Displaying publications 1 - 20 of 108 in total

Abstract:
Sort:
  1. Taufiq-Yap, Y. H., Ong, P. S., Zainal, Z.
    MyJurnal
    In this work, 10 mol% yttrium-doped ceria powders, Ce0.9Y0.1O1.95, were synthesised using a new mechanical technique, mechanochemical reaction, in which both impact action and shearing forces were applied for efficient fine grinding, subsequently leading to higher homogeneity of the resultant powders. Ce0.9Y0.1O1.95 prepared using this new technique was systematically compared with a sample of the same prepared using conventional solid-state methodology. X-ray diffraction analysis showed all prepared samples were single phase with a cubic fluorite structure. Generally, Y2O3-doped CeO2 electrolytes prepared by mechanochemical reactions were stable at a lower temperature (1100 °C) compared with a sample of the same synthesised using the conventional solid-state method. Characterisations using differential thermal analysis (DTA) and thermogravimetric analysis (TGA) showed no thermal changes and phase transitions, indicating all materials were thermally stable. The electrical properties of the samples investigated by AC impedance spectroscopy in the temperature range 200–800 ˚C are presented and discussed. Scanning electron microscopy (SEM) was used to study the morphology of the materials. Fine-grained powders with uniform grain-size distribution were obtained from the mechanochemical reaction.
  2. Anis S, Zainal ZA
    Bioresour Technol, 2014 Jan;151:183-90.
    PMID: 24231266 DOI: 10.1016/j.biortech.2013.10.065
    Kinetic model parameters for toluene conversion under microwave thermocatalytic treatment were evaluated. The kinetic rate constants were determined using integral method based on experimental data and coupled with Arrhenius equation for obtaining the activation energies and pre-exponential factors. The model provides a good agreement with the experimental data. The kinetic model was also validated with standard error of 3% on average. The extrapolation of the model showed a reasonable trend to predict toluene conversion and product yield both in thermal and catalytic treatments. Under microwave irradiation, activation energy of toluene conversion was lower in the range of 3-27 kJ mol(-1) compared to those of conventional heating reported in the literatures. The overall reaction rate was six times higher compared to conventional heating. As a whole, the kinetic model works better for tar model removal in the absence of gas reforming within a level of reliability demonstrated in this study.
  3. Anis S, Zainal ZA
    Bioresour Technol, 2013 Dec;150:328-37.
    PMID: 24185417 DOI: 10.1016/j.biortech.2013.10.010
    This study focused on improving the producer gas quality using radio frequency (RF) tar thermocatalytic treatment reactor. The producer gas containing tar, particles and water was directly passed at a particular flow rate into the RF reactor at various temperatures for catalytic and thermal treatments. Thermal treatment generates higher heating value of 5.76 MJ Nm(-3) at 1200°C. Catalytic treatments using both dolomite and Y-zeolite provide high tar and particles conversion efficiencies of about 97% on average. The result also showed that light poly-aromatic hydrocarbons especially naphthalene and aromatic compounds particularly benzene and toluene were still found even at higher reaction temperatures. Low energy intensive RF tar thermocatalytic treatment was found to be effective for upgrading the producer gas quality to meet the end user requirements and increasing its energy content.
  4. Jamal F, Mohamed R, Zainal Z, Arshat H
    Med J Malaysia, 1979 Jun;33(4):349-51.
    PMID: 574917
  5. Ab Ghani, A. F., Razali, M. A. A., Zainal, Z., Idral, F.
    MyJurnal
    This paper aims to present a method of detecting deterioration on rotating machinery in the
    form of Machinery Fault Simulator (MFS) performed in the lab. The study enhances the knowledge of
    signal pattern of misalignment phenomenon as compared to baseline signal pattern obtained from
    normal condition of rotating shaft. The focus of this experiment was on misalignment problem. There
    are two types of misalignment which are parallel and angular misalignment. Input in frequency was
    selected for motor movement and the shaft start to rotate. The vibration signal from the shaft was
    acquired using in built tachometer in the MFS. In this experiment, data shows that the vibration occurs
    in different shape of the amplitude at different speed of the angular motion. In baseline test, the
    amplitude values are fluctuated at every accelerometer channels. Meanwhile, the amplitude on the
    angular test shows that the amplitude is higher at axial axes only compared to both axes. Meanwhile,
    for the second test, the angle of 15o
    was applied at inboard in the system caused to the misalignment of
    the shaft. In vibration analysis, the misalignment of the shaft was detected from the changes of the
    amplitude at three different axes. Copyright © 2016 Penerbit Akademia Baru - All rights reserved.
  6. Anis S, Zainal ZA, Bakar MZ
    Bioresour Technol, 2013 May;136:117-25.
    PMID: 23567671 DOI: 10.1016/j.biortech.2013.02.049
    A new effective RF tar thermocatalytic treatment process with low energy intensive has been proposed to remove tar from biomass gasification. Toluene and naphthalene as biomass tar model compounds were removed via both thermal and catalytic treatment over a wide temperature range from 850 °C to 1200 °C and 450 °C to 900 °C, respectively at residence time of 0-0.7 s. Thermal characteristics of the new technique are also described in this paper. This study clearly clarified that toluene was much easier to be removed than naphthalene. Soot was found as the final product of thermal treatment of the tar model and completely removed during catalytic treatment. Radical reactions generated by RF non-thermal effect improve the tar removal. The study showed that Y-zeolite has better catalytic activity compared to dolomite on toluene and naphthalene removal due to its acidic nature and large surface area, even at lower reaction temperature of about 550 °C.
  7. Ong ST, Lee CK, Zainal Z
    Bioresour Technol, 2007 Nov;98(15):2792-9.
    PMID: 17400446
    Wastewaters from textile industries may contain a variety of dyes that have to be removed before their discharge into waterways. Rice hull, an agricultural by-product, was modified using ethylenediamine to introduce active sites on its surface to enable it to function as a sorbent for both basic and reactive dyes. The sorption characteristics of Basic Blue 3 (BB3) and Reactive Orange 16 (RO16) by ethylenediamine modified rice hull (MRH) were studied under various experimental conditions. Sorption was pH and concentration dependent. Simultaneous removal of BB3 and RO16 occurred at pH greater than 4. The kinetics of dye sorption fitted a pseudo-second order rate expression. Increase in agitation rate had no effect on the sorption of BB3 but increased uptake of RO16 on MRH. Decreasing particle size increased the uptake of dyes in binary dye solutions. Equilibrium data could be fitted into both the Langmuir and Freundlich isotherms. Maximum sorption capacities calculated from the Langmuir model are 14.68 and 60.24 mg/g for BB3 and RO16, respectively in binary dye solutions. This corresponds to an enhancement of 4.5 and 2.4 fold, respectively, compared to single dye solutions. MRH therefore has the potential of being used as an efficient sorbent for the removal of both dyes in textile wastewaters.
  8. Hussein MZ, Zainal Z, Yaziz I, Beng TC
    PMID: 11413839
    Layered double hydroxide of Mg-Al-carbonate system (MACH) was prepared and its heat-treated product (MACHT) was obtained by calcination at 500 degrees C. The resulting materials were used as an adsorbent for removal of color from synthetic textile wastewater (STW) and textile wastewater (TWW). Batch kinetic study showed that these materials are an efficient adsorbent for textile dye. The maximum adsorption capacities between 16 to 32 mg of dyes per g of adsorbent was obtained by fitting the adsorption data to the Langmuir adsorption Isotherm. It was found that the adsorption capacity of MACHT is higher than MACH.
  9. Jamal F, Pit S, Isahak I, Abdullah N, Zainal Z, Abdullah R, et al.
    PMID: 3660072
    A total of 90 cases of pneumococcal infections were identified at a major referral hospital in Kuala Lumpur, Malaysia during a study period of four years. Pneumonia was the most common clinical presentation (41 cases) followed by meningitis (19 cases). Of 48 patients who were followed-up during the microbiology consultation round, 11 died, 9 were children below two years old. Capsular typing was carried out on 57 strains of Streptococcus pneumoniae isolated from blood and body fluids of 43 children and 14 adults. 38 strains isolated from pharyngeal specimens were also typed. Types 6A (11 strains), 6B (7 strains), 14 (8 strains) and 19A (8 strains) predominated in children. The strains from older patients comprised 3 isolates from cerebrospinal fluid (types 18B, 6B and 14), five from blood (4 strains, type 1 and 1 strain, type 4) and six from pus (1 strain, type 14, 3 strains type 23F and 2 strains type 34). The isolates from pharyngeal specimens belonged to capsular type similar to those implicated in infections. 90% of the types reported in this study are included in the 23 valent pneumococcal vaccines. Minimum inhibitory concentrations of penicillin, cefuroxime, chloramphenicol and rifampicin were determined for selected strains. 4.1% of isolates were resistant to penicillin (3/74), 4.5% to cefuroxime (2/44), 6.5% to chloramphenicol (3/46) and 14.6% to rifampicin (6/41).
  10. Zainal Z, Sajari R, Ismail I
    J. Biochem. Mol. Biol. Biophys., 2002 Dec;6(6):415-9.
    PMID: 14972797
    Ornithine decarboxylase (ODC) is an enzyme of one of the two pathways of putrescine biosynthesis in plants. The genes encoding ODC have previously been cloned from Datura stramonium and human. Using differential screening, we isolated ODC cDNA clone from a cDNA library of ripening Capsicum annuum fruit. The cDNA clone designated CUKM10 contains an insert of 1523 bp. The longest open reading frame potentially encodes a peptide of 345 amino acids with an estimated molecular mass of 47 kDa and exhibit striking similarity to other ODCs. Expression analysis showed that the capODC hybridised to a single transcript with a size of 1.7 kb. The capODC transcript was first observed in early ripening and increased steadily until it reached fully ripening stage. From the observation it is suggested that capODC is developmentally regulated especially during later stage of ripening.
  11. Bahrudin NN, Nawi MA, Zainal Z
    Int J Biol Macromol, 2020 Dec 15;165(Pt B):2462-2474.
    PMID: 33736271 DOI: 10.1016/j.ijbiomac.2020.10.148
    The removal of methyl orange (MO) dye has been studied using TiO2/chitosan-montmorillonite (TiO2/Cs-MT) bilayer photocatalyst which also functions as an adsorbent. The dye removal experiments were conducted in the dark and under UV-Vis light irradiation via adsorption and photocatalysis-adsorption processes, respectively. The adsorption modelings were employed on the dark experimental data and compared with the immobilized and suspended Cs-Mt counterparts. It was found that the bilayer photocatalyst closely followed the adsorption properties of immobilized Cs-Mt which obeyed the pseudo-second-order kinetic and film diffusion models. Fluorescent analysis revealed that the charge separation was enhanced in the presence of Cs-Mt as a sub-layer of TiO2. Under light irradiation, the photocatalytic activity of TiO2/Cs-MT corresponded to its adsorption counterpart trend and was optimized at pH 6.5 and 20 mg L-1 of MO dye solution. High removal efficiency and synergism of MO by TiO2/Cs-MT over TiO2 single layer were observed throughout the 10 cycles of application due to contribution of adsorption of Cs-Mt sub-layer and photocatalysis by TiO2 top layer.
  12. Zainal Z, Jamal J, Abdullah A, Abdullah A
    Family Practitioner, 1986;9(3):35-37.
  13. ul Hassan MN, Zainal Z, Ismail I
    Plant Biotechnol J, 2015 Aug;13(6):727-39.
    PMID: 25865366 DOI: 10.1111/pbi.12368
    Plants have evolved numerous constitutive and inducible defence mechanisms to cope with biotic and abiotic stresses. These stresses induce the expression of various genes to activate defence-related pathways that result in the release of defence chemicals. One of these defence mechanisms is the oxylipin pathway, which produces jasmonates, divinylethers and green leaf volatiles (GLVs) through the peroxidation of polyunsaturated fatty acids (PUFAs). GLVs have recently emerged as key players in plant defence, plant-plant interactions and plant-insect interactions. Some GLVs inhibit the growth and propagation of plant pathogens, including bacteria, viruses and fungi. In certain cases, GLVs released from plants under herbivore attack can serve as aerial messengers to neighbouring plants and to attract parasitic or parasitoid enemies of the herbivores. The plants that perceive these volatile signals are primed and can then adapt in preparation for the upcoming challenges. Due to their 'green note' odour, GLVs impart aromas and flavours to many natural foods, such as vegetables and fruits, and therefore, they can be exploited in industrial biotechnology. The aim of this study was to review the progress and recent developments in research on the oxylipin pathway, with a specific focus on the biosynthesis and biological functions of GLVs and their applications in industrial biotechnology.
  14. Salleh A, Zainuddin ZZ, Tarmizi RMM, Yap CK, Jeng CR, Zamri-Saad M
    Animals (Basel), 2021 Apr 20;11(4).
    PMID: 33923894 DOI: 10.3390/ani11041173
    An adult female Sumatran rhinoceros was observed with a swelling in the left infraorbital region in March 2017. The swelling rapidly grew into a mass. A radiograph revealed a cystic radiolucent area in the left maxilla. In June 2017, the rhinoceros was euthanized. At necropsy, the infraorbital mass measured 21 cm × 30 cm. Samples of the infraorbital mass, left parotid gland, and left masseter muscle were collected for histopathology (Hematoxylin & Eosin, Von Kossa, Masson's trichrome, cytokeratin AE1/AE3, EMA, p53, and S-100). Numerous neoplastic epithelial cells showing pleomorphism and infiltration were observed. Islands of dentinoid material containing ghost cells and keratin pearls were observed with the aid of the two special histochemistry stains. Mitotic figures were rarely observed. All the neoplastic odontogenic cells and keratin pearls showed an intense positive stain for cytokeratin AE1/AE3, while some keratin pearls showed mild positive stains for S-100. All samples were negative for p53 and S-100 immunodetection. The mass was diagnosed as a dentinogenic ghost cell tumor.
  15. Barahuie F, Hussein MZ, Fakurazi S, Zainal Z
    Int J Mol Sci, 2014;15(5):7750-86.
    PMID: 24802876 DOI: 10.3390/ijms15057750
    Layered hydroxides (LHs) have recently fascinated researchers due to their wide application in various fields. These inorganic nanoparticles, with excellent features as nanocarriers in drug delivery systems, have the potential to play an important role in healthcare. Owing to their outstanding ion-exchange capacity, many organic pharmaceutical drugs have been intercalated into the interlayer galleries of LHs and, consequently, novel nanodrugs or smart drugs may revolutionize in the treatment of diseases. Layered hydroxides, as green nanoreservoirs with sustained drug release and cell targeting properties hold great promise of improving health and prolonging life.
  16. Abdollahi Y, Abdullah AH, Zainal Z, Yusof NA
    Int J Mol Sci, 2012;13(1):302-15.
    PMID: 22312253 DOI: 10.3390/ijms13010302
    Photocatalytic degradation of p-cresol was carried out using ZnO under UV irradiation. The amount of photocatalyst, concentration of p-cresol and pH were studied as variables. The residual concentration and mineralization of p-cresol was monitored using a UV-visible spectrophotometer and total organic carbon (TOC) analyzer, respectively. The intermediates were detected by ultra high pressure liquid chromatography (UPLC). The highest photodegradation of p-cresol was observed at 2.5 g/L of ZnO and 100 ppm of p-cresol. P-cresol photocatalytic degradation was favorable in the pH range of 6-9. The detected intermediates were 4-hydroxy-benzaldehyde and 4-methyl-1,2-benzodiol. TOC studies show that 93% of total organic carbon was removed from solution during irradiation time. Reusability shows no significant reduction in photocatalytic performance in photodegrading p-cresol.
  17. Abdollahi Y, Abdullah AH, Gaya UI, Zainal Z, Yusof NA
    Environ Technol, 2012 Jun;33(10-12):1183-9.
    PMID: 22856288
    The effective removal of o-cresol is currently both an environmental and economic challenge. ZnO is not only an efficient photocatalyst but is also cost effective, as its photoabsorption can extend from the ultraviolet (UV) to the visible range thereby allowing the use of inexpensive visible light sources, such as sunlight. The principal objective of the present work is to investigate the visible light-driven removal of o-cresol from aqueous solution in the presence of 1.0 wt% Mn-doped ZnO. To measure the efficiency ofphotodegradation, the variables studied included the amount ofphotocatalyst, concentration of o-cresol, pH and irradiation time. The concentration ofo-cresol and residual organic carbon was monitored using a UV-visible spectrophotometer, ultra high-pressure liquid chromatography and a total organic carbon analyser. The optimum conditions under which the photodegradation of o-cresol was most favourable corresponded to 1.5 g/l ZnO, 35 ppm o-cresol and pH 9. The ZnO-1 wt% Mn photoprocess has demonstrated reusability for more than three times, which warrants its scale-up from laboratory- to in industrial-scale application.
  18. Hussein MZ, Rahman NS, Sarijo SH, Zainal Z
    Int J Mol Sci, 2012;13(6):7328-42.
    PMID: 22837696 DOI: 10.3390/ijms13067328
    Herbicides, namely 4-(2,4-dichlorophenoxy) butyrate (DPBA) and 2-(3-chlorophenoxy) propionate (CPPA), were intercalated simultaneously into the interlayers of zinc layered hydroxide (ZLH) by direct reaction of zinc oxide with both anions under aqueous environment to form a new nanohybrid containing both herbicides labeled as ZCDX. Successful intercalation of both anions simultaneously into the interlayer gallery space of ZLH was studied by PXRD, with basal spacing of 28.7 Å and supported by FTIR, TGA/DTG and UV-visible studies. Simultaneous release of both CPPA and DPBA anions into the release media was found to be governed by a pseudo second-order equation. The loading and percentage release of the DPBA is higher than the CPPA anion, which indicates that the DPBA anion was preferentially intercalated into and released from the ZLH interlayer galleries. This work shows that layered single metal hydroxide, particularly ZLH, is a suitable host for the controlled release formulation of two herbicides simultaneously.
  19. Hussein MZ, Al Ali SH, Zainal Z, Hakim MN
    Int J Nanomedicine, 2011;6:1373-83.
    PMID: 21796241 DOI: 10.2147/IJN.S21567
    An ellagic acid (EA)-zinc layered hydroxide (ZLH) nanohybrid (EAN) was synthesized under a nonaqueous environment using EA and zinc oxide (ZnO) as the precursors. Powder X-ray diffraction showed that the basal spacing of the nanohybrid was 10.4 Å, resulting in the spatial orientation of EA molecules between the interlayers of 22.5° from z-axis with two negative charges at 8,8' position of the molecules pointed toward the ZLH interlayers. FTIR study showed that the intercalated EA spectral feature is generally similar to that of EA, but with bands slightly shifted. This indicates that some chemical bonding of EA presence between the nanohybrid interlayers was slightly changed, due to the formation of host-guest interaction. The nanohybrid is of mesopores type with 58.8% drug loading and enhanced thermal stability. The release of the drug active, EA from the nanohybrid was found to be sustained and therefore has good potential to be used as a drug controlled-release formulation. In vitro bioassay study showed that the EAN has a mild effect on the hepatocytes cells, similar to its counterpart, free EA.
  20. Ebrahimiasl S, Yunus WM, Kassim A, Zainal Z
    Sensors (Basel), 2011;11(10):9207-16.
    PMID: 22163690 DOI: 10.3390/s111009207
    Nanocrystalline SnO(x) (x = 1-2) thin films were prepared on glass substrates by a simple chemical bath deposition method. Triethanolamine was used as complexing agent to decrease time and temperature of deposition and shift the pH of the solution to the noncorrosive region. The films were characterized for composition, surface morphology, structure and optical properties. X-ray diffraction analysis confirms that SnO(x) thin films consist of a polycrystalline structure with an average grain size of 36 nm. Atomic force microscopy studies show a uniform grain distribution without pinholes. The elemental composition was evaluated by energy dispersive X-ray spectroscopy. The average O/Sn atomic percentage ratio is 1.72. Band gap energy and optical transition were determined from optical absorbance data. The film was found to exhibit direct and indirect transitions in the visible spectrum with band gap values of about 3.9 and 3.7 eV, respectively. The optical transmittance in the visible region is 82%. The SnO(x) nanocrystals exhibit an ultraviolet emission band centered at 392 nm in the vicinity of the band edge, which is attributed to the well-known exciton transition in SnO(x). Photosensitivity was detected in the positive region under illumination with white light.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links