Working Committee on Osteoporosis
    Osteoporos Int, 2001;12(4):311-8.
    PMID: 11420781
    In this population-based study, we determined the incidence rates of hip fracture among Singapore residents aged 50 years and above. Information was obtained from a centralized database system which captured admissions with the primary diagnosis of a closed hip fracture (ICD-9 codes 820, 820.0, 820.2 and 820.8, n = 12,927) from all health care establishments in the country from 1991 to 1998 inclusive. After removing duplicates, hospital transfers, readmissions and non-acute care admissions, the total number of hip fractures was 9406. Based on the national population census 1990 (n = 464,100) and yearly population estimates, the age-adjusted hip fracture rates for 1991-1998 (per 100,000) were 152 in men and 402 in women. This was 1.5 and over 5 times higher than corresponding rates in the 1960s. From 1991 to 1998, these hip fracture rates tended to increase by 0.7% annually in men and by 1.2% annually in women. Among the three major racial groups, in men, the Chinese had significantly higher age-adjusted hip fracture rates (per 100,000): 168 (95% confidence interval (CI) 158-178) compared with 128 (95% CI 105-152) for Indians and 71 (95% CI 54-88) for Malays. A similar pattern occurred in women: 410 (95% CI 395-425), for Chinese compared with 361 (95% CI 290-432) for Indians and 264 (95% CI 225-303) for Malays. Since the 1960s, the main increases in hip fracture rates have been seen in the Chinese and Malays, with the rates in Indians appearing to decrease. Hip fracture incidence rates in Singapore have risen rapidly over the past 30-40 years, particularly in women, and are now among the highest in Asia. Significant racial differences in hip fracture rates occur within the same community. Time trends in hip fracture rates differed between races.
  10. Leong KH, Mahdzir MA, Din MF, Awang K, Tanaka Y, Kulkeaw K, et al.
    Phytomedicine, 2017 Mar 15;26:11-21.
    PMID: 28257660 DOI: 10.1016/j.phymed.2016.12.018
    BACKGROUND: Leukaemia stem cells (LSC) have been associated with disease relapse and chemotherapy resistance. Betulonic acid (BA), a pentacyclic lupane-type triterpenoid, was reported to exhibit cytotoxicity toward various cancer cells and to be capable of inducing intrinsic apoptosis in solid tumours. However, the in vitro and in vivo apoptotic effects of BA against LSC remain unknown.

    HYPOTHESIS/PURPOSE: We aimed to determine whether BA isolated from bark of Walsura pinnata Hassk (Meliaceae) has pro-apoptotic effects on LSC in in vitro and in vivo models.

    STUDY DESIGN/METHODS: The population of high purity LSC was isolated from the Kasumi-1 cell line using magnetic sorting and characterised by flow cytometry. Cell viability was assessed using the MTS assay to examine dose- and time-dependent effects. The colony formation assay was performed in MethoCult® H4435 enriched media. Apoptosis was analysed using Annexin-V and propidium iodide staining, mitochondrial transmembrane potential was studied using JC-1 staining, and expression of apoptosis related genes (BAX, Bcl-2 and survivin) was evaluated by real time-polymerase chain reaction (RT-PCR). Caspase 3/7 and 9 activities were monitored through Promega Caspase-Glo® over a period of 24h. The in vivo antileukaemia activity was evaluated using LSC xenotransplanted zebrafish, observed for DNA fragmentation from apoptosis by TUNEL assay.

    RESULTS: BA maintained its potency against the LSC population in comparison to parental Kasumi-1 cells (fold differences ≤ 1.94) over various treatment time points and significantly inhibited the formation of colonies by LSC. Apoptosis was triggered by BA through the upregulation of BAX and suppression of Bcl-2 and survivin genes with the loss of mitochondrial transmembrane potential, leading to the activation of caspase 9 followed by downstream caspase 3/7. BA was able to suppressed leukaemia formation and induced apoptosis in LSC xenotransplanted zebrafish.

    CONCLUSIONS: The results demonstrate that BA inhibited the proliferative and colonogenic properties of LSC. BA induced apoptosis in LSC through the mitochondria pathway and was effective in the in vivo zebrafish model. Therefore, BA could be a lead compound for further development into a chemotherapy agent against LSC.

  11. Cheah FK, Leong KH, Thomas NF, Chin HK, Ariffin A, Awang K
    Apoptosis, 2018 Jun;23(5-6):329-342.
    PMID: 29754265 DOI: 10.1007/s10495-018-1457-8
    Resveratrol, a naturally occurring polyphenolic antioxidant, is a potential chemoprophylactic agent for various cancers, including colorectal cancer. Although emerging evidence continually suggests that a number of resveratrol derivatives may be better cancer chemopreventive candidates than resveratrol, studies on the mechanism of action of these derivatives are limited. This is the first study which investigates the mechanism underlying the cytotoxic effect of a synthesized resveratrol analogue, (E)-N-(2-(4-methoxystyryl) phenyl) furan-2-carboxamide (CS) on colorectal cancer. Previously, our group reported a series of synthesized resveratrol analogues, which showed cytotoxicity against a panel of cancer cell lines, in particular on colon cancer cells. In this study, we further discovered that CS also exerts a potent suppressive effect on HCT116 colorectal cancer cells. In contrast, normal colon cells (CCD-112 Con) were not sensitive to CS up to 72 h post treatment. CS caused cytotoxicity in HCT116 cells through several apoptotic events including activation of the Fas death receptor, FADD, caspase 8, caspase 3, caspase 9, and cleaved PARP, which occurred alongside cell cycle arrest from the up-regulation of p53 and p21. The results show that CS causes apoptosis via the activation of an extrinsic pathway leading to caspase activation and cell cycle arrest from activated p53. These findings suggest that CS may be a potential candidate for development as an anti-tumor agent in the future.
  12. Haque AKMM, Leong KH, Lo YL, Awang K, Nagoor NH
    Phytomedicine, 2017 Jul 15;31:1-9.
    PMID: 28606510 DOI: 10.1016/j.phymed.2017.05.002
    BACKGROUND: The compound, 1'-S-1'-acetoxychavicol acetate (ACA), isolated from the rhizomes of a Malaysian ethno-medicinal plant, Alpinia conchigera Griff. (Zingiberaceae), was previously shown to have potential in vivo antitumour activities. In the development of a new drug entity, potential interactions of the compound with the cytochrome P450 superfamily metabolizing enzymes need to be ascertain.

    PURPOSE: The concomitant use of therapeutic drugs may cause potential drug-drug interactions by decreasing or increasing plasma levels of the administered drugs, leading to a suboptimal clinical efficacy or a higher risk of toxicity. Thus, evaluating the inhibitory potential of a new chemical entity, and to clarify the mechanism of inhibition and kinetics in the various CYP enzymes is an important step to predict drug-drug interactions.

    STUDY DESIGN: This study was designed to assess the potential inhibitory effects of Alpinia conchigera Griff. rhizomes extract and its active constituent, ACA, on nine c-DNA expressed human cytochrome P450s (CYPs) enzymes using fluorescent CYP inhibition assay.

    METHODS/RESULTS: The half maximal inhibitory concentration (IC50) of Alpinia conchigera Griff. rhizomes extract and ACA was determined for CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C19, CYP2D6, CYP2E1, CYP3A4 and CYP3A5. A. conchigera extract only moderately inhibits on CYP3A4 (IC50 = 6.76 ± 1.88µg/ml) whereas ACA moderately inhibits the activities of CYP1A2 (IC50 = 4.50 ± 0.10µM), CYP2D6 (IC50 = 7.50 ± 0.17µM) and CYP3A4 (IC50 = 9.50 ± 0.57µM) while other isoenzymes are weakly inhibited. In addition, mechanism-based inhibition studies reveal that CYP1A2 and CYP3A4 exhibited non-mechanism based inhibition whereas CYP2D6 showed mechanism-based inhibition. Lineweaver-Burk plots depict that ACA competitively inhibited both CYP1A2 and CYP3A4, with a Ki values of 2.36 ± 0.03 µM and 5.55 ± 0.06µM, respectively, and mixed inhibition towards CYP2D6 with a Ki value of 4.50 ± 0.08µM. Further, molecular docking studies show that ACA is bound to a few key amino acid residues in the active sites of CYP1A2 and CYP3A4, while one amino residue of CYP2D6 through predominantly Pi-Pi interactions.

    CONCLUSION: Overall, ACA may demonstrate drug-drug interactions when co-administered with other therapeutic drugs that are metabolized by CYP1A2, CYP2D6 or CYP3A4 enzymes. Further in vivo studies, however, are needed to evaluate the clinical significance of these interactions.

  13. Leong KH, Abdul-Rahman H, Wang C, Onn CC, Loo SC
    PLoS One, 2016;11(12):e0166064.
    PMID: 27930659 DOI: 10.1371/journal.pone.0166064
    Railway and metro transport systems (RS) are becoming one of the popular choices of transportation among people, especially those who live in urban cities. Urbanization and increasing population due to rapid development of economy in many cities are leading to a bigger demand for urban rail transit. Despite being a popular variant of Traveling Salesman Problem (TSP), it appears that the universal formula or techniques to solve the problem are yet to be found. This paper aims to develop an optimization algorithm for optimum route selection to multiple destinations in RS before returning to the starting point. Bee foraging behaviour is examined to generate a reliable algorithm in railway TSP. The algorithm is then verified by comparing the results with the exact solutions in 10 test cases, and a numerical case study is designed to demonstrate the application with large size sample. It is tested to be efficient and effective in railway route planning as the tour can be completed within a certain period of time by using minimal resources. The findings further support the reliability of the algorithm and capability to solve the problems with different complexity. This algorithm can be used as a method to assist business practitioners making better decision in route planning.
  14. Hak CH, Sim LC, Leong KH, Lim PF, Chin YH, Saravanan P
    Environ Sci Pollut Res Int, 2018 Sep;25(25):25401-25412.
    PMID: 29951757 DOI: 10.1007/s11356-018-2632-8
    In this work, natural sunlight successfully induced the deposition of gold (Au), silver (Ag), and palladium (Pd) nanoparticles (NPs) with 17.10, 9.07, and 12.70 wt% onto the surface of graphitic carbon nitride (g-C3N4). The photocatalytic evaluation was carried out by adopting Bisphenol A (BPA) as a pollutant under natural sunlight irradiation. The presence of noble metals was confirmed by EDX, HRTEM, and XPS analysis. The deposition of Ag NPs (7.9 nm) resulted in the degradation rate which was 2.15-fold higher than pure g-C3N4 due to its relatively small particle size, contributing to superior charge separation efficiency. Au/g-C3N4 unveiled inferior photoactivity because the LSPR phenomenon provided two pathways for electron transfer between Au NPs and g-C3N4 further diminished the performance. The improved degradation lies crucially on the particle size and Schottky barrier formation at the interface of M/g-C3N4 (M=Au, Ag, and Pd) but not the visible light harvesting properties. The mechanism insight revealed the holes (h+) and superoxide radical (•O2-) radical actively involved in photocatalytic reaction for all composites.
  15. Lim PF, Leong KH, Sim LC, Abd Aziz A, Saravanan P
    Environ Sci Pollut Res Int, 2019 Feb;26(4):3455-3464.
    PMID: 30515688 DOI: 10.1007/s11356-018-3821-1
    In this work, a sunlight-sensitive photocatalyst of nanocubic-like titanium dioxide (TiO2) and N-doped graphene quantum dots (N-GQDs) is developed through a simple hydrothermal and physical mixing method. The successful amalgamation composite photocatalyst characteristics were comprehensively scrutinized through various physical and chemical analyses. A complete removal of bisphenol A (BPA) is attained by a synthesized composite after 30 min of sunlight irradiation as compared to pure TiO2. This clearly proved the unique contribution of N-GQDs that enhanced the ability of light harvesting especially under visible light and near-infrared region. This superior characteristic enables it to maximize the absorbance in the entire solar spectrum. However, the increase of N-GQDs weight percentage has created massive oxygen vacancies that suppress the generation of active radicals. This resulted in a longer duration for a complete removal of BPA as compared to lower weight percentage of N-GQDs. Hence, this finding can offer a new insight in developing effective sunlight-sensitive photocatalysts for various complex organic pollutants degradation.
  16. Sim LC, Wong JL, Hak CH, Tai JY, Leong KH, Saravanan P
    Beilstein J Nanotechnol, 2018;9:353-363.
    PMID: 29515949 DOI: 10.3762/bjnano.9.35
    Carbon dots (CDs) and graphitic carbon nitride (g-C3N4) composites (CD/g-C3N4) were successfully synthesized by a hydrothermal method using urea and sugarcane juice as starting materials. The chemical composition, morphological structure and optical properties of the composites and CDs were characterized using various spectroscopic techniques as well as transmission electron microscopy. X-ray photoelectron spectroscopy (XPS) results revealed new signals for carbonyl and carboxyl groups originating from the CDs in CD/g-C3N4composites while X-ray diffraction (XRD) results showed distortion of the host matrix after incorporating CDs into g-C3N4. Both analyses signified the interaction between g-C3N4and CDs. The photoluminescence (PL) analysis indicated that the presence of too many CDs will create trap states at the CD/g-C3N4interface, decelerating the electron (e-) transport. However, the CD/g-C3N4(0.5) composite with the highest coverage of CDs still achieved the best bisphenol A (BPA) degradation rate at 3.87 times higher than that of g-C3N4. Hence, the charge separation efficiency should not be one of the main factors responsible for the enhancement of the photocatalytic activity of CD/g-C3N4. Instead, the light absorption capability was the dominant factor since the photoreactivity correlated well with the ultraviolet-visible diffuse reflectance spectra (UV-vis DRS) results. Although the CDs did not display upconversion photoluminescence (UCPL) properties, the π-conjugated CDs served as a photosensitizer (like organic dyes) to sensitize g-C3N4and injected electrons to the conduction band (CB) of g-C3N4, resulting in the extended absorption spectrum from the visible to the near-infrared (NIR) region. This extended spectral absorption allows for the generation of more electrons for the enhancement of BPA degradation. It was determined that the reactive radical species responsible for the photocatalytic activity were the superoxide anion radical (O2•-) and holes (h+) after performing multiple scavenging tests.
  17. Leong KH, Aziz AA, Sim LC, Saravanan P, Jang M, Bahnemann D
    Beilstein J Nanotechnol, 2018;9:628-648.
    PMID: 29527438 DOI: 10.3762/bjnano.9.59
    The utilisation of sunlight as an abundant and renewable resource has motivated the development of sustainable photocatalysts that can collectively harvest visible light. However, the bottleneck in utilising the low energy photons has led to the discovery of plasmonic photocatalysts. The presence of noble metal on the plasmonic photocatalyst enables the harvesting of visible light through the unique characteristic features of the noble metal nanomaterials. Moreover, the formation of interfaces between noble metal particles and semiconductor materials further results in the formation of a Schottky junction. Thereby, the plasmonic characteristics have opened up a new direction in promoting an alternative path that can be of value to the society through sustainable development derived through energy available for all for diverse applications. We have comprehensively prepared this review to specifically focus on fundamental insights into plasmonic photocatalysts, various synthesis routes, together with their strengths and weaknesses, and the interaction of the plasmonic photocatalyst with pollutants as well as the role of active radical generation and identification. The review ends with a pinnacle insight into future perspectives regarding realistic applications of plasmonic photocatalysts.
  18. Sivasothy Y, Leong KH, Loo KY, Adbul Wahab SM, Othman MA, Awang K
    Nat Prod Res, 2021 Feb 16.
    PMID: 33593208 DOI: 10.1080/14786419.2021.1885405
    The use of antidiabetic agents which control glycemic levels in the blood and simultaneously inhibit oxidative stress is an important strategy in the prevention of Diabetes Mellitus and its complications. In our previous study, malabaricone C (3) and its dimer, giganteone A (5) exhibited significant DPPH free radical scavenging activities which were lower than the activity of the positive control, ascorbic acid. These compounds were evaluated for their α-glucosidase inhibitory activities at different concentrations (0.02-2.5 mM) in the present study. Compounds 3 (IC50 59.61 µM) and 5 (IC50 39.52 µM) were identified as active alpha-glucosidase inhibitors, each respectively being 24 and 37 folds more potent than the standard inhibitor, acarbose. Based on the molecular docking studies, compounds 3 and 5 docked into the active site of the α-glucosidase enzyme, forming mainly hydrogen bonds in the active site.
  19. Kosugi A, Leong KH, Tsuji H, Hayashi Y, Kumada S, Okada K, et al.
    J Pharm Sci, 2020 Aug;109(8):2585-2593.
    PMID: 32473211 DOI: 10.1016/j.xphs.2020.05.010
    The purpose of this study was to accumulate enhanced technical knowledge about the powder properties of direct compaction grades of mannitol that could lead to new tablet formulations. Fifteen different commercial direct compaction grades of mannitol were tested. Ten different powder properties representing flowability, particle size, specific surface area and manufacturing properties were measured. In addition, model tablets of each mannitol grade were prepared, and their disintegration time, friability, and tensile strength were measured. The data were analyzed by principle component analysis and a Kohonen self-organizing map to find correlations between powder properties. Self-organizing map clustering successfully classified the test grades into 5 distinct clusters having different powder properties. Each cluster was well characterized by statistical profiling. Subsequently, the contribution of the powder properties to the tablet properties was investigated by a least absolute shrinkage- and selection operator (Lasso) regression model. Mannitol grades with a larger particle size (D90) were prone to produce tablets with longer disintegration time, while a larger specific surface area of the particles was positively associated with tablets with higher mechanical strength. Our findings provide valuable information for the design of tablet formulations.
  20. Hayashi Y, Shirotori K, Kosugi A, Kumada S, Leong KH, Okada K, et al.
    Pharmaceutics, 2020 Jun 28;12(7).
    PMID: 32605318 DOI: 10.3390/pharmaceutics12070601
    We previously reported a novel method for the precise prediction of tablet properties (e.g., tensile strength (TS)) using a small number of experimental data. The key technique of this method is to compensate for the lack of experimental data by using data of placebo tablets collected in a database. This study provides further technical knowledge to discuss the usefulness of this prediction method. Placebo tablets consisting of microcrystalline cellulose, lactose, and cornstarch were prepared using the design of an experimental method, and their TS and disintegration time (DT) were measured. The response surfaces representing the relationship between the formulation and the tablet properties were then created. This study investigated tablets containing four different active pharmaceutical ingredients (APIs) with a drug load ranging from 20-60%. Overall, the TS of API-containing tablets could be precisely predicted by this method, while the prediction accuracy of the DT was much lower than that of the TS. These results suggested that the mode of action of APIs on the DT was more complicated than that on the TS. Our prediction method could be valuable for the development of tablet formulations.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links