OBJECTIVE: Evaluate the metabolite variations and antioxidant activity among M. calabura leaves subjected to different drying methods and extracted with different ethanol ratios using proton nuclear magnetic resonance (1 H-NMR)-based metabolomics. Methodology The antioxidant activity of M. calabura leaves dried with three different drying methods and extracted with three different ethanol ratios was determined by using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide (NO) scavenging assays. The metabolites variation among the extracts and correlation with antioxidant activity were analysed by 1 H-NMR-based metabolomics.
RESULTS: Muntingia calabura leaves extracted with 50% and 100% ethanol from air-drying and freeze-drying methods had the highest total phenolic content and the lowest IC50 value for the DPPH scavenging activity. Meanwhile, oven-dried leaves extracted with 100% ethanol had the lowest IC50 value for the NO scavenging activity. A total of 43 metabolites, including sugars, organic acids, amino acids, phytosterols, phenolics and terpene glycoside were tentatively identified. A noticeable discrimination was observed in the different ethanol ratios by the principal component analysis. The partial least-squares analysis suggested that 32 compounds out of 43 compounds identified were the contributors to the bioactivities.
CONCLUSION: The results established set the preliminary steps towards developing this plant into a high value product for phytomedicinal preparations.
RESULTS: Comparison of the PLS and RF showed that RF exhibited poorer generalization and hence poorer predictive performance. Both the regression coefficient of PLS and the variable importance of RF revealed that quercetin and kaempferol derivatives, caffeic acid and vitexin-2-O-rhamnoside were significant towards the tested bioactivities. Furthermore, principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) results showed that sonication and absolute ethanol are the preferable extraction method and ethanol ratio, respectively, to produce N. oleracea extracts with high phenolic levels and therefore high DPPH scavenging and α-glucosidase inhibitory activities.
CONCLUSION: Both PLS and RF are useful regression models in metabolomics studies. This work provides insight into the performance of different multivariate data analysis tools and the effects of different extraction conditions on the extraction of desired phenolics from plants. © 2017 Society of Chemical Industry.
METHODOLOGY: Eight (8) urine and serum samples each obtained from consenting healthy controls (HC), twenty-five (25) urine and serum samples each from first episode treatment naïve MDD (TNMDD) patients, and twenty (22) urine and serum samples each s from treatment naïve MDD patients 2 weeks after SSRI treatment (TWMDD) were analysed for metabolites using proton nuclear magnetic resonance (1HNMR) spectroscopy. The evaluation of patients' samples was carried out using Partial Least Squares Discriminant Analysis (PLS-DA) and Orthogonal Partial Least Square- Discriminant Analysis (OPLSDA) models.
RESULTS: In the serum, decreased levels of lactate, glucose, glutamine, creatinine, acetate, valine, alanine, and fatty acid and an increased level of acetone and choline in TNMDD or TWMDD irrespective of whether an OPLSDA or PLSDA evaluation was used were identified. A test for statistical validations of these models was successful.
CONCLUSION: Only some changes in serum metabolite levels between HC and TNMDD identified in this study have potential values in the diagnosis of MDD. These changes included decreased levels of lactate, glutamine, creatinine, valine, alanine, and fatty acid, as well as an increased level of acetone and choline in TNMDD. The diagnostic value of these changes in metabolites was maintained in samples from TWMDD patients, thus reaffirming the diagnostic nature of these metabolites for MDD.
OBJECTIVE: Evaluate the relationship between the chemical composition of C. nutans and its anti-inflammatory properties using nuclear magnetic resonance (NMR) metabolomics approach.
METHODOLOGY: The anti-inflammatory effect of C. nutans air-dried leaves extracted using five different binary extraction solvent ratio and two extraction methods was determined based on their nitric oxide (NO) inhibition effect in lipopolysaccharide-interferon-gamma (LPS-IFN-γ) activated RAW 264.7 macrophages. The relationship between extract bioactivity and metabolite profiles and quantifications were established using 1 H-NMR metabolomics and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The possible metabolite biosynthesis pathway was constructed to further strengthen the findings.
RESULTS: Water and sonication prepared air-dried leaves possessed the highest NO inhibition activity (IC50 = 190.43 ± 12.26 μg/mL, P