Displaying publications 1 - 20 of 89 in total

Abstract:
Sort:
  1. Liau LL, Makpol Suzana, Abdul Ghani Nur Azurah, Chua KH
    Sains Malaysiana, 2016;45:451-458.
    In the past, many in vitro hepatocyte injury models developed for liver regeneration used carbon tetrachloride as irritant chemical. Recently, carbon tetrachloride usage was prohibited due to serious deleterious effects to human and environment. There is an urgent need to develop a new acute chemical-induced hepatocyte injury model using other chemical compound to replace carbon tetrachloride. In this study, we used hydrogen peroxide (H2O2) to induced hepatocyte injury with HepG2 as the liver cell model. HepG2 injury was established by exposing the cells to CC50 of H2O2 at the concentration of 2.4 mM, predetermined via MTT assay for 2 h exposure. Aspartate aminotransferase (AST) activity was measured to determine the extent of cellular injury and quantitative PCR was carried out to determine the expression of inflammatory genes of the cells 24 h after H2O2 exposure. The results showed that AST activity increased with time and peak at 24 h after H2O2 exposure. Quantitative PCR analysis demonstrated that expression of inflammatory genes (TGF-β1, MMP-3, NF-κβ, IL-8 and IL-6) increased significantly. In addition, the gene expression of GPX, an anti-oxidant enzyme was also increased significantly in response to oxidative stress. In summary, H2O2 demonstrated excellent capability in inducing oxidative injury to HepG2 and together they represent an ideal acute chemical-induced injury model that can be used for liver regeneration study. Our results also provide input for inflammatory gene expression in the hepatocyte injury model.
  2. Hashim HM, Makpol S
    Front Cell Neurosci, 2022;16:1007166.
    PMID: 36406749 DOI: 10.3389/fncel.2022.1007166
    As the world population ages, the burden of age-related health problems grows, creating a greater demand for new novel interventions for healthy aging. Advancing aging is related to a loss of beneficial mutualistic microbes in the gut microbiota caused by extrinsic and intrinsic factors such as diet, sedentary lifestyle, sleep deprivation, circadian rhythms, and oxidative stress, which emerge as essential elements in controlling and prolonging life expectancy of healthy aging. This condition is known as gut dysbiosis, and it affects normal brain function via the brain-gut microbiota (BGM) axis, which is a bidirectional link between the gastrointestinal tract (GIT) and the central nervous system (CNS) that leads to the emergence of brain disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD). Here, we reviewed the role of the gut microbiome in aging and neurodegenerative diseases, as well as provided a comprehensive review of recent findings from preclinical and clinical studies to present an up-to-date overview of recent advances in developing strategies to modulate the intestinal microbiome by probiotic administration, dietary intervention, fecal microbiota transplantation (FMT), and physical activity to address the aging process and prevent neurodegenerative diseases. The findings of this review will provide researchers in the fields of aging and the gut microbiome design innovative studies that leverage results from preclinical and clinical studies to better understand the nuances of aging, gut microbiome, and neurodegenerative diseases.
  3. Gothandapani D, Makpol S
    Int J Mol Sci, 2023 Sep 28;24(19).
    PMID: 37834115 DOI: 10.3390/ijms241914667
    Ageing is inevitable in all living organisms and is associated with physical deterioration, disease and eventually death. Dysbiosis, which is the alteration of the gut microbiome, occurs in individuals during ageing, and plenty of studies support that gut dysbiosis is responsible for the progression of different types of age-related diseases. The economic burden of age-linked health issues increases as ageing populations increase. Hence, an improvement in disease prevention or therapeutic approaches is urgently required. In recent years, vitamin E has garnered significant attention as a promising therapeutic approach for delaying the ageing process and potentially impeding the development of age-related disease. Nevertheless, more research is still required to understand how vitamin E affects the gut microbiome and how it relates to age-related diseases. Therefore, we gathered and summarized recent papers in this review that addressed the impact of the gut microbiome on age-related disease, the effect of vitamin E on age-related disease along with the role of vitamin E on the gut microbiome and the relationship with age-related diseases which are caused by ageing. Based on the studies reported, different bacteria brought on various age-related diseases with either increased or decreased relative abundances. Some studies have also reported the positive effects of vitamin E on the gut microbiome as beneficial bacteria and metabolites increase with vitamin E supplementation. This demonstrates how vitamin E is vital as it affects the gut microbiome positively to delay ageing and the progression of age-related diseases. The findings discussed in this review will provide a simplified yet deeper understanding for researchers studying ageing, the gut microbiome and age-related diseases, allowing them to develop new preclinical and clinical studies.
  4. Mohd Murshid N, Aminullah Lubis F, Makpol S
    Cell Mol Neurobiol, 2020 Oct 19.
    PMID: 33074454 DOI: 10.1007/s10571-020-00979-z
    Epigenetic mechanisms involving the modulation of gene activity without modifying the DNA bases are reported to have lifelong effects on mature neurons in addition to their impact on synaptic plasticity and cognition. Histone methylation and acetylation are involved in synchronizing gene expression and protein function in neuronal cells. Studies have demonstrated in experimental models of neurodegenerative disorders that manipulations of these two mechanisms influence the susceptibility of neurons to degeneration and apoptosis. In Alzheimer's disease (AD), the expression of presenilin 1 (PSEN1) is markedly increased due to decreased methylation at CpG sites, thus promoting the accumulation of toxic amyloid-β (Aβ) peptide. In Parkinson's disease (PD), dysregulation of α-synuclein (SNCA) expression is presumed to occur via aberrant methylation at CpG sites, which controls the activation or suppression of protein expression. Mutant Huntingtin (mtHTT) alters the activity of histone acetyltransferases (HATs), causing the dysregulation of transcription observed in most Huntington's disease (HD) cases. Folate, vitamin B6, vitamin B12, and S-adenosylmethionine (SAM) are vital cofactors involved in DNA methylation modification; 5-azacytidine (AZA) is the most widely studied DNA methyltransferase (DNMT) inhibitor, and dietary polyphenols are DNMT inhibitors in vitro. Drug intervention is believed to reverse the epigenetic mechanisms to serve as a regulator in neuronal diseases. Nevertheless, the biochemical effect of the drugs on brain function and the underlying mechanisms are not well understood. This review focuses on further discussion of therapeutic targets, emphasizing the potential role of epigenetic factors including histone and DNA modifications in the diseases.
  5. Jaafar F, Durani LW, Makpol S
    Mol Biol Rep, 2020 Jan;47(1):369-379.
    PMID: 31642042 DOI: 10.1007/s11033-019-05140-8
    Human diploid fibroblasts (HDFs) cultured in vitro have limited capacity to proliferate after population doubling is repeated several times, and they enter into a state known as replicative senescence or cellular senescence. This study aimed to investigate the effect of Chlorella vulgaris on the replicative senescence of HDFs by determining the expression of senescence-associated genes. Young and senescent HDFs were divided into untreated control and C. vulgaris-treated groups. A senescence-associated gene transcription analysis was carried out with qRT-PCR. Treatment of young HDFs with C. vulgaris reduced the expression of SOD1, CAT and CCS (p 
  6. Abdullah A, Mohd Murshid N, Makpol S
    Mol Neurobiol, 2020 Dec;57(12):5193-5207.
    PMID: 32865663 DOI: 10.1007/s12035-020-02083-1
    In the human body, cell division and metabolism are expected to transpire uneventfully for approximately 25 years. Then, secondary metabolism and cell damage products accumulate, and ageing phenotypes are acquired, causing the progression of disease. Among these age-related diseases, neurodegenerative diseases have attracted considerable attention because of their irreversibility, the absence of effective treatment and their relationship with social and economic pressures. Mechanistic (formerly mammalian) target of rapamycin (mTOR), sirtuin (SIRT) and insulin/insulin growth factor 1 (IGF1) signalling pathways are among the most important pathways in ageing-associated conditions, such as neurodegeneration. These longevity-related pathways are associated with a diversity of various processes, including metabolism, cognition, stress reaction and brain plasticity. In this review, we discuss the roles of sirtuin and mTOR in ageing and neurodegeneration, with an emphasis on their regulation of autophagy, apoptosis and mitochondrial energy metabolism. The intervention of neurodegeneration using potential antioxidants, including vitamins, phytochemicals, resveratrol, herbals, curcumin, coenzyme Q10 and minerals, specifically aimed at retaining mitochondrial function in the treatment of Alzheimer's disease, Parkinson's disease and Huntington's disease is highlighted.
  7. Jaafar F, Abdullah A, Makpol S
    Sci Rep, 2018 Jul 11;8(1):10471.
    PMID: 29992988 DOI: 10.1038/s41598-018-28708-z
    Tocotrienol-rich fraction (TRF) is palm vitamin E that consists of tocopherol and tocotrienol. TRF is involved in important cellular regulation including delaying cellular senescence. A key regulator of cellular senescence, Sirtuin 1 (SIRT1) is involved in lipid metabolism. Thus, SIRT1 may regulate vitamin E transportation and bioavailability at cellular level. This study aimed to determine the role of SIRT1 on cellular uptake and bioavailability of TRF in human diploid fibroblasts (HDFs). SIRT1 gene in young HDFs was silenced by small interference RNA (siRNA) while SIRT1 activity was inhibited by sirtinol. TRF treatment was given for 24 h before or after SIRT1 inhibition. Cellular concentration of TRF isomers was determined according to the time points of before and after TRF treatment at 0, 24, 48, 72 and 96 h. Our results showed that all tocotrienol isomers were significantly taken up by HDFs after 24 h of TRF treatment and decreased 24 h after TRF treatment was terminated but remained in the cell up to 72 h. The uptake of α-tocopherol, α-tocotrienol and β-tocotrienol was significantly higher in senescent cells as compared to young HDFs indicating higher requirement for vitamin E in senescent cells. Inhibition of SIRT1 gene increased the uptake of all tocotrienol isomers but not α-tocopherol. However, SIRT1 inhibition at protein level decreased tocotrienol concentration. In conclusion, SIRT1 may regulate the cellular uptake and bioavailability of tocotrienol isomers in human diploid fibroblast cells while a similar regulation was not shown for α-tocopherol.
  8. Tan JK, Jaafar F, Makpol S
    BMC Complement Altern Med, 2018 Nov 29;18(1):314.
    PMID: 30497457 DOI: 10.1186/s12906-018-2383-6
    BACKGROUND: Replicative senescence of human diploid fibroblasts (HDFs) has been used as a model to study mechanisms of cellular aging. Gamma-tocotrienol (γT3) is one of the members of vitamin E family which has been shown to increase proliferation of senescent HDFs. However, the modulation of protein expressions by γT3 in senescent HDFs remains to be elucidated. Therefore, this study aimed to determine the differentially expressed proteins (DEPs) in young and senescent HDFs; and in vehicle- and γT3-treated senescent HDFs using label-free quantitative proteomics.

    METHODS: Whole proteins were extracted and digested in-gel with trypsin. Peptides were detected by Orbitrap liquid chromatography mass spectrometry. Mass spectra were identified and quantitated by MaxQuant software. The data were further filtered and analyzed statistically using Perseus software to identify DEPs. Functional annotations of DEPs were performed using Panther Classification System.

    RESULTS: A total of 1217 proteins were identified in young and senescent cells, while 1218 proteins in vehicle- and γT3-treated senescent cells. 11 DEPs were found in young and senescent cells which included downregulation of platelet-derived growth factor (PDGF) receptor beta and upregulation of tubulin beta-2A chain protein expressions in senescent cells. 51 DEPs were identified in vehicle- and γT3-treated senescent cells which included upregulation of 70 kDa heat shock protein, triosephosphate isomerase and malate dehydrogenase protein expressions in γT3-treated senescent cells.

    CONCLUSIONS: PDGF signaling and cytoskeletal structure may be dysregulated in senescent HDFs. The pro-proliferative effect of γT3 on senescent HDFs may be mediated through the stimulation of cellular response to stress and carbohydrate metabolism. The expressions and roles of these proteins in relation to cellular senescence are worth further investigations. Data are available via ProteomeXchange with identifier PXD009933.

  9. Mohd Sahardi NFN, Makpol S
    Molecules, 2023 Aug 03;28(15).
    PMID: 37570837 DOI: 10.3390/molecules28155867
    Inflammation or inflamm-aging is a chronic low-grade inflammation that contributes to numerous types of degenerative diseases among the elderly and might be impeded by introducing an anti-inflammatory agent like Moringa oleifera Lam (moringa) and Zingiber officinale Roscoe (ginger). Therefore, this paper aims to review the role of moringa and ginger in suppressing inflamm-aging to prevent degenerative diseases. Various peer-reviewed publications were searched and downloaded using the reputed search engine "Pubmed" and "Google Scholar". These materials were reviewed and tabulated. A comparison between these previous findings was made based on the mechanism of action of moringa and ginger against degenerative diseases, focusing on their anti-inflammatory properties. Many studies have reported the efficacy of moringa and ginger in type 2 diabetes mellitus, neurodegenerative disease, cardiovascular disease, cancer, and kidney disease by reducing inflammatory cytokines activities, mainly of TNF-α and IL-6. They also enhanced the activity of antioxidant enzymes, including catalase, glutathione, and superoxide dismutase. The anti-inflammatory activities can be seen by inhibiting NF-κβ activity. Thus, the anti-inflammatory potential of moringa and ginger in various types of degenerative diseases due to inflamm-aging has been shown in many recent types of research.
  10. Mohd Sahardi NFN, Makpol S
    PMID: 31531114 DOI: 10.1155/2019/5054395
    Currently, the age of the population is increasing as a result of increased life expectancy. Ageing is defined as the progressive loss of physiological integrity, which can be characterized by functional impairment and high vulnerability to various types of diseases, such as diabetes, hypertension, Alzheimer's disease (AD), Parkinson's disease (PD), and atherosclerosis. Numerous studies have reported that the presence of oxidative stress and inflammation contributes to the development of these diseases. In general, oxidative stress could induce proinflammatory cytokines and reduce cellular antioxidant capacity. Increased oxidative stress levels beyond the production of antioxidant agents cause oxidative damage to biological molecules, including DNA, protein, and carbohydrates, which affects normal cell signalling, cell growth, differentiation, and apoptosis and leads to disease pathogenesis. Since oxidative stress and inflammation contribute to these diseases, ginger (Zingiber officinale Roscoe) is one of the potential herbs that can be used to reduce the level of oxidative stress and inflammation. Ginger consists of two major active components, 6-gingerol and 6-shogaol, which are essential for preventing oxidative stress and inflammation. Thus, this paper will review the effects of ginger on ageing and degenerative diseases, including AD, PD, type 2 diabetes mellitus (DM), hypertension, and osteoarthritis.
  11. Tan YQ, Loh CK, Makpol S
    Malays J Med Sci, 2023 Oct;30(5):40-51.
    PMID: 37928798 DOI: 10.21315/mjms2023.30.5.4
    L-asparaginase is effective as part of the first line childhood acute lymphoblastic leukaemia (ALL) treatment regimen but suffers the risk of antibody production causing immune-mediated sequelae. This article aimed to describe the clinical implication of L-asparaginase hypersensitivity and review the types of antibodies and genetic polymorphisms contributing to it. Clinical or subclinical L-asparaginase hypersensitivity may lead to suboptimum therapeutic effect and jeopardise the clinical outcome in ALL children. Anti-asparaginase antibodies immunoglobulin (Ig)G, IgM and IgE were identified in the L-asparaginase hypersensitivities. Enzyme-linked immunosorbent assay (ELISA) is commonly used to quantify the IgG and IgM levels. The role of IgE in mediating L-asparaginase hypersensitivity is contradictory. Moreover, the presence of antibodies may not necessarily correlate inversely with the L-asparaginase efficacies in some studies. Patients with specific genetic variants have been shown to be more susceptible to clinical hypersensitivity of L-asparaginase. With the advance of technology, gene polymorphisms have been identified among Caucasians using whole-genome or exon sequencing, but the evidence is scanty among Asians. There is lack of pre-clinical study models that could help in understanding the pathophysiological pathway co-relating the gene expression and anti-asparaginase antibody formation. In conclusion, future research studies are required to fill the current gap in understanding the immune mediated reactions towards L-asparaginase upon its administration and its potential impact to the disease outcome.
  12. Khee SG, Yusof YA, Makpol S
    Oxid Med Cell Longev, 2014;2014:725929.
    PMID: 25132913 DOI: 10.1155/2014/725929
    Emerging evidences highlight the implication of microRNAs as a posttranscriptional regulator in aging. Several senescence-associated microRNAs (SA-miRNAs) are found to be differentially expressed during cellular senescence. However, the role of dietary compounds on SA-miRNAs remains elusive. This study aimed to elucidate the modulatory role of tocotrienol-rich fraction (TRF) on SA-miRNAs (miR-20a, miR-24, miR-34a, miR-106a, and miR-449a) and established target genes of miR-34a (CCND1, CDK4, and SIRT1) during replicative senescence of human diploid fibroblasts (HDFs). Primary cultures of HDFs at young and senescent were incubated with TRF at 0.5 mg/mL. Taqman microRNA assay showed significant upregulation of miR-24 and miR-34a and downregulation of miR-20a and miR-449a in senescent HDFs (P < 0.05). TRF reduced miR-34a expression in senescent HDFs and increased miR-20a expression in young HDFs and increased miR-449a expression in both young and senescent HDFs. Our results also demonstrated that ectopic expression of miR-34a reduced the expression of CDK4 significantly (P < 0.05). TRF inhibited miR-34a expression thus relieved its inhibition on CDK4 gene expression. No significant change was observed on the expression of CCND1, SIRT1, and miR-34a upstream transcriptional regulator, TP53. In conclusion tocotrienol-rich fraction prevented cellular senescence of human diploid fibroblasts via modulation of SA-miRNAs and target genes expression.
  13. Safwani WK, Makpol S, Sathapan S, Chua K
    Arch Med Sci, 2014 Jun 29;10(3):597-606.
    PMID: 25097593 DOI: 10.5114/aoms.2014.43753
    Adipose tissue is a source of multipotent adult stem cells. Most studies on human adipose-derived stem cells (ASC) have been on the early passages. Studies in extensive expansion have not been well established yet. In this study, we aim to investigate the effects of extensive expansion on the adipogenic differentiation capability of ASC.
  14. Hussein SZ, Mohd Yusoff K, Makpol S, Mohd Yusof YA
    PLoS One, 2013;8(8):e72365.
    PMID: 24015236 DOI: 10.1371/journal.pone.0072365
    The activation of nuclear factor kappa B (NF-κB) plays a major role in the pathogenesis of a number of inflammatory diseases. In this study, we investigated the anti-inflammatory mechanism of Gelam honey in inflammation induced rats via NF-κB signalling pathway. Rats paw edema was induced by subplantar injection of 1% carrageenan into the right hind paw. Rats were pre-treated with Gelam honey at different doses (1 or 2 g/kg, p.o.) and NSAID Indomethacin (10 mg/kg, p.o.), in two time points (1 and 7 days). Our results showed that Gelam honey at both concentrations suppressed the gene expressions of NF-κB (p65 & p50) and IκBα in inflamed rats paw tissues. In addition, Gelam honey inhibited the nuclear translocation and activation of NF-κB and decreased the cytosolic degradation of IκBα dose dependently in inflamed rats paw tissues. The immunohistochemical expressions of pro-inflammatory mediators COX-2 and TNF-α were also decreased in inflamed rats paw tissues when treated with Gelam honey. The results of our findings suggest that Gelam honey exhibits its inhibitory effects by attenuating NF-κB translocation to the nucleus and inhibiting IκBα degradation, with subsequent decrease of inflammatory mediators COX-2 and TNF-α.
  15. Zaman WS, Makpol S, Sathapan S, Chua KH
    J Tissue Eng Regen Med, 2014 Jan;8(1):67-76.
    PMID: 22552847 DOI: 10.1002/term.1501
    In the field of cell-based therapy and regenerative medicine, clinical application is the ultimate goal. However, one major concern is: does in vitro manipulation during culture expansion increases tumourigenicity risk on the prepared cells? Therefore, the aim of this study was to investigate the effect of long-term in vitro expansion on human adipose-derived stem cells (ASCs). The ASCs were harvested from lipo-aspirate samples and cultured until passage 20 (P20), using standard culture procedures. ASCs at P5, P10, P15 and P20 were analysed for morphological changes, DNA damage (Comet assay), tumour suppressor gene expression level (quantitative PCR), p53 mutation, telomerase activity, telomere length determination and in vivo tumourigenicity test. Our data showed that ASCs lost their fibroblastic feature in long-term culture. The population doubling time of ASCs increased with long-term culture especially at P15 and P20. There was an increase in DNA damage at later passages (P15 and P20). No significant changes were observed in both p53 and p21 genes expression throughout the long-term culture. There was also no p53 mutation detected and no significant changes were recorded in the relative telomerase activity (RTA) and mean telomere length (TRF) in ASCs at all passages. In vivo implantation of ASCs at P15 and P20 into the nude mice did not result in tumour formation after 4 months. The data showed that ASCs have low risk of tumourigenicity up to P20, with a total population doubling of 42 times. This indicates that adipose tissue should be a safe source of stem cells for cell-based therapy.
  16. Makpol S, Abdul Rahim N, Hui CK, Ngah WZ
    Oxid Med Cell Longev, 2012;2012:785743.
    PMID: 22919441 DOI: 10.1155/2012/785743
    In this study, we determined the molecular mechanism of γ-tocotrienol (GTT) in preventing cellular aging by focusing on its anti-apoptotic effect in stress-induced premature senescence (SIPS) model of human diploid fibroblasts (HDFs). Results obtained showed that SIPS exhibited senescent-phenotypic characteristic, increased expression of senescence-associated β-galactosidase (SA β-gal) and promoted G(0)/G(1) cell cycle arrest accompanied by shortening of telomere length with decreased telomerase activity. Both SIPS and senescent HDFs shared similar apoptotic changes such as increased Annexin V-FITC positive cells, increased cytochrome c release and increased activation of caspase-9 and caspase-3 (P < 0.05). GTT treatment resulted in a significant reduction of Annexin V-FITC positive cells, inhibited cytochrome c release and decreased activation of caspase-9 and caspase-3 (P < 0.05). Gene expression analysis showed that GTT treatment down regulated BAX mRNA, up-regulated BCL2A1 mRNA and decreased the ratio of Bax/Bcl-2 protein expression (P < 0.05) in SIPS. These findings suggested that GTT inhibits apoptosis by modulating the upstream apoptosis cascade, causing the inhibition of cytochrome c release from the mitochondria with concomitant suppression of caspase-9 and caspase-3 activation. In conclusion, GTT delays cellular senescence of human diploid fibroblasts through the inhibition of intrinsic mitochondria-mediated pathway which involved the regulation of pro- and anti-apoptotic genes and proteins.
  17. Safwani WK, Makpol S, Sathapan S, Chua KH
    Cell Tissue Bank, 2013 Jun;14(2):289-301.
    PMID: 22476937 DOI: 10.1007/s10561-012-9309-1
    Adipose tissue is a source of multipotent stem cells and it has the ability to differentiate into several types of cell lineages such as neuron cells, osteogenic and adipogenic cells. Most studies on human adipose-derived stem cells (ASCs) have been carried out at the early passages. For clinical usage, ASCs need to be expanded in vitro for a period of time to get sufficient cells for transplantation into patients. However, the impact of long-term culture on ASCs molecular characteristics has not been established yet. Several studies have also shown that osteogenic and adipogenic cells have the ability to switch pathways during in vitro culture as they share the same progenitor cells. This data is important to ensure their functionality and efficacy before being used clinically in the treatment of bone diseases. Therefore, we aim to investigate the effect of long-term culture on the adipogenic, stemness and osteogenic genes expression during osteogenic induction of ASCs. In this study, the molecular characteristics of ASCs during osteogenic induction in long-term culture was analysed by observing their morphological changes during induction, analysis of cell mineralization using Alizarin Red staining and gene expression changes using quantitative RT-PCR. Morphologically, cell mineralization at P20 was less compared to P5, P10 and P15. Adipogenesis was not observed as negative lipid droplets formation was recorded during induction. The quantitative PCR data showed that adipogenic genes expression e.g. LPL and AP2 decreased but PPAR-γ was increased after osteogenic induction in long-term culture. Most stemness genes decreased at P5 and P10 but showed no significant changes at P15 and P20. While most osteogenic genes increased after osteogenic induction at all passages. When compared among passages after induction, Runx showed a significant increased at P20 while BSP, OSP and ALP decreased at later passage (P15 and P20). During long-term culture, ASCs were only able to differentiate into immature osteogenic cells.
  18. Safwani WK, Makpol S, Sathapan S, Chua KH
    Appl Biochem Biotechnol, 2012 Apr;166(8):2101-13.
    PMID: 22391697 DOI: 10.1007/s12010-012-9637-4
    Human adipose-derived stem cells (ASCs) have generated a great deal of excitement in regenerative medicine. However, their safety and efficacy issue remain a major concern especially after long-term in vitro expansion. The aim of this study was to investigate the fundamental changes of ASCs in long-term culture by studying the morphological feature, growth kinetic, surface marker expressions, expression level of the senescence-associated genes, cell cycle distribution and ß-galactosidase activity. Human ASCs were harvested from lipoaspirate obtained from 6 patients. All the parameters mentioned above were measured at P5, P10, P15 and P20. Data were subjected to one-way analysis of variance with a Tukey post hoc test to determine significance difference (P < 0.05). The data showed that growth of ASCs reduced in long-term culture and the ß-galactosidase activity was significantly increased at later passage (P20). The morphology of ASCs in long-term culture showed the manifestation of senescent feature at P15 and P20. Significant alteration in the senescence-associated genes expression levels was observed in MMP1, p21, Rb and Cyclin D1 at P15 and P20. Significant increase in CD45 and HLA DR DQ DP surface marker was observed at P20. While cell cycle analysis showed significant decrease in percentage of ASCs at S and G2/M phase at later passage (P15). Our data showed ASCs cultured beyond P10 favours the senescence pathway and its clinical usage in cell-based therapy may be limited.
  19. Wan Safwani WK, Makpol S, Sathapan S, Chua KH
    Biotechnol Appl Biochem, 2011 Jul-Aug;58(4):261-70.
    PMID: 21838801 DOI: 10.1002/bab.38
    One of the advantages of human adipose-derived stem cells (ASCs) in regenerative medicine is that they can be harvested in abundance. However, the stemness biomarkers, which marked the safety and efficacy of ASCs in accordance with the good manufacturing practice guidelines, is not yet well established. This study was designed to investigate the effect of long-term culture on the stemness properties of ASCs using quantitative real-time polymerase chain reaction and flow cytometry. Results showed the growth rate of ASCs was at its peak when they reached P10 (population doubling; PD = 26) but started to decrease when they were expanded to P15 (PD = 36) and P20 (PD = 46). The ASCs can be culture expanded with minimal alteration in the stemness genes and cluster of differentiation (CD) markers expression up to P10. Expression level of Sox2, Nestin, and Nanog3 was significantly decreased at later passage. CD31, CD45, CD117, and human leukocyte antigen DR, DQ, and DP were lowly expressed at P5 and P10 but their expressions increased significantly at P15 or P20. The differentiation ability of ASCs (adipogenesis, osteogenesis, and neurogenesis) also decreased in long-term culture. Our findings suggested that P10 (PD = 26) should be the "cutoff point" for clinical usage because ASCs at passage 15 onward showed significant changes in the stemness genes, CD markers expression, and differentiation capability.
  20. Wan Safwani WK, Makpol S, Sathapan S, Chua KH
    PMID: 22221649 DOI: 10.1186/1477-5751-11-3
    Adipose tissue is a source of multipotent adult stem cells and it has the ability to differentiate into several types of cell lineages such as neuron cells, osteogenic cells and adipogenic cells. Several reports have shown adipose-derived stem cells (ASCs) have the ability to undergo cardiomyogenesis. Studies have shown 5-azacytidine can successfully drive stem cells such as bone marrow derived stem cells to differentiate into cardiomyogenic cells. Therefore, in this study, we investigated the effect 5-azacytidine on the cardiogenic ability of ASCs.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links