Displaying publications 1 - 20 of 51 in total

Abstract:
Sort:
  1. Phuna ZX, Madhavan P
    Int J Neurosci, 2023 Dec;133(10):1071-1089.
    PMID: 35282779 DOI: 10.1080/00207454.2022.2045290
    Alzheimer disease (AD) is a progressive neurological disorder that accounted for the most common cause of dementia in the elderly population. Lately, 'infection hypothesis' has been proposed where the infection of microbes can lead to the pathogenesis of AD. Among different types of microbes, human immunodeficiency virus-1 (HIV-1), herpes simplex virus-1 (HSV-1), Chlamydia pneumonia, Spirochetes and Candida albicans are frequently detected in the brain of AD patients. Amyloid-beta protein has demonstrated to exhibit antimicrobial properties upon encountering these pathogens. It can bind to microglial cells and astrocytes to activate immune response and neuroinflammation. Nevertheless, HIV-1 and HSV-1 can develop into latency whereas Chlamydia pneumonia, Spirochetes and Candida albicans can cause chronic infections. At this stage, the DNA of microbes remains undetectable yet active. This can act as the prolonged pathogenic stimulus that over-triggers the expression of Aβ-related genes, which subsequently lead to overproduction and deposition of Aβ plaque. This review will highlight the pathogenesis of each of the stated microbial infection, their association in AD pathogenesis as well as the effect of chronic infection in AD progression. Potential therapies for AD by modulating the microbiome have also been suggested. This review will aid in understanding the infectious manifestations of AD.
    Matched MeSH terms: Amyloid beta-Peptides/metabolism
  2. Dutta S, Rahman S, Ahmad R, Kumar T, Dutta G, Banerjee S, et al.
    Expert Rev Neurother, 2021 12;21(12):1455-1472.
    PMID: 34756134 DOI: 10.1080/14737175.2021.2003705
    INTRODUCTION: Dementia is a progressive neurodegenerative disorder impairing memory and cognition. Alzheimer's Disease, followed by vascular dementia - the most typical form. Risk factors for vascular dementia include diabetes, cardiovascular disease, hyperlipidemia. Lipids' levels are significantly associated with vascular changes in the brain.

    AREAS COVERED: The present article reviews the cholesterol metabolism in the brain, which includes: the synthesis, transport, storage, and elimination process. Additionally, it reviews the role of cholesterol in the pathogenesis of dementia and statin as a therapeutic intervention in dementia. In addition to the above, it further reviews evidence in support of as well as against statin therapy in dementia, recent updates of statin pharmacology, and demerits of use of statin pharmacotherapy.

    EXPERT OPINION: Amyloid-β peptides and intraneuronal neurofibrillary tangles are markers of Alzheimer's disease. Evidence shows cholesterol modulates the functioning of enzymes associated with Amyloid-β peptide processing and synthesis. Lowering cholesterol using statin may help prevent or delay the progression of dementia. This paper reviews the role of statin in dementia and recommends extensive future studies, including genetic research, to obtain a precise medication approach for patients with dementia.

    Matched MeSH terms: Amyloid beta-Peptides/metabolism
  3. Maurya R, Bhattacharjee G, Khambhati K, Gohil N, Singh P, Mani I, et al.
    Prog Mol Biol Transl Sci, 2023;196:261-270.
    PMID: 36813361 DOI: 10.1016/bs.pmbts.2022.09.006
    Amyloid precursor protein (APP) is a membrane protein expressed in several tissues. The occurrence of APP is predominant in synapses of nerve cells. It acts as a cell surface receptor and plays a vital role as a regulator of synapse formation, iron export and neural plasticity. It is encoded by the APP gene that is regulated by substrate presentation. APP is a precursor protein activated by proteolytic cleavage and thereby generating amyloid beta (Aβ) peptides which eventually form amyloid plaques that accumulate in Alzheimer's disease patients' brains. In this chapter, we highlight basic mechanism, structure, expression patterns and cleavage of amyloid plaques, and its diagnosis and potential treatment for Alzheimer's disease.
    Matched MeSH terms: Amyloid beta-Peptides/metabolism
  4. Pang LW, Hamzah S, Tan SLJ, Mah SH, Yow HY
    Neurochem Res, 2023 Dec;48(12):3485-3511.
    PMID: 37578655 DOI: 10.1007/s11064-023-04005-8
    Xanthones are natural secondary metabolites that possess great potential as neuroprotective agents due to their prominent biological effects on Alzheimer's disease (AD). However, their underlying mechanisms in AD remain unclear. This study aimed to systematically review the effects and mechanisms of xanthones in cell culture and animal studies, gaining a better understanding of their roles in AD. A comprehensive literature search was conducted in the Medline and Scopus databases using specific keywords to identify relevant articles published up to June 2023. After removing duplicates, all articles were imported into the Rayyan software. The article titles were screened based on predefined inclusion and exclusion criteria. Relevant full-text articles were assessed for biases using the OHAT tool. The results were presented in tables. Xanthones have shown various pharmacological effects towards AD from the 21 preclinical studies included. Cell culture studies demonstrated the anti-cholinesterase activity of xanthones, which protects against the loss of acetylcholine. Xanthones exhibited neuroprotective effects by promoting cell viability, reducing the accumulation of β-amyloid and tau aggregation. The administration of xanthones in animal models resulted in a reduction in neuronal inflammation by decreasing microglial and astrocyte burden. In terms of molecular mechanisms, xanthones prevented neuroinflammation through the modulation of signaling pathways, including TLR4/TAK1/NF-κB and MAPK pathways. Mechanisms such as activation of caspase-3 and -9 and suppression of endoplasmic reticulum stress were also reported. Despite the various neuroprotective effects associated with xanthones, there are limited studies reported on their underlying mechanisms in AD. Further studies are warranted to fully understand their potential roles in AD.
    Matched MeSH terms: Amyloid beta-Peptides/metabolism
  5. Bakrim S, Aboulaghras S, El Menyiy N, El Omari N, Assaggaf H, Lee LH, et al.
    Molecules, 2022 Dec 19;27(24).
    PMID: 36558176 DOI: 10.3390/molecules27249043
    Alzheimer's disease remains one of the most widespread neurodegenerative reasons for dementia worldwide and is associated with considerable mortality and morbidity. Therefore, it has been considered a priority for research. Indeed, several risk factors are involved in the complexity of the therapeutic ways of this pathology, including age, traumatic brain injury, genetics, exposure to aluminum, infections, diabetes, vascular diseases, hypertension, dyslipidemia, and obesity. The pathophysiology of Alzheimer's disease is mostly associated with hyperphosphorylated protein in the neuronal cytoplasm and extracellular plaques of the insoluble β-amyloid peptide. Therefore, the management of this pathology needs the screening of drugs targeting different pathological levels, such as acetylcholinesterase (AchE), amyloid β formation, and lipoxygenase inhibitors. Among the pharmacological strategies used for the management of Alzheimer's disease, natural drugs are considered a promising therapeutic strategy. Indeed, bioactive compounds isolated from different natural sources exhibit important anti-Alzheimer effects by their effectiveness in promoting neuroplasticity and protecting against neurodegeneration as well as neuroinflammation and oxidative stress in the brain. These effects involve different sub-cellular, cellular, and/or molecular mechanisms, such as the inhibition of acetylcholinesterase (AchE), the modulation of signaling pathways, and the inhibition of oxidative stress. Moreover, some nanoparticles were recently used as phytochemical delivery systems to improve the effects of phytochemical compounds against Alzheimer's disease. Therefore, the present work aims to provide a comprehensive overview of the key advances concerning nano-drug delivery applications of phytochemicals for Alzheimer's disease management.
    Matched MeSH terms: Amyloid beta-Peptides/metabolism
  6. Laili IN, Nasir MHM, Jufri NF, Ibrahim FW, Hamid A
    Biomed Pharmacother, 2023 May;161:114501.
    PMID: 36931027 DOI: 10.1016/j.biopha.2023.114501
    Lysosome is a primary degradative organelle and is crucial in cellular homeostasis. A reduction in its function due to ageing has been associated with the development of Alzheimer's disease (AD), a common neurodegenerative disorder characterised by the deposition of neurotoxic amyloid plaque in the brain and cerebral vessel walls. The breakdown of the blood-brain barrier (BBB) plays a vital role in the pathogenesis of AD. However, the impact of lysosomal dysfunction on brain endothelial cells, the key component of the BBB, in the disease progression is yet to be fully understood. In this study, human brain endothelial cells (HBEC-5i) were exposed to a lysosomotropic compound, chloroquine (CQ) for 24 h. Cell viability was assessed with the 3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide (MTT) assay to determine the inhibitory concentration (IC) at IC10 (17.5 µM), IC25 (70.5 µM), and IC50 (125 µM). The morphological changes observed include vacuoles arrested in the cytosols and cell shrinkage that were more prominent at IC25 and IC50. Lysosomal dysfunction was evaluated by measuring the lysosomal-associated membrane protein-1 (LAMP-1) and microtubule-associated protein light chain 3-II (LC3-II) using the capillary-based immunoassay. LC3-II was significantly increased at IC25 and IC50 (p 
    Matched MeSH terms: Amyloid beta-Peptides/metabolism
  7. Wee AS, Nhu TD, Khaw KY, Tang KS, Yeong KY
    Curr Neuropharmacol, 2023;21(10):2036-2048.
    PMID: 36372924 DOI: 10.2174/1570159X21999221111102343
    Alzheimer's disease (AD) and type 2 diabetes mellitus (DM) are more prevalent with ageing and cause a substantial global socio-economic burden. The biology of these two conditions is well elaborated, but whether AD and type 2 DM arise from coincidental roots in ageing or are linked by pathophysiological mechanisms remains unclear. Research findings involving animal models have identified mechanisms shared by both AD and type 2 DM. Deposition of β-amyloid peptides and formation of intracellular neurofibrillary tangles are pathological hallmarks of AD. Type 2 DM, on the other hand, is a metabolic disorder characterised by hyperglycaemia and insulin resistance. Several studies show that improving type 2 DM can delay or prevent the development of AD, and hence, prevention and control of type 2 DM may reduce the risk of AD later in life. Alpha-glucosidase is an enzyme that is commonly associated with hyperglycaemia in type 2 DM. However, it is uncertain if this enzyme may play a role in the progression of AD. This review explores the experimental evidence that depicts the relationship between dysregulation of glucose metabolism and AD. We also delineate the links between alpha-glucosidase and AD and the potential role of alpha-glucosidase inhibitors in treating AD.
    Matched MeSH terms: Amyloid beta-Peptides/metabolism
  8. Ashique S, Sirohi E, Kumar S, Rihan M, Mishra N, Bhatt S, et al.
    Curr Med Chem, 2024;31(31):5004-5026.
    PMID: 37497712 DOI: 10.2174/0929867331666230727103553
    Alzheimer's disease (AD) is a complex neurological disorder that results in cognitive decline. The incidence rates of AD have been increasing, particularly among individuals 60 years of age or older. In June 2021, the US FDA approved aducanumab, the first humanized monoclonal antibody, as a potential therapeutic option for AD. Clinical trials have shown this drug to effectively target the accumulation of Aβ (beta-amyloid) plaques in the brain, and its effectiveness is dependent on the dosage and duration of treatment. Additionally, aducanumab has been associated with improvements in cognitive function. Biogen, the pharmaceutical company responsible for developing and marketing aducanumab, has positioned it as a potential breakthrough for treating cerebral damage in AD. However, the drug has raised concerns due to its high cost, limitations, and potential side effects. AD is a progressive neurological condition that affects memory, cognitive function, and behaviour. It significantly impacts the quality of life of patients and caregivers and strains healthcare systems. Ongoing research focuses on developing disease-modifying therapies that can halt or slow down AD progression. The pathogenesis of AD involves various molecular cascades and signaling pathways. However, the formation of extracellular amyloid plaques is considered a critical mechanism driving the development and progression of the disease. Aducanumab, as a monoclonal antibody, has shown promising results in inhibiting amyloid plaque formation, which is the primary pathological feature of AD. This review explores the signaling pathways and molecular mechanisms through which aducanumab effectively prevents disease pathogenesis in AD.
    Matched MeSH terms: Amyloid beta-Peptides/metabolism
  9. Anada RP, Wong KT, Malicdan MC, Goh KJ, Hayashi Y, Nishino I, et al.
    Amyloid, 2014 Jun;21(2):138-9.
    PMID: 24601867 DOI: 10.3109/13506129.2014.889675
    Matched MeSH terms: Amyloid beta-Peptides/metabolism*
  10. Ishima Y, Mimono A, Tuan Giam Chuang V, Fukuda T, Kusumoto K, Okuhira K, et al.
    IUBMB Life, 2020 04;72(4):641-651.
    PMID: 31794135 DOI: 10.1002/iub.2203
    Deposition of amyloid protein, particularly Aβ1-42 , is a major contributor to the onset of Alzheimer's disease (AD). However, almost no deposition of Aβ in the peripheral tissues could be found. Human serum albumin (HSA), the most abundant protein in the blood, has been reported to inhibit amyloid formation through binding Aβ, which is believed to play an important role in the peripheral clearance of Aβ. We identified the Aβ binding site on HSA and developed HSA mutants with high binding capacities for Aβ using a phage display method. HSA fragment 187-385 (Domain II) was found to exhibit the highest binding capacity for Aβ compared with the other two HSA fragments. To elucidate the sequence that forms the binding site for Aβ on Domain II, a random screening of Domain II display phage biopanning was constructed. A number of mutants with higher Aβ binding capacities than the wild type were identified. These mutants exhibited stronger scavenging abilities than the wild type, as revealed via in vitro equilibrium dialysis of Aβ experiments. These findings provide useful basic data for developing a safer alternative therapy than Aβ vaccines and for application in plasma exchange as well as extracorporeal dialysis.
    Matched MeSH terms: Amyloid beta-Peptides/metabolism*
  11. Kim SE, Lee B, Jang H, Chin J, Khoo CS, Choe YS, et al.
    Alzheimers Res Ther, 2021 02 19;13(1):48.
    PMID: 33608041 DOI: 10.1186/s13195-021-00787-7
    BACKGROUND: The presence of ß-amyloid (Aß) in the brain can be identified using amyloid PET. In clinical practice, the amyloid PET is interpreted based on dichotomous visual rating, which renders focal Aß accumulation be read as positive for Aß. However, the prognosis of patients with focal Aß deposition is not well established. Thus, we investigated cognitive trajectories of patients with focal Aß deposition.

    METHODS: We followed up 240 participants (112 cognitively unimpaired [CU], 78 amnestic mild cognitive impairment [aMCI], and 50 Alzheimer's disease (AD) dementia [ADD]) for 2 years from 9 referral centers in South Korea. Participants were assessed with neuropsychological tests and 18F-flutemetamol (FMM) positron emission tomography (PET). Ten regions (frontal, precuneus/posterior cingulate (PPC), lateral temporal, parietal, and striatum of each hemisphere) were visually examined in the FMM scan, and participants were divided into three groups: No-FMM, Focal-FMM (FMM uptake in 1-9 regions), and Diffuse-FMM. We used mixed-effects model to investigate the speed of cognitive decline in the Focal-FMM group according to the cognitive level, extent, and location of Aß involvement, in comparison with the No- or Diffuse-FMM group.

    RESULTS: Forty-five of 240 (18.8%) individuals were categorized as Focal-FMM. The rate of cognitive decline in the Focal-FMM group was faster than the No-FMM group (especially in the CU and aMCI stage) and slower than the Diffuse-FMM group (in particular in the CU stage). Within the Focal-FMM group, participants with FMM uptake to a larger extent (7-9 regions) showed faster cognitive decline compared to those with uptake to a smaller extent (1-3 or 4-6 regions). The Focal-FMM group was found to have faster cognitive decline in comparison with the No-FMM when there was uptake in the PPC, striatum, and frontal cortex.

    CONCLUSIONS: When predicting cognitive decline of patients with focal Aß deposition, the patients' cognitive level, extent, and location of the focal involvement are important.

    Matched MeSH terms: Amyloid beta-Peptides/metabolism
  12. Rajah Kumaran K, Yunusa S, Perimal E, Wahab H, Müller CP, Hassan Z
    J Alzheimers Dis, 2023;91(2):507-530.
    PMID: 36502321 DOI: 10.3233/JAD-220666
    The aging population increases steadily because of a healthy lifestyle and medical advancements in healthcare. However, Alzheimer's disease (AD) is becoming more common and problematic among older adults. AD-related cases show an increasing trend annually, and the younger age population may also be at risk of developing this disorder. AD constitutes a primary form of dementia, an irreversible and progressive brain disorder that steadily damages cognitive functions and the ability to perform daily tasks. Later in life, AD leads to death as a result of the degeneration of specific brain areas. Currently, the cause of AD is poorly understood, and there is no safe and effective therapeutic agent to cure or slow down its progression. The condition is entirely preventable, and no study has yet demonstrated encouraging findings in terms of treatment. Identifying this disease's pathophysiology can help researchers develop safe and efficient therapeutic strategies to treat this ailment. This review outlines and discusses the pathophysiology that resulted in the development of AD including amyloid-β plaques, tau neurofibrillary tangles, neuroinflammation, oxidative stress, cholinergic dysfunction, glutamate excitotoxicity, and changes in neurotrophins level may sound better based on the literature search from Scopus, PubMed, ScienceDirect, and Google Scholar. Potential therapeutic strategies are discussed to provide more insights into AD mechanisms by developing some possible pharmacological agents for its treatment.
    Matched MeSH terms: Amyloid beta-Peptides/metabolism
  13. Alharbi KS, Javed Shaikh MA, Imam SS, Alshehri S, Ghoneim MM, Almalki WH, et al.
    Curr Med Chem, 2023;30(18):2061-2074.
    PMID: 36415096 DOI: 10.2174/0929867330666221122115212
    More than 10 million people worldwide have Alzheimer's disease (AD), a degenerative neurological illness and the most prevalent form of dementia. AD's progression in memory loss, cognitive deterioration, and behavioral changes are all symptoms. Amyloid-beta 42 (Aβ42), the hyperphosphorylated forms of microtubule-associated tau protein, and other cellular and systemic alterations are all factors that contribute to cognitive decline in AD. Rather than delivering a possible cure, present therapy strategies focus on reducing disease symptoms. It has long been suggested that various naturally occurring small molecules (plant extract products and microbiological isolates, for example) could be beneficial in preventing or treating disease. Small compounds, such as flavonoids, have attracted much interest recently due to their potential to alleviate cellular stress. Flavonoids have been proven helpful in various ways, including antioxidants, anti-inflammatory agents, and anti-apoptotic agents, but their mechanism remains unknown. The flavonoid therapy of Alzheimer's disease focuses on this review, which includes a comprehensive literature analysis.
    Matched MeSH terms: Amyloid beta-Peptides/metabolism
  14. Tan FHP, Azzam G, Najimudin N, Shamsuddin S, Zainuddin A
    Mol Neurobiol, 2023 Aug;60(8):4716-4730.
    PMID: 37145377 DOI: 10.1007/s12035-023-03368-x
    Alzheimer's disease (AD) is the most common neurological ailment worldwide. Its process comprises the unique aggregation of extracellular senile plaques composed of amyloid-beta (Aβ) in the brain. Aβ42 is the most neurotoxic and aggressive of the Aβ42 isomers released in the brain. Despite much research on AD, the complete pathophysiology of this disease remains unknown. Technical and ethical constraints place limits on experiments utilizing human subjects. Thus, animal models were used to replicate human diseases. The Drosophila melanogaster is an excellent model for studying both physiological and behavioural aspects of human neurodegenerative illnesses. Here, the negative effects of Aβ42-expression on a Drosophila AD model were investigated through three behavioural assays followed by RNA-seq. The RNA-seq data was verified using qPCR. AD Drosophila expressing human Aβ42 exhibited degenerated eye structures, shortened lifespan, and declined mobility function compared to the wild-type Control. RNA-seq revealed 1496 genes that were differentially expressed from the Aβ42-expressing samples against the control. Among the pathways that were identified from the differentially expressed genes include carbon metabolism, oxidative phosphorylation, antimicrobial peptides, and longevity-regulating pathways. While AD is a complicated neurological condition whose aetiology is influenced by a number of factors, it is hoped that the current data will be sufficient to give a general picture of how Aβ42 influences the disease pathology. The discovery of molecular connections from the current Drosophila AD model offers fresh perspectives on the usage of this Drosophila which could aid in the discovery of new anti-AD medications.
    Matched MeSH terms: Amyloid beta-Peptides/metabolism
  15. Zaki RM, Ramasamy K, Ahmad Alwi NA, Mohd Yusoff R, Lim SM
    Probiotics Antimicrob Proteins, 2024 Feb;16(1):62-75.
    PMID: 36443559 DOI: 10.1007/s12602-022-10009-7
    Alzheimer's disease (AD) is characterized by aggregation of amyloid beta (Aβ) plaque. RhoA may serve as a potential target for prevention against AD given its role in the amyloidogenic pathway. The recent emergence of the gut-brain axis has linked lactic acid bacteria (LAB) to neuroprotection against AD. This study assessed the importance of RhoA inhibition in mediating the neuroprotective potential of LAB. To this end, de Man, Rogosa and Sharpe (MRS) broth fermented by lactobacilli or pediococci were tested against SK-N-SH (a human neuroblastoma cell line) in the presence of RhoA activator II for 24 h after which the RhoA activity was measured using the G-LISA Kit. Fluorescence staining of f-actin stress fibres was performed to validate RhoA inhibition. SK-N-SH was transfected with plasmid expressing amyloid precursor protein (APP) gene. The Aβ concentration in transfected cells exposed to LAB-derived cell free supernatant (CFS) in the presence of RhoA activator II was measured using the ELISA kit. Furthermore, this study measured organic acids in LAB-derived CFS using the gas chromatography. It was found that LAB-derived CFS yielded strain-dependent inhibition of RhoA, with LAB6- and LAB12-derived CFS being the most potent Pediococcal- and Lactiplantibacillus-based RhoA inhibitor, respectively. Lesser stress fibres were formed under treatment with LAB-derived CFS. The LAB-derived CFS also significantly inhibited Aβ in SK-N-SH transfected with APP gene in the presence of RhoA activator II. The LAB-derived CFS was presented with increased lactic acid, acetic acid, butyric acid and propionic acid. The present findings warrant in-depth study using animal models.
    Matched MeSH terms: Amyloid beta-Peptides/metabolism
  16. Hood RJ, Sanchez-Bezanilla S, Beard DJ, Rust R, Turner RJ, Stuckey SM, et al.
    J Neurochem, 2023 Dec;167(6):733-752.
    PMID: 38010732 DOI: 10.1111/jnc.16008
    We have previously demonstrated that a cortical stroke causes persistent impairment of hippocampal-dependent cognitive tasks concomitant with secondary neurodegenerative processes such as amyloid-β accumulation in the hippocampus, a region remote from the primary infarct. Interestingly, there is emerging evidence suggesting that deposition of amyloid-β around cerebral vessels may lead to cerebrovascular structural changes, neurovascular dysfunction, and disruption of blood-brain barrier integrity. However, there is limited knowledge about the temporal changes of hippocampal cerebrovasculature after cortical stroke. In the current study, we aimed to characterise the spatiotemporal cerebrovascular changes after cortical stroke. This was done using the photothrombotic stroke model targeting the motor and somatosensory cortices of mice. Cerebrovascular morphology as well as the co-localisation of amyloid-β with vasculature and blood-brain barrier integrity were assessed in the cortex and hippocampal regions at 7, 28 and 84 days post-stroke. Our findings showed transient cerebrovascular remodelling in the peri-infarct area up to 28 days post-stroke. Importantly, the cerebrovascular changes were extended beyond the peri-infarct region to the ipsilateral hippocampus and were sustained out to 84 days post-stroke. When investigating vessel diameter, we showed a decrease at 84 days in the peri-infarct and CA1 regions that were exacerbated in vessels with amyloid-β deposition. Lastly, we showed sustained vascular leakage in the peri-infarct and ipsilateral hippocampus, indicative of a compromised blood-brain-barrier. Our findings indicate that hippocampal vasculature may represent an important therapeutic target to mitigate the progression of post-stroke cognitive impairment.
    Matched MeSH terms: Amyloid beta-Peptides/metabolism
  17. Sahathevan R, Linden T, Villemagne VL, Churilov L, Ly JV, Rowe C, et al.
    Stroke, 2016 Jan;47(1):113-9.
    PMID: 26578658 DOI: 10.1161/STROKEAHA.115.010528
    Cardiovascular risk factors significantly increase the risk of developing Alzheimer disease. A possible mechanism may be via ischemic infarction-driving amyloid deposition. We conducted a study to determine the presence of β-amyloid in infarct, peri-infarct, and hemispheric areas after stroke. We hypothesized that an infarct would trigger β-amyloid deposition, with deposition over time.
    Matched MeSH terms: Amyloid beta-Peptides/metabolism*
  18. Suppiah S, Ching SM, Nordin AJ, Vinjamuri S
    Med J Malaysia, 2018 06;73(3):141-146.
    PMID: 29962497
    BACKGROUND: Imaging such as Tc99m-HMPAO single photon emission computed tomography (SPECT), and positron emission tomography/ computed tomography (PET/CT) amyloid scans are used to aid the diagnosis of Alzheimer's disease (AD).

    OBJECTIVE: We aimed to correlate the ability of these modalities to differentiate Probable AD and Possible AD using the clinical diagnosis as a gold standard. We also investigated the correlation of severity of amyloid deposit in the brain with the diagnosis of AD.

    METHODS: A retrospective study of 47 subjects (17 Probable AD and 30 Possible AD) who were referred for PET/CT amyloid scans to our centre was conducted. Hypoperfusion in the temporo-parietal lobes on Tc99m-HMPAO SPECT and loss of grey-white matter contrast in cortical regions on PET/CT Amyloid scans indicating the presence of amyloid β deposit were qualitatively interpreted as positive for AD. SPECT and PET/CT were also read in combination (Combo reading). The severity of amyloid β deposit was semiquantitatively assessed in a visual binary method using a scale of Grade 0-4. The severity of amyloid β deposit was assessed in a visual binary method and a semi-quantitative method using a scale of Grade 0-4.

    RESULTS: There was significant correlation of Tc99m-HMPAO SPECT, PET/CT amyloid findings and Combo reading with AD. The sensitivity, specificity, PPV and NPV were 87.5%, 73.7%, 58.3% and 93.3% (SPECT); 62.5%, 77.4%, 58.8% and 80.0% (PET/CT) and 87.5%, 84.2%, 70.0% and 30.0% (Combo reading) respectively. The grade of amyloid deposition was not significantly correlated with AD (Spearman's correlation, p=0.687).

    CONCLUSION: There is an incremental benefit in utilizing PET/CT amyloid imaging in cases with atypical presentation and indeterminate findings on conventional imaging of Alzheimer's disease.

    Matched MeSH terms: Amyloid beta-Peptides/metabolism
  19. Md S, Gan SY, Haw YH, Ho CL, Wong S, Choudhury H
    Int J Biol Macromol, 2018 Oct 15;118(Pt A):1211-1219.
    PMID: 30001606 DOI: 10.1016/j.ijbiomac.2018.06.190
    Alzheimer's disease (AD) is an increasingly prevalent neurological disorder of the central nervous system. There is growing evidence that amyloidogenesis is a pathological hallmark for AD; this leads to the formation of senile plaques. Naringenin is a bioflavonoid which has neuroprotective effects through its antioxidant and anti-inflammatory properties. However, its clinical usage is limited due to its inefficient transport across biological membranes. In the present study, a naringenin nanoemulsion was prepared and its neuroprotective effects were tested against β-amyloid induced neurotoxicity in a human neuroblastoma cell line (SH-SY5Y). The optimised, naringenin-loaded nanoemulsion formulation had a droplet size of 113.83 ± 3.35 nm and around 50 nm, as assessed respectively by photon correlation spectroscopy and transmission electron microscopy. The preparation showed a low polydispersity index (0.312 ± 0.003), a high zeta potential (12.4 ± 1.05) and a high percentage transmittance (97.01%). The neuroprotective activity of naringenin nanoemulsions was determined by assessing their ability to protect SH-SY5Y neuroblastoma cells against the neurotoxic effect of beta amyloid (Aβ). Aβ-induced production of reactive oxygen species (ROS), amyloid precursor protein (APP), β-secretase (BACE), total tau and phosphorylated tau (pT231) was also determined. The naringenin loaded nanoemulsion significantly alleviated the direct neurotoxic effects of Aβ on SH-SY5Y cells; this was associated with a down-regulation of APP and BACE expression, indicating reduced amyloidogenesis. Furthermore, it decreased the levels of phosphorylated tau in SH-SY5Y cells exposed to Aβ. These results suggest that a naringenin-loaded nanoemulsion could be a promising agent for the treatment of Alzheimer's disease.
    Matched MeSH terms: Amyloid beta-Peptides/metabolism*
  20. Wadhwa R, Paudel KR, Mehta M, Shukla SD, Sunkara K, Prasher P, et al.
    CNS Neurol Disord Drug Targets, 2020;19(9):698-708.
    PMID: 33109069 DOI: 10.2174/1871527319999200817112427
    Tobacco smoke is not only a leading cause for chronic obstructive pulmonary disease, cardiovascular disorders, and lung and oral cancers, but also causes neurological disorders such as Alzheimer 's disease. Tobacco smoke consists of more than 4500 toxic chemicals, which form free radicals and can cross blood-brain barrier resulting in oxidative stress, an extracellular amyloid plaque from the aggregation of amyloid β (Aβ) peptide deposition in the brain. Further, respiratory infections such as Chlamydia pneumoniae, respiratory syncytial virus have also been involved in the induction and development of the disease. The necessary information collated on this review has been gathered from various literature published from 1995 to 2019. The review article sheds light on the role of smoking and respiratory infections in causing oxidative stress and neuroinflammation, resulting in Alzheimer's disease (AD). This review will be of interest to scientists and researchers from biological and medical science disciplines, including microbiology, pharmaceutical sciences and the translational researchers, etc. The increasing understanding of the relationship between chronic lung disease and neurological disease is two-fold. First, this would help to identify the risk factors and possible therapeutic interventions to reduce the development and progression of both diseases. Second, this would help to reduce the probable risk of development of AD in the population prone to chronic lung diseases.
    Matched MeSH terms: Amyloid beta-Peptides/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links