MATERIALS AND METHODS: The in vivo toxicity (acute and subacute toxicity) study was carried out by oral administration of TQNLC and TQ to BALB/c mice. Animal survival, body weight, organ weight-to-body weight ratio, hematological profile, biochemistry profile, and histopathological changes were analyzed.
RESULTS: In acute toxicity, TQ that is loaded in nanostructured lipid carrier (NLC) was found to be less toxic than pure TQ. It can be concluded that encapsulation of TQ in lipid carrier minimizes the toxicity of the compound. In the subacute toxicity study, oral administration of 100 mg/kg of TQNLC and TQ did not cause mortality to either male or female but resulted in toxicity to the liver. It is postulated that long-term consumption of TQNLC and TQ may cause toxicity to the liver but not to the extent of altering the functions of the organ. For both treatments, the no observed adverse effect level (NOAEL) was found to be 10 mg/kg/d for mice in both sexes.
CONCLUSION: For long-term oral consumption, TQ and TQNLC at a dose of 10 mg/kg is safe in mice and does not exert any toxic effect. The results provide safety information of TQNLC, which would further help researchers in clinical use.
OBJECTIVE: Ternary copper (II) complex incorporated with 1-10-phenanthroline and L-tyrosine was investigated for its anti-cancer effects in HT-29 colorectal cancer cells.
METHODS: Cytotoxic effects of ternary copper (II) complex in HT-29 cells were evaluated using MTT assay, Real-Time Cell Analysis (RTCA), and lactate dehydrogenase (LDH) assay. Cell cycle analysis was performed using flow cytometry. Apoptosis induction was studied by Annexin V-FITC/propidium iodide (PI) staining and mitochondrial membrane potential analysis (JC-10 staining) using flow cytometry. Intracellular reactive oxygen species (ROS) were detected by DCFH-DA assay. The expression of proteins involved in the apoptotic signalling pathway (p53, caspases, and PARP-1) was evaluated by western blot analysis.
RESULTS: Ternary copper (II) complex reduced the cell viability of HT-29 cells in a time- and dose-dependent manner, with IC50 of 2.4 ± 0.4 and 0.8 ± 0.04 µM at 24 and 48 hours, respectively. Cell cycle analysis demonstrated induction of S-phase cell cycle arrest. Morphological evaluation and Annexin V-FITC/PI flow cytometry analysis confirmed induction of apoptosis that was further supported by cleavage and activation of caspase-8, caspase-9, caspase-3, and PARP-1. Mutant p53 was also downregulated in a dose-dependent manner. No LDH release, mitochondrial membrane potential disruption, and ROS production were observed.
CONCLUSION: Ternary copper (II) complex holds great potential to be developed for colorectal cancer treatment.
MATERIAL & METHODS: TQ was incorporated into NLC (TQNLC) by using high pressure homogenization. TQNLC and TQ were orally administered to the mice.
RESULTS & CONCLUSION: TQNLC and TQ are potential chemotherapeutic drugs as they exhibited anticancer activity. The use of NLC as a carrier has enhanced the therapeutic property of TQ by increasing the survival rate of mice. The antimetastasis effect of TQNLC and TQ to the lungs was evidence by downregulation of MMP-2. TQNLC and TQ induced apoptosis via modulation of Bcl-2 and caspase-8 in the intrinsic apoptotic pathway.
METHODS: The correlation of these variants to the plasma BDNF level among Malaysian MDD patients was assessed. A total of 300 cases and 300 matched controls recruited from four public hospitals within the Klang Valley of Selangor State, Malaysia and matched for age, sex and ethnicity were screened for BDNF rs6265, rs1048218 and rs1048220 using high resolution melting (HRM).
FINDINGS: BDNF rs1048218 and BDNF rs1048220 were monomorphic and were excluded from further analysis. The distribution of the alleles and genotypes for BDNF rs6265 was in Hardy-Weinberg equilibrium for the controls (p = 0.13) but was in Hardy Weinberg disequilibrium for the cases (p = 0.011). Findings from this study indicated that having BDNF rs6265 in the Malaysian population increase the odds of developing MDD by 2.05 folds (95% CI = 1.48-3.65). Plasma from 206 cases and 206 controls were randomly selected to measure the BDNF level using enzyme-linked immunosorbent assay (ELISA). A significant decrease in the plasma BDNF level of the cases as compared to controls (p<0.0001) was observed. However, there was no evidence of the effect of the rs6265 genotypes on the BDNF level indicating a possible role of other factors in modulating the BDNF level that warrants further investigation.
CONCLUSION: The study indicated that having the BDNF rs6265 allele (A) increase the risk of developing MDD in the Malaysian population suggesting a possible role of BDNF in the etiology of the disorder.
OBJECTIVE: Current study was carried out to investigate the mode of cell death and role of autophagy induced by [Cu(phen)(L-tyr)Cl].3H20 in MCF-7 and MDA-MB-231 breast cancer cells.
METHODS: Growth inhibition of [Cu(phen)(L-tyr)Cl].3H20 towards MDA-MB-231 and human non-cancerous MCF10A breast cells was determined by MTT assay. Annexin-V-FITC/PI and cell cycle analysis were evaluated by flow cytometry. The expression of p53, Bax, caspase-9, caspase-7, caspase-3 and LC3 were determined using western blot analysis. The cells were then co-treated with hydroxychloroquine to ascertain the role of autophagy induced by [Cu(phen)(L-tyr)Cl].3H20.
RESULTS: [Cu(phen)(L-tyr)Cl].3H20 inhibited the growth of cancer cells dose-dependently with less toxicity towards MCF10A cells. Additionally, [Cu(phen)(L-tyr)Cl].3H20 induced apoptosis and cell cycle arrest towards MCF-7 and MDA-MB-231 breast cancer cells possibly via regulation of p53, Bax, caspase-9, caspase-3 and capase-7. The expression of LC3II was upregulated in both cancer cell lines upon treatment with [Cu(phen)(L-tyr) Cl].3H20, indicating the induction of autophagy. Co-treatment with autophagy inhibitor hydroxychloroquine significantly enhanced growth inhibition of both cell lines, suggesting that the autophagy induced by [Cu(phen)(L-tyr) Cl].3H20 in both breast cancer cells was promoting cell survival.
CONCLUSION: [Cu(phen)(L-tyr)Cl].3H20 holds great potential to be developed for breast cancer treatment.